Клеточный конвейер при синтезе белка. Методы исследования в гистологии. Основные принципы и этапы приготовления гистологических препаратов. Что такое биосинтез белка

Механизм синтеза небелковых веществ

Ядрышко

Это плотная гранула диаметром 1-3 мкм, интенсивно окрашивающаяся основными красителями. Главным компонентом ядрышка является специализированный участок хромосом (петли), или организатор ядрышка. Такие участки имеются в пяти хромосомах: 13-й, 14-й, 15-й, 21-й и 22-й; именно здесь располагаются многочисленные копии генов, кодирующих рибосомальные РНК.

При ЭМ в ядрышке описывают 3 компонента :

1. Фибриллярный компонент - множество тонких (5-8 нм) нитей, с преимущественной локализацией во внутренней части ядрышка. Это первичные транскрипты р-РНК.

2. Гранулярный компонент – это скопление плотных частиц диаметром 10-20 нм, они соответствуют наиболее зрелым предшественникам субьединиц рибосом.

3. Аморфный компонент – это зона расположения ядрышковых организаторов, очень бледно окрашенная зона. Здесь крупные петли ДНК, участвующие в транскрипции рибосомальной РНК, а так же белки, специфически связывающиеся с РНК. Гранулы и фибриллы формируют ядрышковую нить (нуклеолонему) , толщиной 60-80 нм. Поскольку ядрышко окружено хроматином, то он получает название перинуклеарный хроматин , а его часть, проникающая внутрь ядрышка – этоинтрануклеолярный хроматин.

Клеточный конвейер – это сборка секреторного продукта на живой конвейерной ленте при участии различных клеточных органелл. При этом процесс сборки слагается из ряда этапов, происходящих в определенной последовательности на участках клетки, достаточно далеко удаленных от места непосредственного действия нуклеиновых кислот, осуществляющих генетический контроль.

Клеточный конвейер при синтезе белка предусматривает обычную последовательность процессов, изложенную в разделе описания гранулярной эндоплазматической сети. Здесь уместно представить механизм синтеза небелковых веществ.

1. Транскрипция ДНК с образованием м-РНК

2. Образование в зоне ядрышка рибосомальной РНК

3. Сборка в зоне ядра предшественника рибосом

4. Поступление большой и малой субьединиц рибосом в цитоплазму

5. Синтез на свободных рибосомах ферментов для биосинтеза небелковых веществ (углеводов и липидов)

6. Поступление ферментов в гиалоплазму или гладкую ЭПС, где происходит синтез углеводов или липидов

7. Поступление этих веществ в комплекс Гольджи, формирование секреторной гранулы с выделением из клетки или сохранением веществ внутри клетки

Таким образом, липиды и углеводы синтезируются в цитоплазме и гладкой ЭПС, упаковываются в КГ с эффектом (“ минус- мембрана”).

Ферменты, принимающие участие в биосинтезе этих липидов – это интегральные мембранные белки, каталитические участки которых обращены в цитозоль. Синтез происходит с помощью нескольких ферментативных реакций. Новые липиды свободно диффундируют в плоскости бислоя и быстро смешиваются с липидами наружного слоя мембраны. Кроме того, фермент флиппаза может перемещать вновь синтезированные липиды во внутренний слой мембраны. Так происходит быстрое смешивание глицерофосфолипидов.

Рибосома – минифабрика по производству белков

Одним из наиболее сложных процессов, осуществляемых живыми существами, является, пожалуй, синтез белков - важнейших структурных и функциональных «кирпичиков» любого организма. Подлинное понимание молекулярных процессов, лежащих в его основе, могло бы пролить свет на неимоверно давние события, связанные с тайной зарождения самой Жизни...

Во всех живых организмах, от простейших бактерий до человека, белки синтезируются специальными клеточными устройствами рибосомами. На этих уникальных фабриках происходит образование белковой цепи из отдельных аминокислот.

В клетках, ведущих интенсивный белковый синтез, рибосом очень много: так, в одной бактериальной клетке содержится около 10 тыс. этих минифабрик, составляющих до 30% общей сухой массы клетки! В клетках высших организмов рибосом содержится меньше - их число зависит от типа ткани и уровня метаболизма клетки.

Рибосома синтезирует белок со средней скоростью 10-20 аминокислот в секунду. Точность трансляции исключительно высока - ошибочное включение «неправильного» аминокислотного остатка в цепь белка составляет в среднем одну аминокислоту на 3 тыс. звеньев (при средней длине белковой цепи у человека в 500 аминокислотных остатков), т. е. всего одна ошибка на шесть белков.

О генетическом коде

Программа, задающая последовательность аминокислотных остатков в белке, записана в геноме клетки: около полувека назад было установлено, что аминокислотные последовательности всех белков непосредственно закодированы в ДНК с помощью так называемого генетического кода . Согласно этому коду, универсальному для всех живых организмов, каждой из двадцати существующих аминокислот соответствует свой кодон - тройка нуклеотидов, представляющих собой элементарные единицы цепочки ДНК. Любой белок закодирован в ДНК определенной последовательностью кодонов. Эта последовательность называется геном .

Одна клетка может содержать до 10 тыс. рибосом - белковых минифабрик, составляющих до 30% сухой клеточной массы

Как же эта генетическая информация доходит до рибосомы? На отдельном гене, как на матрице, синтезируется цепь еще одной информационной молекулы - рибонуклеиновой кислоты (РНК). Этот процесс копирования гена, называемый транскрипцией , осуществляется специальными ферментами - РНК-полимеразами.

Но РНК, полученная таким образом, еще не является матрицей для синтеза белка: из нее, вырезаются определенные «некодирующие» куски нуклеотидной последовательности (процесс сплайсинга ).

Точность белкового синтеза рибосомой исключительно высока - у человека ошибка составляет один на три тысячи «неправильный» аминокислотный остаток

В результате получается матричная РНК (мРНК), которая и используется рибосомами в качестве программы для синтеза белка. Сам синтез, т.е. перевод генетической информации с языка нуклеотидной последовательности мРНК на язык аминокислотной последовательности белка, называется трансляцией.

Декодирование и синтез

В клетках эукариот одну мРНК обычно транслирует сразу множе­ство рибосом, образуя так называемые полисомы, которые можно отчетливо видеть с помощью электронной микроскопии, позволяющей получать увеличение в десятки тысяч раз.

Как поступают в рибосому аминокислоты, являющиеся строитель­ными кирпичиками для синтеза белка? Еще в 50-х годах прошлого столетия были открыты особые «перевозчики», доставляющие аминокислоты в рибосому, - короткие (длиной менее 80 нуклеотидов) транспортные РНК (тРНК). Специальный фермент присоединяет аминокислоту к одному из концов тРНК, причем каждой аминокислоте соответствует строго определенная тРНК. Синтез белка на рибосоме включает три основные стадии: начало, удлинение полипептидной цепи и окончание.

Сама рибосома - одна из самых сложно организованных молекулярных машин клетки - состоит из двух неравных частей, так называемых субчастиц (малой и большой). Ее можно легко разделить на части центрифугированием при сверхвысоких скоростях в специальных пробирках с раствором сахарозы, концентрация которой увеличивается сверху вниз. Поскольку малая субчастица в два раза легче большой, они движутся от верха пробирки к дну с разными скоростями.

Малая субчастица отвечает за декодирование генетической информации. Она состоит из высокомолекулярной рибосомной РНК (рРНК) и нескольких десятков белков (около 20 у прокариот и более 30 - у эукариот).

В раковых клетках резко повышается уровень некоторых рибосомных белков. Возможная причина - сбои в механизмах авторегуляции их производства

Большая субчастица, ответст­венная за образование пептидной связи между аминокислотными остатками, состоит из нескольких рРНК: одной высокомолекулярной и одной (или двух в случае эукариот) низкомолекулярной, а также нескольких десятков белков (более 30 у прокариот и до 50 у эукариот). О масштабе деятельности рибосом можно судить хотя бы по тому факту, что рибосомная РНК составляет около 80 % всей РНК клетки, тРНК, транспортирующая аминокислоты, - около 15 %, тогда как матричная РНК, несущая информацию о белковой последовательности, - лишь 5 %!

Нужно отметить, что рибосомные белки наделены множеством других, дополнительных функций, которые могут проявляться на разных этапах жизнедеятельности клетки. Например, рибосомный белок S3 человека - один из ключевых белков центра связывания мРНК на рибосоме - принимает также участие в «ремонте» повреждений в ДНК (Kim et al. , 1995), участвует в апоптозе (запрограммированной гибели клетки) (Jung et al. , 2004), а также защищает от разрушения белок теплового шока (Kim et al. , 2006).

Кроме того, чересчур интенсивный синтез некоторых рибосомных белков может свидетельствовать о развитии злокачественной трансформации клетки. Например, значительное повышение уровня пяти рибосомных белков было обнаружено в опухолевых клетках толстого кишечника (Zhang et al. , 1999). Недавно сотрудниками лаборатории структуры и функции рибосом ИХБФМ СО РАН был открыт новый механизм авторегуляции биосинтеза рибосомных белков у человека, основанный на принципе обратной связи. Не­управляемый синтез рибосомных белков, характерный для опухолевых клеток, вероятно, вызван сбоями именно в этом механизме. Дальнейшие исследования в этой области представляют особый инте¬рес не только для ученых, но и для медиков.

Работает как «рибозим»

Удивительно, но, несмотря на миллиарды лет эволюции, разделяющие бактерии и человека, вторичная структура рибосомальных РНК у них мало различается.

О том, как уложена рРНК в субчастицах и каким образом она взаимодействует с рибосомными белками, до недавнего времени было известно не много. Революционный сдвиг в понимании устройства рибосомы на молекулярном уровне произошел на рубеже нового тысячелетия, когда с помощью рентгеноструктурного анализа удалось расшифровать на уровне отдельных атомов структуру рибосом простейших организмов и их модельных комплексов с мРНК и тРНК. Это позволило понять молекулярные механизмы декодирования генетической информации и образования связей в молекуле белка.

Оказалось, что оба важнейших функциональных центра рибосомы - как декодирующий на малой субчастице, так и отвечающий за синтез белковой цепочки на большой субчастице - сформированы не белками, а рибосомной РНК. То есть, рибосома работает подобно рибозимам - необычным ферментам, состоящим не из белков, а из РНК.

Рибосомные белки, тем не менее, также играют важную роль в работе рибосомы. В отсутствие этих белков рибосомные РНК совершенно неспособны ни декодировать генетическую информацию, ни катализировать образование пеп­тидных связей. Белки обеспечивают необходимую для работы рибосомы сложную «укладку» рРНК в функциональных центрах, служат «передатчиками» изменений пространственной структуры рибосомы, необходимых в процессе работы, а также связывают различные молекулы, влияющие на скорость и точность процесса белкового синтеза.

Сама рабочая схема белкового цикла в принципе одинакова для рибосом всех живых существ. Однако до сих пор неизвестно, до какой степени схожи молекулярные механизмы работы рибосом у разных организмов. Особенно не хватает информации об устройстве функциональных центров рибосом высших организмов, которые изучены гораздо хуже, чем рибосомы простейших.

Это связано с тем, что многие из методов, успешно использованных для исследования рибосом прокариот, оказались для эукариот неприменимыми. Так, из рибосом высших организмов не удается получить кристаллы, пригодные для рентгеноструктурного анализа, а их субчастицы невозможно «собрать» в пробирке из смеси рибосомных белков и рРНК, как это делается у простейших.

От низших - к высшим

И все-таки способы получения сведений о строении функциональных центров рибосом высших организмов существуют. Одним из таких методов является метод химического аффинного сшивания , разработанный 35 лет назад в отделе биохимии НИОХ СО АН СССР (ныне ИХБФМ СО РАН) под руководством академика Д. Г. Кнорре.

Метод основан на использовании коротких синтетических мРНК, несущих в выбранном положении химически активные («сшивающие») группы, которые в нужный момент можно активировать (например, облучая мягким ультрафиолетовым светом).

Метод аффинного химического сшивания был разработан 35 лет назад в отделе биохимии НИОХ СО АН СССР (ныне ИХБФМ СО РАН) под руководством академика Д. Г. Кнорре.До появления рентгеноструктурного анализа рибосом он использовался во всем мире для изучения рибосом у прокариот.
Этот метод и сегодня является основным для изучения структурно-функциональной организации рибосом высших организмов

Достоинство этого метода в том, что сшивающую группу можно присоединить практически к любому нуклеотидному остатку мРНК и в результате получить детальную информацию о его окружении на рибосоме. Используя набор коротких мРНК с разным расположе­нием сшивающей группы, нам удалось определить рибосомные белки и нуклеотиды рРНК рибосомы человека, образующие канал для считывания генетической инфор­мации в процессе трансляции.

Впервые экспериментально удалось показать, что все нуклеотиды рРНК малой рибосомной частицы человека, соседствующие с кодонами мРНК, расположены в консервативных районах вторичной структуры молекулы рРНК. Более того, их расположение совпадает с положением соответствующих нуклеотидов во вторичной структуре рРНК рибосом низших организмов. Это позволило сделать вывод, что эта часть рибосомной РНК малой субчастицы составляет эволюционно консервативный «кор» (сердцевину) рибосомы, структурно идентичный у всех организмов.

С другой стороны, в устройстве мРНК-связывающего канала рибосом у человека и низших организмов обнаружен ряд принципиальных различий. Оказалось, что у высших организмов рибосомные белки играют намного большую роль в формировании этого канала, чем у прокариот, кроме того, в этом участвуют также белки, не имеющие «двойников» (гомологов) у низших организмов.

Почему же, несмотря на то, что функция рибосомы практически не изменилась в процессе эволюции, в организации декодирующего центра рибосом у высших организ­мов появились специфичные черты? Вероятно, это связано с более сложной и многостадийной регуляцией белкового синтеза у эукариот по сравнению с прокариотами, в ходе которой рибосомные белки мРНК-связывающего канала могут взаимодействовать не только с мРНК, но и с различными факторами, влияющими на эффективность и точность трансляции. Так ли это, покажут дальнейшие исследования.

C возникновением компартментов эукариотическая клетка получает не только очевидные преимущества, но и ряд проблем. Одной из них является сортировка и доставка нужных соединений в нужные органеллы. Прежде всего, это касается белков. Судьба синтезированных белков различна и зависит от мест их последующего функционирования. Существуют два магистральных пути транспорта белков, которые начинаются в разных местах цитоплазмы. Рис. 1.2.

Первая транспортная ветвь работает с белками, которые предназначены для пластид, митохондрий, ядра и пероксисом – то есть для всех компартментов клетки, кроме органелл эндомембранной системы. Синтез этих белков происходит на свободных рибосомах цитозоля. Белки, предназначенные для транспорта, содержат сигналы сортировки, направляющие их в соответствующие органеллы. Подобными сигналами обычно служат один или несколько участков белка, которые называют сигнальными, или лидерными пептидами. В мембране органеллы находится специальный белкок-транслокатор, который «узнает» сигнальный пептид. Молекула транспортируемого белка должна развернуться, чтобы подобно нитке развернувшегося клубка «продеться» через «игольное ушко» белка-транслокатора. В таблице 1.1. представлены некоторые характеристики различных сигналов сортироваки. Этот путь транспорта белков иогда называют цитозольным . Следует отметить, что большинство белков, ситезируемых на свободных рибосомах цитозоля не имеют сигналов сортировки и остаются в цитозоле в качестве постоянных компонентов.

Другая транспортная ветвь используется для секретируемых белков, а также для белков, предназначенных для органелл эндомембранной системы и плазматической мембраны. Синтез этих белков также начинается на рибосомах цитозоля, но после инициации трансляции рибосомы прикрепляются к мембране ЭР, при этом формируется шероховатый ЭР. Образующиеся белки переносятся в ЭР котрансляционно. Это означает, что сразу после синтеза очередного участка полипептидной цепи он пересекает мембрану ЭР. После синтеза некоторые из белков попадают в просвет ЭР, другие остаются закрепленными в мембране и становятся трансмембранными белками ЭР. Эту транспортную ветвь часто называют секреторным путем клетки.

Таблица 1.1. Сигнальные последовательности для транспорта белков в растительной клетке.

Целевая органелла Сигнальная последовательность Характеристика
Хлоропласты: строма N-концевой лидерный пептид («стромальный») Последовательность из 40-50 аминокислот
Хлоропласты: люмен и мембраны тилакоидов Два последовательных N-концевых лидерных пептида Первый пептид -«стромальный», второй – «люменальный»
Митохондрии: матрикс N-концевой пресиквенс Формирует положительно заряженную амфипатическую α-петлю.
Митохондрии: внутренняя мембрана, межмембранное пространство Два последовательных N-концевых пресиквенса Первый пресиквенс - как для белков матрикса, второй состоит из остатков гидрофобных аминокислот
Пероксисомы Сигналы пероксисомальной локализации PTS1 и PTS2 PTS1 – С-концевой трипептид – Ser-Lys-Leu PTS2 локализован на N-конце.
Ядро Сигналы ядерной локализации NLS. Не отщепляются после переноса белка в ядро NLS типа 1: Pro-Lys-Lys-Lys-Arg-Lys. NLS типа 2: две последовательности, разделенные спейсером NLS типа 3: Lys-Ile-Pro-Ile-Lys
Сигнальный пептид секреторного пути N-концевой лидерный пептид 10-15 остатков гидрофобных аминокислот, формирующих α-спираль.
Эндоплазматический ретикулум Сигнал локализации в ЭР С-концевой тетрапептид KDEL (Lys-Asp-Glu-Leu)
Вакуоль. Сигналы локализации в вакуолях NTPP, CTPP, внутрибелковый сигнал. NTPP - N-концевой сигнал: Asn-Pro-lle-Arg CTPP – С-концевой сигнал.

Две ветви транспорта различаются по схеме транспортировки. Пути цитозольного транспорта белков параллельны, то есть белки из цитозоля сразу направляется в нужную органеллу. Обычно проходит не больше одной - двух минут с момента высвобождения белка в цитозоль до поступления его в органеллу.

Транспорт белков по секреторному пути происходит последовательно – от органеллы к органелле. До достижения конечного пункта белок может побывать в нескольких органеллах (ЭР, разные отделы АГ). Путь от мембраны ЭР до места назначения может занять десятки, если не сотни минут. В процессе переноса белки могут претерпевать значительные модификации (прежде всего в АГ). На заключительных этапах транспорт может происходить параллельно - в вакуоль, периплазмитическое пространство или в плазмалемму.

И, наконец, два пути транспорта белков различаются по механизму переноса молекул. Для цитозольного пути возможен только мономолекулярный механизм транспорта белков, при котором каждая молекула белка индивидуально пересекает мембрану через соответствующий транслокатор. Для секреторного пути характерен везикулярный механизм транспорта белковых молекул, который опосредован транспортными пузырьками (везикулами). Везикулы отшнуровываются от одного компартмента, при этом происходит захват определенных молекул из его полости. Затем везикулы сливаются с другим компартментом, доставляя в него свое содержимое. При везикулярном транспорте белки не пересекают никаких мембран, транспорт может происходить только между топологически эквивалентными компартментами. Везикулярный механизм транспорта избирательно контролируется с помощью специальных белков, выполняющих функции сигналов сортировки. В транспортный пузырек белок попадает, если его сигнал сортировки связывается с рецептором на мембране везикулы. В настоящее время некоторые сигналы сортировки в составе белков известны, тогда как большинство комплементарных им мембранных рецепторов - нет.

1.2. Растительная клетка – результат двойного симбиоза.

Стратегия существования высших растений обусловлена прежде всего двумя их главными свойствами – фототрофным типом питания и отсутствием активной подвижности. Эти два свойства наложили отпечаток на все уровни организации растительного организма, вплоть до клеточного.

Помимо общих для всех эукариотических клеток признаков, клетки растений обладают рядом особенностей. Главные из них:

наличие пластид; наличие вакуолей; наличие жесткой клеточной стенки.

Схема строения типичной растительной клетки представлена на рис. 1.3.

Присутствие пластид связано, прежде всего, с фототрофным типом питания растений. Пластиды, как и митохондрии, имеют собственный геном. Таким образом, еще одной особенностью растительной клетки является то, что она совмещает в себе три относительно автономные генетические системы: ядерную (хромосомную), митохондриальную и пластидную. Наличие трех геномов является следствием симбиотического происхождения растительных клеток. При этом растительная клетка, в отличие от других эукариотических клеток, образовалась как минимум из трех исходно самостоятельных форм:

1) «хозяйского» организма, генетический аппарат которого переместился в ядро;

2) гетеротрофной бактерии (похожей на родоспириллу), послужившей предшественницей митохондрии;

3) древней бактерии с оксигенным фотосинтезом (похожей на цианобактерию синехоцистис), ставшей родоначальницей пластид.

Длительная коэволюция симбионтов привела к перераспределению функций между ними и их генетическими системами, при этом многие гены митохондриальной и пластидной ДНК были перемещены в ядро.

В обмене веществ организма ведущая роль принадлежит белкам и нуклеиновым кислотам. Белковые вещества составляют основу всех жизненно важных структур клетки, они входят в состав цитоплазмы. Белки обладают необычайно высокой реакционной способностью. Они наделены каталитическими функциями, т. е. являются ферментами, поэтому белки определяют направление, скорость и теснейшую согласованность, сопряженность всех реакций обмена веществ.

Рис. 13 А. Схема синтеза белка в эукариотной клетке.

Рис. 13 Б. Схема синтеза белка в прокариотной клетке.

Ведущая роль белков в явлениях жизни связана с богатством и разнообразием их химических функций, с исключительной способностью к различным превращениям и взаимодействиям с другими простыми и сложными веществами, входящими в состав цитоплазмы.

Нуклеиновые кислоты входят в состав важнейшего органа клетки - ядра, а также цитоплазмы, рибосом, митохондрий и т. д. Нуклеиновые кислоты играют важную, первостепенную роль в наследственности, изменчивости организма, в синтезе белка.

Процесс синтеза белка является очень сложным многоступенчатым процессом. Совершаем ся он в специальных органеллах - рибосомах. В клетке содержится большое количество рибосом. Например, у кишечной палочки их около 20000.

Каким образом происходит синтез белка в рибосомах?

Молекулы белков по существу представляют собой полипептидные цепочки, составленные из отдельных аминокислот. Но аминокислоты недостаточно активны, чтобы соединиться между собой самостоятельно. Поэтому, прежде чем соединиться друг с другом и образовать молекулу белка, аминокислоты должны активироваться. Эта активация происходит под действием особых ферментов. Причем каждая аминокислота имеет свой, специфически настроенный на нее фермент.

Источником энергии для этого (как и для многих процессов в клетке) служит аденозинтрифосфат (АТФ).

В результате активирования аминокислота становится более лабильной и под действием того же фермента связывается с т-РНК.

Важным является то, что каждой аминокислоте соответствует строго специфическая т-РНК. Она находит «свою» аминокислоту и переносит ее в рибосому. Поэтому такая РНК и получила название транспортной.

Следовательно, в рибосому поступают различные активированные аминокислоты, соединенные со своими т-РНК. Рибосома представляет собой как бы конвейер для сборки цепочки белка из поступающих в него различных аминокислот (рис. 13 Аи Б).

Возникает вопрос: от чего зависит порядок связывания между собой отдельных аминокислот? Ведь именно этот порядок и определяет, какой белок будет синтезирован в рибосоме, так как от порядка расположения аминокислот в белке зависит его специфика. В клетке содержится более 2000 различных по строению и свойствам специфических белков.

Оказывается, что одновременно с т-РНК, на которой «сидит» своя аминокислота, в рибосому поступает «сигнал» от ДНК, которая содержится в ядре. В соответствии с этим сигналом в рибосоме синтезируется тот или иной белок, тот или иной фермент (так как ферменты являются белками).

Направляющее влияние ДНК на синтез белка осуществляется не непосредственно, а с помощью особого посредника, той формы РНК, которая получила название матричной или информационной РНК (м-РНК или и-РНК).

Информационная РНК синтезируется в ядре под влиянием ДНК, поэтому ее состав отражает состав ДНК. Молекула РНК представляет собой как бы слепок с формы ДНК.

Синтезированная и-РНК поступает в рибосому и как бы передает этой структуре план - в каком порядке должны соединяться друг с другом поступившие в рибосому активированные аминокислоты, чтобы синтезировался определенный белок. Иначе, генетическая информация, закодированная в ДНК, передается на и-РНК и далее на белок.

Молекула информационной РНК поступает в рибосому и как бы прошивает ее. Тот ее отрезок, который находится в данный момент в рибосоме, определенный ко доном (триплет), взаимодействует совершенно специфично с подходящим к нему по строению триплетом (антикодоном) в транспортной РНК, которая принесла в рибосому аминокислоту. Транспортная РНК со своей аминокислотой подходит к определенному кодону и-РНК и соединяется с ним; к следующему, соседнему участку и-РНК присоединяется другая т-РНК с другой аминокислотой и так далее, до тех пор пока не будет считана вся цепочка и-РНК и пока не нанижутся все аминокислоты в соответствующем порядке, образуя молекулу белка. А т-РНК, которая доставила аминокислоту к определенному участку полипептидной цепи, освобождается от своей аминокислоты и выходит из рибосомы. Затем снова в цитоплазме к ней может присоединиться нужная аминокислота, и она снова перенесет ее в рибосому. В процессе синтеза белка участвует одновременно не одна, а несколько рибосом - полирибосомы.

Основные этапы передачи генетической информации: синтез на ДНК как на матрице и-РНК (транскрипция) и синтез в рибосомах полипептидной цепи по программе, содержащейся в и-РНК (трансляция), универсальны для всех живых существ. Однако временные и пространственные взаимоотношения этих процессов различаются у прои эукариотов.

У организмов, обладающих настоящим ядром (животные, растения), транскрипция и трансляция строго разделены в пространстве и времени: синтез различных РНК происходит в ядре, после чего молекулы РНК должны покинуть пределы ядра, пройдя через ядерную мембрану (рис. 13 А). Затем в цитоплазме РНК транспортируются к месту синтеза белка - рибосомам. Лишь после этого наступает следующий этап - трансляция.

У бактерий, ядерное вещество которых не отделено от цитоплазмы мембраной, транскрипция и трансляция идут одновременно (рис. 13 Б).

Современные схемы, иллюстрирующие работу генов, построены на основании логического анализа экспериментальных данных, полученных с помощью биохимических и генетических методов. Применение тонких электронно-микроскопических методов позволяет в буквальном смысле слова увидеть работу наследственного аппарата клетки. В последнее время получены электронно-микроскопические снимки, на которых видно, как на матрице бактериальной ДНК, в тех участках, где к ДНК прикреплены молекулы РНК-полимеразы (фермента, катализирующего транскрипцию ДНК в РНК), происходит синтез молекул и-РНК. Нити и-РНК, расположенные перпендикулярно к линейной молекуле ДНК, продвигаются вдоль матрицы и увеличиваются в длине. По мере удлинения нитей РНК к ним присоединяются рибосомы, которые, продвигаясь, в свою очередь, вдоль нити РНК по направлению к ДНК, ведут синтез белка.

Из всего сказанного следует, что местом синтеза белков и всех ферментов в клетке являются рибосомы. Образно выражаясь, это как бы «фабрики» белка, как бы сборочный цех, куда поступают все материалы, необходимые для сборки полипептидной цепочки белка из аминокислот. Природа же синтезируемого белка зависит от строения и-РНК, от порядка расположения в ней нуклеоидов, а строение и-РНК отражает строение ДНК, так что в конечном итоге специфическое строение белка, т. е. порядок расположения в нем различных аминокислот, зависит от порядка расположения нуклеоидов в ДНК, от строения ДНК.

Изложенная теория биосинтеза белка получила название матричной теории. Матричной эта теория называется потому, что нуклеиновые кислоты играют как бы роль матриц, в которых записана вся информация относительно последовательности аминокислотных остатков в молекуле белка.

Создание матричной теории биосинтеза белка и расшифровка аминокислотного кода является крупнейшим научным достижением XX века, важнейшим шагом на пути к выяснению молекулярного механизма наследственности.

Представляют собой тельца, ограниченные билипидной мембраной и содержащие электронноплотный матрикс, состоящий из набора

гидролитических белков-ферментов (более тридцати видов гидролаз), способных расщеплять любые полимерные соединения (белки, жиры, углеводы), их комплексы на мономерные фрагменты.

Функция лизосом - обеспечение внутриклеточного пищеварения, т. е. расщепление как экзогенных, так и эндогенных биополимерных веществ.

Классификация лизосом:

1) первичные лизосомы - электронно-плотные тельца;

2) вторичные лизосомы - фаголизосомы, в том числе аутофаголизосомы;

3) третичные лизосомы или остаточные тельца.

Истинными лизосомами называют мелкие электронноплотные тельца, образующиеся в пластинчатом комплексе. Пищеварительная функция лизосом начинается только после слияния с фагосомой (фагоцитируемое вещество, окруженное билипидной мембраной) и образования фаголизосомы, в которой смешиваются фагоцитируемый материал и лизосомальные ферменты. После этого начинается расщепление биополимерных соединений фагоцитированного материала на мономеры - аминокислоты, сахара. Эти молекулы свободно проникают через мембрану фаголизосомы в гиалоплазму и затем утилизируются клеткой - идут на образование энергии или построение новых внутриклеточных макромолекулярных соединений. Некоторые соединения не могут быть расщеплены ферментами лизосомы и поэтому выводятся из клетки в неизмененном виде при помощи экзоцитоза (процесс обратный фагоцитозу). Вещества липидной природы практически не расщепляются ферментами, а накапливаются и уплотняются в фаголизосоме. Данные образования были названы третичными лизосомами (или остаточными тельцами).

В процессе фагоцитоза и экзоцитоза осуществляется рециркуляция мембран в клетке: при фагоцитозе часть плазмолеммы отшнуровывается и образует оболочку фагосомы, при экзоцитозе эта оболочка вновь встраивается в плазмолемму. Поврежденные, измененные или устаревшие собственные органеллы клетки утилизируются ею по механизму внутриклеточного фагоцитоза с помощью лизосом. Вначале эти органеллы окружаются билипидной мембраной, и образуется вакуоль - аутофагосома. Затем с ней сливается одна или несколько лизосом, и образуется аутофаголизосома, в которой осуществляеся гидролитическое расщепление биополимерных веществ, как и в фаголизосоме.

Пероксисомы

Пероксисомы - микротельца цитоплазмы (0,1-1,5 мкм), сходные по строению с лизосомами, однако отличаются от них тем, что в их матриксе содержатся кристаллоподобные структуры, а среди белков-ферментов содержится каталаза, разрушающая перекись водорода , образующуюся при окислении аминокислот.

СИСТЕМА ВНУТРИКЛЕТОЧНЫХ ЦИСТЕРН, РАЗНОВИДНОСТИ. ВНУТРИКЛЕТОЧНЫЙ КОНВЕЙЕР СИНТЕЗА БЕЛКОВ, ЖИРОВ И УГЛЕВОДОВ: КОМПОНЕНТЫ, ЗНАЧЕНИЕ.

Система внутриклеточных цистерн, в которых накапливаются вещества, синтезированные клеткой, носит название комплекса (аппарата) Гольджи. Комплекс Гольджи представляет собой скопление цистерн, собранными в небольшой зоне. Отдельная зона скопления этих цистерн называется диктиосомой. Цистерны располагаются в виде стопки. Между стопками располагаются тонкие прослойки гиалоплазмы. В центре мембраны цистерн сближены, а на периферии могут иметь расширения (ампулы). Кроме плотно расположенных плоских цистерн в зоне аппарата Гольджи наблюдается множество вакуолей. Мелкие вакуоли отшнуровываются от расширений на краях плоских цистерн. Принято различать в зоне диктиосомы проксимальный, или формирующийся цис-участок и дистальный, или зрелый, транс-участок. В секретирующих клетках аппарат Гольджи обычно поляризован: с одной стороны мембранные мешочки непрерывно образуются, а с другой – отшнуровываются в виде пузырьков. Цистерны аппарата Гольджи связаны с канальцами ЭПР.

Внутриклеточный конвейер :

рибосома- эндоплазматическая сеть - комплекс Гольджи

ЯДРО КЛЕТКИ: МИКРОСКОПИЧЕСКОЕ, УЛЬТРАМИКРОСКОПИЧЕСКОЕ СТРОЕНИЕ И ФУНКЦИИ ИНТЕРНФАЗНОГО ЯДРА.

Ядро является важнейшим компонентом клетки, содержащим ее генетический аппарат.

Функции ядра:

1 хранение генетической информации (в молекулах ДНК, находящихся в хромосомах);

2 реализацию генетической информации, контролирующей осуществление разнообразных процессов в клетке - от синтетических до запрограммированной гибели (апоптоза);

3 воспроизведение и передачу генетической информации (при делении клетки).

Обычно в клетке имеется только одно ядро, однако встречаются многоядерные клетки, которые образуются вследствие деления клеток, не сопровождающегося цитотомией, или слияния нескольких одноядерных клеток (последние правильнее называть симпластами).

Форма ядра различных клеток неодинакова: встречаются клетки с округлым, овальным, бобовидным, палочковидным, многолопастным, сегментированным ядром; нередко на поверхности ядра имеются вдавле-ния. Чаще всего форма ядра в целом соответствует форме клетки: оно обычно сферическое в клетках округлой или кубической формы, вытянутое или эллипсоидное в призматических клетках, уплощенное -в плоских.

Расположение ядра варьирует в разных клетках; оно может лежать в центре клетки (в клетках округлой, плоской, кубической или вытянутой формы), у ее базального полюса (в клетках призматической формы) или на периферии (например, в жировых клетках).

Величина ядра относительно постоянна для каждого типа клеток, однако она может меняться в определенных пределах, увеличиваясь при усилении функциональной активности клетки и уменьшаясь при ее угнетении.

Компоненты ядра. В ядре неделящейся (интерфазной) клетки выявляются кариолемма (ядерная оболочка), хроматин, ядрышко и кариоплазма (ядерный сок). Как будет видно из дальнейшего изложения ,

хроматин и ядрышко представляют собой не самостоятельные компоненты ядра, а являются морфологическим отражением хромосом, присутствующих в интерфазном ядре, но не выявляемых в качестве отдельных образований.

Ядерная оболочка

Ядерная оболочка (кариолемма) на светооптическом уровне практически не определяется; под электронным микроскопом обнаруживается, что она состоит из двух мембран - наружной и внутренней, - разделенных полостью шириной 15-40 им (перинуклеарным пространством) и смыкающихся в области ядерных пор.

Наружная мембрана составляет единое целое с мембранами грЭПС - на ее поверхности имеются рибосомы, а перинуклеарное пространство соответствует полости цистерн грЭПС и может содержать синтезированный материал. Со стороны цитоплазмы наружная мембрана окружена рыхлой сетью промежуточных (виментиновых) филаментов .

Внутренняя мембрана - гладкая, ее интегральные белки связаны с ядерной пластинкой - ламиной - слоем толщиной 80-300 нм, состоящим из переплетенных промежуточных филаментов (ламинов), образующих кариоскелет. Ламина играет очень важную роль в: (1) поддержании формы ядра; (2) упорядоченной укладке хроматина; (3) структурной организации паровых комплексов; (4) формировании кариолеммы при делении клеток.

Ядерные поры занимают 3-35% поверхности ядерной оболочки. Они более многочисленны в ядрах интенсивно функционирующих клеток и отсутствуют в ядрах спермиев. Поры (см. рис. 3-19) содержат два параллельных кольца (по одному с каждой поверхности кариолеммы) диаметром 80 нм, которые образованы 8 белковыми гранулами. От этих гранул к центру сходятся фибриллы, формируйте перегородку (диафрагму) толщиной около 5 нм, в середине которой лежит центральная гранула (по некоторым представлениям, это - транспортируемая через пору субъединица рибосомы). Совокупность структур, связанных с ядерной порой, называется комплексом ядерной поры. Последний образует водный канал диаметром 9 нм, по которому движутся мелкие водорастворимые молекулы и ионы. Гранулы поровых комплексов структурно связаны с белками ядерной ламины, которая участвует в их организации.

Ядерная оболочка в клетках животных и человека содержит до 2000-4000 поровых комплексов. В ядро из цитоплазмы через них поступают синтезированные белки, в обратном направлении переносятся молекулы РНК и субъединицы рибосом.

Функции комплекса ядерной поры:

1. Обеспечение регуляции избирательного транспорта веществ между цитоплазмой и ядром.

2. Активный перенос в ядро белков, имеющих особую маркировку в виде так называемой последовательности ядерной локализации -Nuclear Localization Sequence (NLS), распознаваемой рецепторами NLS (в комплексе поры).

3. Перенос в цитоплазму субъединиц рибосом, которые, однако, слишком велики для свободного прохождения пор; их транспорт, вероятно, сопровождается изменением конформации перового комплекса.

Хроматин

Хроматин (от греч. chroma - краска) мелкие зернышки и глыбки материала, который обнаруживается в ядре клеток и окрашивается основными красителями. Хроматин состоит из комплекса ДНК и белка и соответствует хромосомам, которые в интерфазном ядре представлены длинными, тонкими перекрученными нитями и неразличимы как индивидуальные структуры. Выраженность спирализации каждой из хромосом неодинакова по их длине. Различают два вида хроматина - эухроматин и гетерохроматин.

Эухроматин соответствует сегментам хромосом, которые деспирализованы и открыты для транскрипции. Эти сегменты не окрашиваются и не видны в световой микроскоп.

Гетерохроматин соответствует конденсированным, плотно скрученным сегментам хромосом (что делает их недоступными для транскрипции). Он интенсивно окрашивается основными красителями, и в световом микроскопе имеет вид гранул.

Таким образом, по морфологическим признакам ядра (соотношению содержания эу- и гетерохроматина) можно оценить активность процессов транскрипции , а, следовательно, синтетической функции клетки. При ее повышении это соотношение изменяется в пользу эухроматина, при снижении - нарастает содержание гетерохроматина. При полном подавлении функции ядра (например, в поврежденных и гибнущих клетках, при ороговении эпителиальных клеток эпидермиса - кератиноцитов, при образовании ретикулоцитов крови) оно уменьшается в размерах, содержит только гетерохроматин и окрашивается основными красителями интенсивно и равномерно. Такое явление называется кариопикнозом (от греч. karyon - ядро и pyknosis - уплотнение).

Распределение гетерохроматина (топография его частиц в ядре) и соотношение содержания эу- и гетерохроматина характерны для клеток каждого типа, что позволяет осуществлять их идентификацию

как визуально, так и с помощью автоматических анализаторов изображения. Вместе с тем, имеются определенные общие закономерности распределения гетерохроматина в ядре: его скопления располагаются под кариолеммой, прерываясь в области пор (что обусловлено его связью с ламиной) и вокруг ядрышка (перинуклеолярный гетерохроматин), более мелкие глыбки разбросаны по всему ядру.

Тельце Барра - скопление гетерохроматина, соответствующее одной Х-хромосоме у особей женского пола, которая в интерфазе плотно скручена и неактивна. В большинстве клеток оно лежит у кариолеммы, а в гранулоцитах крови имеет вид маленькой добавочной дольки ядра ("барабанной палочки"). Выявление тельца Барра (обычно в эпителиальных клетках слизистой оболочки полости рта) используется как диагностический тест для определения генетического пола (обязателен, в частности, для женщин, участвующих в Олимпийских Играх).

Упаковка хроматина в ядре. В деконденсированном состоянии длина одной молекулы (двойной спирали) ДНК, образующей каждую хромосому, равна в среднем, около 5 см, а общая длина молекул ДНК всех хромосом в ядре (диаметром около 10 мкм) составляет более 2 м (что сравнимо с укладкой нити длиной 20 км в теннисный мячик диаметром около 10 см), а в S-период интерфазы - более 4 м. Конкретные механизмы, препятствующие спутыванию этих нитей во время транскрипции и репликации, остаются нераскрытыми, однако очевидна необходимость компактной упаковки молекул ДНК, В клеточном ядре это осуществляется благодаря их связи со специальными основными (гистоновыми) белками. Компактная упаковка ДНК в ядре обеспечивает:

(1) упорядоченное расположение очень длинных молекул ДНК в небольшом объеме ядра;

(2) функциональный контроль активности генов (вследствие влияния характера упаковки на активность отдельных участков генома.

Уровни упаковки хроматина (рис. 3-20). Начальный уровень упаковки хроматина, обеспечивающий образование нуклеосомной нити диаметром 11 нм, обусловлен намоткой двойной нити ДНК (диаметром 2 нм) на блоки дисковидной формы из 8 гистоновых молекул (нуклеосомы). Нуклеосомы разделены короткими участками свободной ДНК. Второй уровень упаковки также обусловлен гистонами и приводит к скручиванию нуклеосомной нити с формированием хроматиновой фибриллы диаметром 30 нм. В интерфазе хромосомы образованы хроматиновыми фибриллами, причем каждая хроматида состоит из одной фибриллы. При дальнейшей упаковке хроматиновые фибриллы образуют петли (петельные домены) диаметром 300 нм, каждый из которых соответствует одному или нескольким генам, а те, в свою очередь, в результате еще более компактной укладки, формируют участки конденсированных хромосом, которые выявляются лишь при делении клеток.
В хроматине ДНК связана помимо гистонов также и с негистоновыми белками, которые регулируют активность генов. Вместе с тем, и гистоны, ограничивая доступность ДНК для других ДНК-связывзающих белков, могут участвовать в регуляции активности генов.

Функция хранения генетической информации в ядре в неизмененном виде имеет исключительно важное значение для нормальной жизнедеятельности клетки и всего организма. Подсчитано, что при репликации ДНК и в результате ее повреждений внешними факторами в каждой клетке человека ежегодно происходят изменения 6 нуклеотидов. Возникшие повреждения молекул ДНК могут исправляться в результате процесса репарации или путем замещения после распознавания и маркировки соответствующего участка.

В случае невозможности репарации ДНК при слишком значительных повреждениях включается механизм запрограммированной гибели клетки (см. ниже). В этой ситуации "поведение" клетки можно оценить как своего рода "альтруистическое самоубийство": ценой своей гибели она спасает организм от возможных негативных последствий репликации и амплификации поврежденного генетического материала.

Способность к репарации ДНК у взрослого человека снижается примерно на 1% с каждым годом. Это снижение может отчасти объяснить, почему старение является фактором риска развития злокачественных заболеваний. Нарушения процессов репарации ДНК характерно для ряда наследственных болезней, при которых резко повышены как чувствительность к повреждающим факторам, так и частота развития злокачественных новообразований.

Функция реализации генетической информации в интерфазном ядре осуществляется непрерывно благодаря процессам транскрипции. Геном млекопитающих содержит около ЗхЮ 9 нуклеотидов, однако не более 1% его объема кодирует важные белки и принимает участие в регуляции их синтеза. Функции основной некодирующей части генома неизвестны.

При транскрипции ДНК образуется очень крупная молекула РНК (первичный транскрипт), которая связывается с ядерными белками с образованием рибонуклеопротеинов (РНП). В первичном РНК-транскрипте (как и в матричной ДНК) имеются дискретные значащие последовательности нуклеотидов (экзоны), разделенные длинными некодирующими вставками (нитронами). Процессинг РНК-транскрипта включает отщепление нитронов и стыковку экзонов - сплайсинг (от англ, splicing - сращивание). При этом очень крупная молекула РНК превращается в достаточно мелкие молекулы иРНК, отделяющиеся от связанных с ними белков при переносе в цитоплазму.Лизосомы: строение, значение. Аппарат внутриклеточного переваривания.

Лизосомы (ранее называемые вторичными лизосомами) - органеллы, активно участвующие в завершающих этапах процесса внутриклеточного переваривания захваченных клеткой макромолекул посредством широкого спектра литических ферментов при низких значениях рН (5.0 и ниже). Они формируются с участием поздних эндосом. Диаметр лизосом обычно составляет 0.5-2 мкм, а их форма и структура могут существенно варьировать в зависимости от характера перевариваемого материала. Как и в случае гидролазных пузырьков, они достоверно идентифицируются только на основании выявления в них гидролитических ферментов. Название отдельных видов лизосом основано на наличии в их просвете морфологически распознаваемого материала;

в его отсутствие используется общий термин лизосома. После переваривания содержимого лизосомы образующиеся низкомолекулярные вещества диффундируют через ее мембрану в гиалоплазму.

1) Фаголизосома формируется путем слияния поздней эндосомы или лизосомы с фагосомой, называемой также гетерофагосомой (от греч. heteros - другой, phagein - поедать и soma - тело) - мембранного пузырька, содержащего материал, захваченный клеткой извне и подлежащий внутриклеточному перевариванию; процесс разрушения этого материала называется гетерофагией;

2) Аутофаголизосома образуется при слиянии поздней эндосомы или лизосомы с аутофагосомой (от греч. autos - сам, phagein - поедать и soma - тело) - мембранным пузырьком, содержащим собственные компоненты клетки, подлежащие разрушению. Процесс переваривания этого материала называют аутофагией, Источником мембраны, окружающей клеточные компоненты, служит грЭПС.

3) Мультивезикулярное тельце (от лат. multi - много и vesicula -пузырек) представляет собой крупную (диаметром 200-800 нм) сферическую окруженную мембраной вакуоль, содержащую мелкие (40-80 нм) пузырьки, погруженные с светлый или умеренно плотный матрикс. Оно образуются в результате слияния ранних эндосом с поздней, причем мелкие пузырьки формируются, вероятно, путем отпочковывания внутрь от мембраны вакуоли. Матрикс тельца содержит литические ферменты и, очевидно, обеспечивает постепенное разрушение внутренних пузырьков.

4) Остаточные тельца - лизосомы, содержащие непереваренный материал, которые могут длительно находиться в цитоплазме или выделять свое содержимое за пределы клетки. Распространенным типом остаточных телец в организме человека являются липофусциновые гранулы - мембранные пузырьки диаметром 0.3-3 мкм, содержащие трудно-растворимьш коричневый эндогенный пигмент липофусцин. Под электронным микроскопом липофусциновые гранулы представляют собой структуры вариабельной формы, содержащие липидные капли, плотные гранулы и пластинки. В связи с их накоплением в некоторых клетках (нейронах, кардиомиоцитах) при старении, липофусцин рассматривают как "пигмент старения" или "изнашивания".

Секреция лизосомальных ферментов за пределы клетки осуществляется у остеокластов - клеток, разрушающих костную ткань, а также фагоцитов (нейтрофилов и макрофагов) при внеклеточном переваривании различных объектов. Избыточная секреция этих ферментов может приводить к повреждениям окружающих тканей.

Роль гетерофагии в нормальной деятельности клеток и значение ее нарушений. Гетерофагия играет очень важную роль в функции клеток всех тканей и органов. Дефицит тех или иных лизо-сомальных ферментов (обычно обусловленный наследственными аномалиями) может приводить к развитию ряда заболеваний, вызванных накоплением в клетках непереваренных веществ (чаще всего гликогена, гликолипидов, гликозаминогликанов), которые нарушают их функцию (болезни накопления). При наиболее распространенных заболеваниях, относящихся к этой группе, повреждаются нейроны, макрофаги, фибро-бласты и остеобласты, что клинически проявляется разнообразными по тяжести нарушениями строения и функции скелета, нервной системы, печени, селезенки.

В почке в результате гетерофагии клетки захватывают белки из просвета канальцев и расщепляют их до аминокислот, которые далее возвращаются в кровь. Гетерофагия в клетках щитовидной железы (ти-роцитах) обеспечивает отщепление йодсодержащих гормонов от белковой матрицы и последующее всасывание их в кровь. Нарушение процесса гетерофагии в указанных клетках вызывает тяжелые расстройства функции этих органов.

Особое значение Гетерофагия имеет для клеток , осуществляющих защитную функцию, в основе деятельности которых лежит поглощение извне и переваривание частиц или веществ. Так, фагоциты (макрофаги и нейтрофильные лейкоциты) захватывают и переваривают микроорганизмы, попадающие в ткани макроорганизма или на их поверхность (например, эпителия слизистых оболочек). При отсутствии или недостаточной активности лизосомальных ферментов, разрушающих микробы (например, при ряде генетически обусловленных нарушений), эти клетки неспособны эффективно осуществлять защитные функции, что приводит к развитию тяжелых хронических воспалительных заболеваний.

Наиболее патогенные микроорганизмы ускользают от повреждающего действия фагоцитов, осуществляя это различным образом. Так, одни (например, возбудитель проказы) обладают устойчивостью к действию лизосомальных ферментов; другие микробы (например, возбудитель туберкулеза) способны подавлять процесс слияния фагосом с ли-зосомами, некоторые могут ускользать от разрушения, разрывая мембраны фагосом или лизосом.

Роль аутофагии в нормальной деятельности клеток и значение ее нарушений. Аутофагия обеспечивает постоянное обновление ("омоложение") клеточных структур благодаря перевариванию участков цитоплазмы, митохондрий, скоплений рибосом, фрагментов мембраны (убыль которых компенсируется их новообразованием). Этот процесс обновления в клетке тонко отрегулирован, причем каждый ее компо-

нент имеет определенную продолжительность жизни. Так, в нейронах пожилого человека, которые функционировали на протяжении многих десятилетий, большинство органелл не старше 1 мес. В клетках печени (гепатоцитах) большая часть цитоплазмы разрушается менее, чем за 1 нед. В некоторых случаях аутофагия может служить реакцией клетки на недостаточное питание. Частным случаем аутофагии является крино-фагия (от греч. krinein - отделяю, секретирую) - лизосомальное разрушение избытка невыведенного секрета в железистых клетках.ВЗАИМООТНОШЕНИЯ КЛЕТКИ С ВНЕШНЕЙ СРЕДОЙ. ЭКЗОЦИТОЗ И ЭНДОЦИТОЗ: ВИДЫ И МЕХАНИЗМЫ.

Гликокаликс (поверхностный слой животных клеток) выполняет прежде всего функцию непосредственной связи клеток животных с внешней средой, со всеми окружающими ее веществами.

Плазматическая мембрана образует барьер, отграничивающий внутреннее содержимое клетки от внешней среды.

На поверхности микроворсинок происходит интенсивное переваривание и всасывание переваренной пищи.
1)Эндоцитоз - транспорт макромолекул, их комплексов и частиц внутрь клетки. При эндоцитозе определенный участок плазмалеммы захватывает, как бы обволакивает внеклеточный материал, заключая его в мембранную вакуоль, возникшую за счет впячивания мембраны. В дальнейшем такая вакуоль, соединяя с лизосомой , ферменты которой расщепляют макромолекулы до мономеров.
Эндоцитоз разделяют на фагоцитоз (захват и поглощение твердых частиц) и пиноцитоз (поглощение жидкости). Путем эндоцитоза осуществляется питание гетеротрофных протистов, защитные реакции организмов (лейкоциты поглощают чужеродные частицы) и др.
2)Экзоцитоз (экзо - наружу), благодаря нему, клетка выводит внутриклеточные продукты или непереваренные остатки, заключенные в вакуоли, или пузырьки. Пузырек подходит к цитоплазматической мембране, сливается с ней, а его содержимое выделяется в окружающую среду. Так выделяются пищеварительные ферменты, гормоны, гемицеллюлоза и др.

Поделиться: