Дробно линейная функция асимптоты. Построение графиков функций одна из интереснейших тем в школьной математике

Функция у = и её график.

ЦЕЛИ:

1) ввести определение функции у = ;

2) научить строить график функции у = , используя программу Agrapher;

3) сформировать умение строить эскизы графиков функции у = , используя свойства преобразования графиков функций;

I. Новый материал – развёрнутая беседа.

У: Рассмотрим функции, заданные формулами у = ; у = ; у = .

Что представляют собой выражения, записанные в правых частях этих формул?

Д: Правые части этих формул имеют вид рациональной дроби, у которой числитель-двучлен первой степени или число, отличное от нуля, а знаменатель-двучлен первой степени.

У: Такие функции принято задавать формулой вида

Рассмотрите случаи когда а) с = 0 или в) = .

(Если во втором случае учащиеся будут испытывать затруднения, то нужно попросить их выра зить с из заданной пропорции и затем подставить полученное выражение в формулу (1)).

Д1: Если с = 0, то у = х + в – линейная функция.

Д2: Если = , то с = . Подставив значение с в формулу (1) получим:

То есть у = - линейная функция.

У: Функция, которую можно задать формулой вида у =, где буквой х обозначена незави-

симая переменная, а буквами а, в, с и d – произвольные числа, причём с0 и аd – вс 0, называется дробно-линейной функцией.

Покажем, что графиком дробно-линейной функции является гипербола.

Пример 1. Построим график функции у = . Выделим из дроби целую часть.

Имеем: = = = 1 + .

График функции у = +1 можно получить из графика функции у = с помощью двух параллельных переносов: сдвига на 2 единицы вправо вдоль оси Х и сдвига на 1 единицу вверх в направлении оси У. При этих сдвигах переместятся асимптоты гиперболы у = : прямая х = 0 (т. е. ось У) – на 2 единицы вправо, а прямая у = 0 (т. е. ось Х) – на одну единицу вверх. Прежде чем строить график, проведём на координатной плоскости пунктиром асимптоты: прямые х = 2 и у = 1 (рис. 1а). Учитывая, что гипербола состоит из двух ветвей, для построения каждой из них составим, используя программу Agrapher, две таблицы: одну для х>2, а другую для х<2.

х 1 0 -1 -2 -4 -10
у -5 -2 -1 -0,5 0 0,5
х 3 4 5 6 8 12
у 7 4 3 2,5 2 1,6

Отметим (с помощью программы Agrapher) в координатной плоскости точки, координаты которых записаны в первой таблице, и соединим их плавной непрерывной линией. Получим одну ветвь гиперболы. Аналогично, воспользовавшись второй таблицей, получим вторую ветвь гиперболы (рис. 1б).

Пример 2. Построим график функции у = -.Выделим из дроби целую часть, разделив двучлен 2х + 10 на двучлен х + 3. Получим = 2 + . Следовательно, у = --2.

График функции у = --2 можно получить из графика функции у = - с помощью двух параллельных переносов: сдвига на 3 единицы влево и сдвига на 2 единицы вниз. Асимптоты гиперболы – прямые х = -3 и у = -2. Составим (с помощью программы Agrapher) таблицы для х<-3 и для х>-3.

х -2 -1 1 2 7
у -6 -4 -3 -2,8 -2,4
х -4 -5 -7 -8 -11
у 2 0 -1 -1,2 -1,5

Построив (с помощью программы Agrapher) точки в координатной плоскости и проведя через них ветви гиперболы, получим график функции у = - (рис. 2).

У: Что является графиком дробно-линейной функции?

Д: Графиком любой дробно-линейной функции является гипербола.

У: Как построить график дробно-линейной функции?

Д: График дробно-линейной функции получается из графика функции у = с помощью параллельных переносов вдоль осей координат, ветви гиперболы дробно-линейной функции симметричны относительно точки (-. Прямая х = - называется вертикальной асимптотой гиперболы. Прямая у = называется горизонтальной асимптотой.

У: Какова область определения дробно-линейной функции?

У: Какова область значений дробно-линейной функции?

Д: Е(у) = .

У: Есть ли у функции нули?

Д: Если х = 0, то f(0) = , d. То есть у функции есть нули – точка А.

У: Есть ли у графика дробно-линейной функции точки пересечения с осью Х?

Д: Если у = 0, то х = -. Значит, если а , то точка пересечения с осью Х имеет координаты . Если же а = 0, в , то точек пересечения с осью абсцисс график дробно-линейной функции не имеет.

У: Функция убывает на промежутках всей области определения, если bc-ad > 0 и возрастает на промежутках всей области определения, если bc-ad < 0. Но это немонотонная функция.

У: Можно ли указать наибольшее и наименьшее значения функции?

Д: Наибольшего и наименьшего значений функция не имеет.

У: Какие прямые являются асимптотами графика дробно-линейной функции?

Д: Вертикальной асимптотой является прямая х = -; а горизонтальной асимптотой – прямая y = .

(Все обобщающие выводы-определения и свойства дробно-линейной функции учащиеся записывают в тетрадь)

II. Закрепление.

При построении и “чтении” графиков дробно-линейных функций применяются свойства программы Agrapher

III. Обучающая самостоятельная работа.

  1. Найдите центр гиперболы, асимптоты и постройте график функции:

а) у = б) у = в) у = ; г) у = ; д) у = ; е) у = ;

ж) у = з) у = -

Каждый учащийся работает в своём темпе. При необходимости учитель оказывает помощь, задавая вопросы, ответы на которые помогут ученику правильно выполнить задание.

Лабораторно-практическая работа по исследованию свойств функций у = и у = и особенностей графиков этих функций.

ЦЕЛИ: 1) продолжить формирование умений строить графики функций у = и у = , используя программу Agrapher;

2) закрепить навыки “чтения графиков” функций и способностей “предсказывать” изменения графиков при различных преобразованиях дробно – линейных функций.

I. Дифференцированное повторение свойств дробно–линейной функции.

Каждому учащемуся выдаётся карточка – распечатка c заданиями. Все построения выполняются с помощью программы Agrapher. Результаты выполнения каждого задания обсуждаются сразу же.

Каждый ученик с помощью самоконтроля может скорректировать результаты, полученные при выполнении задания и попросить помощи у учителя или ученика – консультанта.

Найдите значение аргумента Х, при котором f(x) =6 ; f(x) =-2.5.

3. Постройте график функции у = Определите, принадлежит ли графику данной функции точка: а) А(20;0.5); б) В(-30;-); в) С(-4;2.5); г) Д(25;0,4)?

4. Постройте график функции у = Найдите промежутки в которых у>0 и в которых у<0.

5. Постройте график функции у = . Найдите область определения и область значений функции.

6. Укажите асимптоты гиперболы – графика функции у = -. Выполните построение графика.

7. Постройте график функции у = . Найдите нули функции.

II.Лабораторно-практическая работа.

Каждому ученику выдаются 2 карточки: карточка №1 “Инструкция” с планом, по которому выполняется работа, и текстом с заданием и карточка №2 “Результаты исследования функции ”.

  1. Постройте график указанной функции.
  2. Найдите область определения функции.
  3. Найдите область значения функции.
  4. Укажите асимптоты гиперболы.
  5. Найдите нули функции (f(x) = 0).
  6. Найдите точку пересечения гиперболы с осью Х (у = 0).

7. Найдите промежутки в которых: а) у<0; б) y>0.

8. Укажите промежутки возрастания (убывания) функции.

I вариант.

Постройте, используя программу Agrapher, график функции и исследуйте ей свойства:

а) у = б) у = - в) у = г) у = д) у = е) у = . -5-

В данном уроке мы рассмотрим дробно-линейную функцию, решим задачи с использованием дробно-линейной функции, модуля, параметра.

Тема: Повторение

Урок: Дробно-линейная функция

Определение:

Дробно-линейной называется функция вида:

Например:

Докажем, что графиком данной дробно-линейной функции является гипербола.

Вынесем в числителе двойку за скобки, получим:

Имеем х и в числителе, и в знаменателе. Теперь преобразуем так, чтобы в числителе появилось выражение :

Теперь почленно сократим дробь:

Очевидно, что графиком данной функции является гипербола.

Можно предложить второй способ доказательства, а именно разделить в столбик числитель на знаменатель:

Получили:

Важно уметь легко строить график дробно-линейной функции, в частности находить центр симметрии гиперболы. Решим задачу.

Пример 1 - построить эскиз графика функции:

Мы уже преобразовали данную функцию и получили:

Для построения данного графика мы не будем сдвигать оси или саму гиперболу. Мы используем стандартный метод построения графиков функции, использующий наличие интервалов знакопостоянства.

Действуем согласно алгоритму. Сначала исследуем заданную функцию.

Таким образом, имеем три интервала знакопостоянства: на крайнем правом () функция имеет знак плюс, далее знаки чередуются, так как все корни имеют первую степень. Так, на интервале функция отрицательна, на интервале функция положительна.

Строим эскиз графика в окрестностях корней и точек разрыва ОДЗ. Имеем: поскольку в точке знак функции меняется с плюса на минус, то кривая сначала находится над осью, потом проходит через ноль и далее расположена под осью х. Когда знаменатель дроби практически равен нулю, значит, когда значение аргумента стремится тройке, значение дроби стремится к бесконечности. В данном случае, когда аргумент подходит к тройке слева функция отрицательна и стремится к минус бесконечности, справа функция положительна и выходит из плюс бесконечности.

Теперь строим эскиз графика функции в окрестностях бесконечно удаленных точек, т.е. когда аргумент стремится к плюс или минус бесконечности. Постоянными слагаемыми при этом можно пренебречь. Имеем:

Таким образом, имеем горизонтальную асимптоту и вертикальную , центр гиперболы точка (3;2). Проиллюстрируем:

Рис. 1. График гиперболы к примеру 1

Задачи с дробно-линейной функцией могут быть осложнены наличием модуля или параметра. Чтобы построить, например, график функции , необходимо следовать следующему алгоритму:

Рис. 2. Иллюстрация к алгоритму

В полученном графике есть ветви, которые находятся над осью х и под осью х.

1. Наложить заданный модуль. При этом части графика, находящиеся над осью х, остаются без изменений, а те, которые находятся под осью - зеркально отображаются относительно оси х. Получим:

Рис. 3. Иллюстрация к алгоритму

Пример 2 - построить график функции:

Рис. 4. График функции к примеру 2

Рассмотрим следующую задачу - построить график функции . Для этого необходимо следовать следующему алгоритму:

1. Построить график подмодульной функции

Предположим, получен следующий график:

Рис. 5. Иллюстрация к алгоритму

1. Наложить заданный модуль. Чтобы понять, как это сделать, раскроем модуль.

Таким образом, для значений функции при неотрицательных значениях аргумента изменений не произойдет. Касательно второго уравнения мы знаем, что оно получается путем симметричного отображения относительно оси у. имеем график функции:

Рис. 6. Иллюстрация к алгоритму

Пример 3 - построить график функции:

Согласно алгоритму, сначала нужно построить график подмодульной функции, мы его уже построили (см. рисунок 1)

Рис. 7. График функции к примеру 3

Пример 4 - найти число корней уравнения с параметром:

Напомним, что решить уравнение с параметром означает перебрать все значения параметра и для каждого из них указать ответ. Действуем согласно методике. Сначала строим график функции, это мы уже сделали в предыдущем примере (см. рисунок 7). Далее необходимо рассечь график семейством прямых при различных а, найти точки пересечения и выписать ответ.

Глядя на график, выписываем ответ: при и уравнение имеет два решения; при уравнение имеет одно решение; при уравнение не имеет решений.

Рассмотрим вопросы методики изучения такой темы, как «построение графика дробной линейной функции». К сожалению, ее изучение удалено из базовой программы и репетитор по математике на своих занятиях не так часто ее затрагивает, как хотелось бы. Однако, математические классы еще никто не отменял, вторую часть ГИА тоже. Да и в ЕГЭ существует вероятность ее проникновения в тело задачи С5 (через параметры). Поэтому придется засучить рукава и поработать над методикой ее объяснения на уроке со средним или в меру сильным учеником. Как правило, репетитор по математике вырабатывает приемы объяснений по основным разделам школьной программы в течение первых 5 -7 лет работы. За это время через глаза и руки репетитора успевают пройти десятки учеников самых разных категорий. От запущенных и слабых от природы детей, лодырей и прогульщиков до целеустремленных талантов.

Со временем к репетитору по математике приходит мастерство объяснений сложных понятий простым языком не в ущерб математической полноте и точности. Вырабатывается индивидуальный стиль подачи материала, речи, визуального сопровождения и оформления записей. Любой опытный репетитор расскажет урок с закрытыми глазами, ибо наперед знает, какие проблемы возникают с пониманием материала и что нужно для их разрешения. Важно подобрать правильные слова и записи, примеры для начала урока, для середины и конца, а также грамотно составить упражнения для домашнего задания.

О некоторых частных приемах работы с темой пойдет речь в данной статье.

С построения каких графиков начинает репетитор по математике?

Нужно начать с определения изучаемого понятия. Напоминаю, что дробной линейной функцией называют функцию вида . Ее построение сводится к построению самой обычной гиперболы путем известных несложных приемов преобразования графиков. На практике, несложными они оказываются только для cамого репетитора. Даже если к преподавателю приходит сильный ученик, с достаточной скоростью вычислений и преобразований, ему все равно приходится рассказывать эти приемы отдельно. Почему? В школе в 9 классе строят графики только путем сдвига и не используют методов добавления числовых множителей (методов сжатия и растяжения). Какой график используется репетитором по математике? С чего лучше начать? Вся подготовка проводится на примере самой удобной, на мой взгляд, функции . А что еще использовать? Тригонометрию в 9 классе изучают без графиков (а в переделанных учебниках под условия проведения ГИА по математике и вовсе не проходят). Квадратичная функция не имеет в данной теме такого же «методического веса», какой имеет корень. Почему? В 9 классе квадратный трехчлен изучается досконально и ученик вполне способен решать задачи на построение и без сдвигов. Форма мгновенно вызывает рефлекс к раскрытию скобок, после которого можно применить правило стандартного построения графика через вершину параболы и таблицу значений. С такой маневр выполнить не удастся и репетитору по математике будет легче мотивировать ученика на изучение общих приемов преобразований. Использование модуля y=|x| тоже не оправдывает себя, ибо он не изучается так же плотно, как корень и школьники панически его боятся. К тому же, сам модуль (точнее его «навешивание») входит в число изучаемых преобразований.

Итак, репетитору не остается ничего более удобного и эффективного, как провести подготовку к преобразованиям с помощью квадратного корня. Нужна практика построений графиков примерно такого вида . Будем считать, что эта подготовка удалась на славу. Ребенок умеет сдвигать и даже сжимать/растягивать графики. Что дальше?

Следующий этап – обучение выделению целой части. Пожалуй, это основная задача репетитора по математике, ибо после того, как целая часть будет выделенаона принимает на себя львиную долю всей вычислительной нагрузки на тему. Чрезвычайно важно подготовить функцию к виду, вписывающемуся в одну из стандартных схем построения. Также важно описать логику преобразований доступным понятным, а с другой стороны математически точно и стройно.

Напомню, что для построения графика необходимо преобразовать дробь к виду . Именно к такому, а не к
, сохраняя знаменатель. Почему? Сложно выполнять преобразования того графика, который не только состоит из кусочков, но еще и имеет асимптоты. Непрерывность используется для того, чтобы соединить две-три более-менее понятно передвинутые точки одной линией. В случае разрывной функции не сразу разберешь, какие именно точки соединять. Поэтому сжимать или растягивать гиперболу – крайне неудобно. Репетитор по математике просто обязан научить школьника обходиться одними сдвигами.

Для этого помимо выделения целой части нужно еще удалить в знаменателе коэффициент c .

Выделение целой части у дроби

Как научить выделению целой части? Репетиторы по математике не всегда адекватно оценивают уровень знаний школьника и, несмотря на отсутствие в программе подробного изучения теоремы о делении многочленов с остатком, применяют правило деления уголком. Если преподаватель берется за уголочное деление, то придется потратить на его объяснение (если конечно все аккуратно обосновывать) почти половину занятия. К сожалению, не всегда это время у репетитора имеется в наличии. Лучше вообще не вспоминать ни о каких уголках.

Существует две формы работы с учеником:
1) Репетитор показывает ему готовый алгоритм на каком-нибудь примере дробной функции.
2) Преподаватель создает условия для логического поиска этого алгоритма.

Реализация второго пути мне представляется наиболее интересной для репетиторской практики и чрезвычайно полезной для развития мышления ученика . С помощью определенных намеков и указаний часто удается подвести к обнаружению некой последовательности верных шагов. В отличие от машинального выполнения кем-то составленного плана, школьник 9 класса учится самостоятельно его искать. Естественно, что все пояснения необходимо проводить на примерах. Возьмем для этого функцию и рассмотрим комментарии репетитора к логике поиска алгоритма. Репетитор по математике спрашивает: «Что мешает нам выполнить стандартное преобразование графика , при помощи сдвига вдоль осей? Конечно же, одновременное присутствие икса и в числителе и в знаменателе. Значит необходимо удалить его из числителя. Как это сделать при помощи тождественных преобразований? Путь один – сократить дробь. Но у нас нет равных множителей (скобок). Значит нужно попытаться создать их искусственно. Но как? Не заменишь же числитель на знаменатель без всякого тождественного перехода. Попробуем преобразовать числитель, чтобы в него включалась скобка, равная знаменателю. Поставим ее туда принудительно и «обложим» коэффициентами так, чтобы при их «воздействии» на скобку, то есть при ее раскрытии и сложении подобных слагаемых, получался бы линейный многочлен 2x+3.

Репетитор по математике вставляет пропуски для коэффициентов в виде пустых прямоугольников (как это часто используют пособия для 5 – 6 классов) и ставит задачу — заполнить их числами. Подбор следует вести слева направо , начиная с первого пропуска. Ученик должен представить себе, как он будет раскрывать скобку. Так как ее раскрытия получится только одно слагаемое с иксом, то именно его коэффициент должен быть равным старшему коэффициенту в старом числителе 2х+3. Поэтому, очевидно, что в первом квадратике оказывается число 2. Он заполнен. Репетитору по математике следует взять достаточно простую дробную линейную функцию, у которой с=1. Только после этого можно переходить к разбору примеров с неприятным видом числителя и знаменателя (в том числе и с дробными коэффициентами).

Идем дальше. Преподаватель раскрывает скобку и подписывает результат прямо над ней.
Можно заштриховать соответствующую пару множителей. К «раскрытому слагаемому», необходимо добавить такое число из второго пропуска, чтобы получить свободный коэффициент старого числителя. Очевидно, что это 7.


Далее дробь разбивается на сумму отдельных дробей (обычно я обвожу дроби облачком, сравнивая их расположение с крылышками бабочки). И говорю: «Разобьем дробь бабочкой». Школьники хорошо запоминают эту фразу.

Репетитор по математике показывает весь процесс выделения целой части до вида, к которому уже можно применить алгоритм сдвига гиперболы :

Если знаменатель имеет не равный единице старший коэффициент, то ни в коем случае не нужно его там оставлять. Это принесет и репетитору и ученику лишнюю головную боль, связанную с необходимостью проведения дополнительного преобразования, Причем самого сложного: сжатия — растяжения. Для схематического построения графика прямой пропорциональности не важен вид числителя. Главное знать его знак. Тогда к нему лучше перебросить старший коэффициент знаменателя. Например, если мы работаем с функцией , то просто вынесем 3 за скобку и «поднимем» ее в числитель, конструируя в нем дробь . Получим значительно более удобное выражение для построения: Останется сдвинуть на вправо и на 2 вверх.

Если между целой частью 2 и оставшейся дробью возникает «минус», его тоже лучше занести в числитель. Иначе на определенном этапе построения придется дополнительно отображать гиперболу относительно оси Oy. Это только усложнит процесс.

Золотое правило репетитора по математике:
все неудобные коэффициенты, приводящие к симметриям, к сжатиям или растяжениям графика нужно перебросить в числитель.

Трудно описывать приемы работы с любой темой. Всегда остается ощущение некоторой недосказанности. Насколько удалось рассказать о дробной линейной функции — судить Вам. Присылайте Ваши комментарии и отзывы к статье (их можно написать в окошке, которое Вы видите внизу страницы). Я обязательно их опубликую.

Колпаков А.Н. Репетитор по математике Москва. Строгино. Методики для репетиторов.

1. Дробно-линейная функция и ее график

Функция вида y = P(x) / Q(x), где P(x) и Q(x) – многочлены, называется дробно-рациональной функцией.

С понятием рациональных чисел вы уже наверняка знакомы. Аналогично рациональные функции – это функции, которые можно представить как частное двух многочленов.

Если дробно-рациональная функция представляет собой частное двух линейных функций – многочленов первой степени, т.е. функцию вида

y = (ax + b) / (cx + d), то ее называют дробно-линейной.

Заметим, что в функции y = (ax + b) / (cx + d), c ≠ 0 (иначе функция становится линейной y = ax/d + b/d) и что a/c ≠ b/d (иначе функция константа). Дробно-линейная функция определена при всех действительных числах, кроме x = -d/c. Графики дробно-линейных функций по форме не отличаются от известного вам графика y = 1/x. Кривая, являющаяся графиком функции y = 1/x, называется гиперболой . При неограниченном увеличении x по абсолютной величине функция y = 1/x неограниченно уменьшается по абсолютной величине и обе ветки графика приближаются к оси абсцисс: правая приближается сверху, а левая – снизу. Прямые, к которым приближаются ветки гиперболы, называются ее асимптотами .

Пример 1.

y = (2x + 1) / (x – 3).

Решение.

Выделим целую часть: (2x + 1) / (x – 3) = 2 + 7/(x – 3).

Теперь легко видеть, что график этой функции получается из графика функции y = 1/x следующими преобразованиями: сдвигом на 3 единичных отрезка вправо, растяжением вдоль оси Oy в 7 раз и сдвигом на 2 единичных отрезка вверх.

Любую дробь y = (ax + b) / (cx + d) можно записать аналогичным образом, выделив «целую часть». Следовательно, графики всех дробно-линейных функций есть гиперболы, различным образом сдвинутые вдоль координатных осей и растянутые по оси Oy.

Для построения графика какой-нибудь произвольной дробно-линейной функции совсем не обязательно дробь, задающую эту функцию, преобразовывать. Поскольку мы знаем, что график есть гипербола, будет достаточно найти прямые, к которым приближаются ее ветки – асимптоты гиперболы x = -d/c и y = a/c.

Пример 2.

Найти асимптоты графика функции y = (3x + 5)/(2x + 2).

Решение.

Функция не определена, при x = -1. Значит, прямая x = -1 служит вертикальной асимптотой. Для нахождения горизонтальной асимптоты, выясним, к чему приближаются значения функции y(x), когда аргумент x возрастает по абсолютной величине.

Для этого разделим числитель и знаменатель дроби на x:

y = (3 + 5/x) / (2 + 2/x).

При x → ∞ дробь будет стремиться к 3/2. Значит, горизонтальная асимптота – это прямая y = 3/2.

Пример 3.

Построить график функции y = (2x + 1)/(x + 1).

Решение.

Выделим у дроби «целую часть»:

(2x + 1) / (x + 1) = (2x + 2 – 1) / (x + 1) = 2(x + 1) / (x + 1) – 1/(x + 1) =

2 – 1/(x + 1).

Теперь легко видеть, что график этой функции получается из графика функции y = 1/x следующими преобразованиями: сдвигом на 1 единицу влево, симметричным отображением относительно Ox и сдвигом на 2 единичных отрезка вверх по оси Oy.

Область определения D(y) = (-∞; -1)ᴗ(-1; +∞).

Область значений E(y) = (-∞; 2)ᴗ(2; +∞).

Точки пересечения с осями: c Oy: (0; 1); c Ox: (-1/2; 0). Функция возрастает на каждом из промежутков области определения.

Ответ: рисунок 1.

2. Дробно-рациональная функция

Рассмотрим дробно-рациональную функцию вида y = P(x) / Q(x), где P(x) и Q(x) – многочлены, степени выше первой.

Примеры таких рациональных функций:

y = (x 3 – 5x + 6) / (x 7 – 6) или y = (x – 2) 2 (x + 1) / (x 2 + 3).

Если функция y = P(x) / Q(x) представляет собой частное двух многочленов степени выше первой, то ее график будет, как правило, сложнее, и построить его точно, со всеми деталями бывает иногда трудно. Однако, часто достаточно применить приемы, аналогичные тем, с которыми мы уже познакомились выше.

Пусть дробь – правильная (n < m). Известно, что любую несократимую рациональную дробь можно представить, и притом единственным образом, в виде суммы конечного числа элементарных дробей, вид которых определяется разложением знаменателя дроби Q(x) в произведение действительных сомножителей:

P(x)/Q(x) = A 1 /(x – K 1) m1 + A 2 /(x – K 1) m1-1 + … + A m1 /(x – K 1) + …+

L 1 /(x – K s) ms + L 2 /(x – K s) ms-1 + … + L ms /(x – K s) + …+

+ (B 1 x + C 1) / (x 2 +p 1 x + q 1) m1 + … + (B m1 x + C m1) / (x 2 +p 1 x + q 1) + …+

+ (M 1 x + N 1) / (x 2 +p t x + q t) m1 + … + (M m1 x + N m1) / (x 2 +p t x + q t).

Очевидно, что график дробно-рациональной функции можно получить как сумму графиков элементарных дробей.

Построение графиков дробно-рациональных функций

Рассмотрим несколько способов построения графиков дробно-рациональной функции.

Пример 4.

Построить график функции y = 1/x 2 .

Решение.

Используем график функции y = x 2 для построения графика y = 1/x 2 и воспользуемся приемом «деления» графиков.

Область определения D(y) = (-∞; 0)ᴗ(0; +∞).

Область значений E(y) = (0; +∞).

Точек пересечения с осями нет. Функция четная. Возрастает при все х из интервала (-∞; 0), убывает при x от 0 до +∞.

Ответ: рисунок 2.

Пример 5.

Построить график функции y = (x 2 – 4x + 3) / (9 – 3x).

Решение.

Область определения D(y) = (-∞; 3)ᴗ(3; +∞).

y = (x 2 – 4x + 3) / (9 – 3x) = (x – 3)(x – 1) / (-3(x – 3)) = -(x – 1)/3 = -x/3 + 1/3.

Здесь мы использовали прием разложения на множители, сокращения и приведения к линейной функции.

Ответ: рисунок 3.

Пример 6.

Построить график функции y = (x 2 – 1)/(x 2 + 1).

Решение.

Область определения D(y) = R. Так как функция четная, то график симметричен относительно оси ординат. Прежде чем строить график, опять преобразуем выражение, выделив целую часть:

y = (x 2 – 1)/(x 2 + 1) = 1 – 2/(x 2 + 1).

Заметим, что выделение целой части в формуле дробно-рациональной функции является одним из основных при построении графиков.

Если x → ±∞, то y → 1, т.е. прямая y = 1 является горизонтальной асимптотой.

Ответ: рисунок 4.

Пример 7.

Рассмотрим функцию y = x/(x 2 + 1) и попробуем точно найти наибольшее ее значение, т.е. самую высокую точку правой половины графика. Чтобы точно построить этот график, сегодняшних знаний недостаточно. Очевидно, что наша кривая не может «подняться» очень высоко, т.к. знаменатель довольно быстро начинает «обгонять» числитель. Посмотрим, может ли значение функции равняться 1. Для этого нужно решить уравнение x 2 + 1 = x, x 2 – x + 1 = 0. Это уравнение не имеет действительных корней. Значит, наше предположение не верно. Чтобы найти самое большое значение функции, надо узнать, при каком самом большом А уравнение А = x/(x 2 + 1) будет иметь решение. Заменим исходное уравнение квадратным: Аx 2 – x + А = 0. Это уравнение имеет решение, когда 1 – 4А 2 ≥ 0. Отсюда находим наибольшее значение А = 1/2.

Ответ: рисунок 5, max y(x) = ½.

Остались вопросы? Не знаете, как строить графики функций?
Чтобы получить помощь репетитора – зарегистрируйтесь .
Первый урок – бесплатно!

сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

Главная > Литература

Муниципальное общеобразовательное учреждение

«Средняя общеобразовательная школа №24»

Проблемно – реферативная работа

по алгебре и началам анализа

Графики дробно – рациональной функции

Ученицы 11 класса А Товчегречко Натальи Сергеевны руководитель работы Паршева Валентина Васильевна учитель математики, учитель высшей квалификационной категории

Северодвинск

Содержание 3Введение 4Основная часть. Графики дробно-рациональных функций 6Заключение 17Литература 18

Введение

Построение графиков функций одна из интереснейших тем в школьной математике. Один из крупнейших математиков нашего времени Израиль Моисеевич Гельфанд писал: «Процесс построения графиков является способом превращения формул и описаний в геометрические образы. Это – построение графиков – является средством увидеть формулы и функции и проследить, каким образом эти функции меняются. Например, если написано y=x 2 , то Вы сразу видите параболу; если y=x 2 -4, Вы видите параболу, опущенную на четыре единицы; если же y=4-x 2 , то Вы видите предыдущую параболу, перевернутую вниз. Такое умение видеть сразу и формулу, и ее геометрическую интерпретацию – является важным не только для изучения математики, но и для других предметов. Это умение, которое остается с Вами на всю жизнь, подобно умению ездить на велосипеде, печатать на машинке или водить машину». На уроках математики мы строим в основном простейшие графики – графики элементарных функций. Только в 11 классе с помощью производной научились строить более сложные функции. При чтении книг:
    Н.А. Вирченко, И.И. Ляшко, К.И. Швецов. Справочник. Графики функций. Киев «Наукова Думка» 1979 г. В.С. Крамор. Повторяем и систематизируем школьный курс алгебры и начала анализа. Москва «Просвещение» 1990 г. Ю.Н. Макарычев, Н.Г. Миндюк. Алгебра – 8 класс. Дополнительные главы к школьному учебнику. Москва «Просвещение», 1998 г. И.М. Гельфанд, Е.Г. Глаголева, Э.Э. Шноль. Функции и графики (основные приемы). Издательство МЦНМО, Москва 2004 г. С.М. Никольский. М.К. Потапов, Н.Н. Решетников, А.В. Шевкин. Алгебра и начала анализа: учебник для 11 класса.
    я увидела, что графики сложных функций можно строить без использования производной, т.е. элементарными способами. Поэтому тему своего реферата я выбрала: «Графики дробно – рациональной функции».
Цель работы: изучить соответствующие теоретические материалы, выявить алгоритм построения графиков дробно-линейной и дробно-рациональной функций. Задачи: 1. сформировать понятия дробно-линейной и дробно-рациональной функций на основе теоретического материала по данной теме; 2. найти методы построения графиков дробно-линейной и дробно-рациональной функций.

Основная часть. Графики дробно-рациональных функций

1. Дробно – линейная функция и ее график

С функцией вида y=k/x, где k≠0, ее свойствами и графиком мы уже познакомились. Обратим внимание на одну особенность этой функции. Функция y=k/x на множестве положительных чисел обладает тем свойством, что при неограниченном возрастании значений аргумента (когда x стремится к плюс бесконечности) значения функций, оставаясь положительными, стремятся к нулю. При убывании положительных значений аргумента (когда x стремится к нулю) значения функции неограниченно возрастают (y стремится к плюс бесконечности). Аналогичная картина наблюдается и на множестве отрицательных чисел. На графике (рис. 1) это свойство выражается в том, что точки гиперболы по мере их удаления в бесконечность (вправо или влево, вверх или вниз) от начала координат неограниченно приближаются к прямой: к оси x, когда │x│ стремится к плюс бесконечности, или к оси y, когда │x│ стремится к нулю. Такую прямую называют асимптотами кривой.
Рис. 1
Гипербола y=k/x имеет две асимптоты: ось x и ось y. Понятие асимптоты играет важную роль при построении графиков многих функций. Используя известные нам преобразования графиков функций, мы можем гиперболу y=k/x перемещать в координатной плоскости вправо или влево, вверх или вниз. В результате будем получать новые графики функций. Пример 1. Пусть y=6/x. Выполним сдвиг этой гиперболы вправо на 1,5 единицы, а затем полученный график сдвинем на 3,5 единицы вверх. При этом преобразовании сдвинутся и асимптоты гиперболы y=6/x: ось x перейдет в прямую y=3,5, ось y – в прямую y=1,5 (рис. 2). Функцию, график которой мы построили, можно задать формулой

.

Представим выражение в правой части этой формулы в виде дроби:

Значит, на рисунке 2 изображен график функции, заданной формулой

.

У этой дроби числитель и знаменатель - линейные двучлены относительно х. Такие функции называют дробно-линейными функциями.

Вообще функцию, заданную формулой вида
, где
х – переменная, а,
b , c , d – заданные числа, причем с≠0 и
bc - ad ≠0, называют дробно-линейной функцией. Заметим, что требование в определении о том, что с≠0 и
bc-ad≠0, существенно. При с=0 и d≠0 или при bc-ad=0 мы получаем линейную функцию. Действительно, если с=0 и d≠0, то

.

Если же bc-ad=0, с≠0, выразив из этого равенства b через a, c и d и подставив его в формулу, получим:

Итак, в первом случае мы получили линейную функцию общего вида
, во втором случае – константу
. Покажем теперь, как строить график дробно-линейной функции, если она задана формулой вида
Пример 2. Построим график функции
, т.е. представим ее в виде
: выделим целую часть дроби, разделив числитель на знаменатель, мы получим:

Итак,
. Мы видим, что график этой функции может быть получен из графика функции у=5/х с помощью двух последовательных сдвигов: сдвига гиперболы у=5/х вправо на 3 единицы, а затем сдвига полученной гиперболы
вверх на 2 единицы.При этих сдвигах асимптоты гиперболы у=5/х также переместятся: ось х на 2 единицы вверх, а ось у на 3 единицы вправо. Для построения графика проведем в координатной плоскости пунктиром асимптоты: прямую у=2 и прямую х=3. Так как гипербола состоит из двух ветвей, то для построения каждой из них составим две таблицы: одну для х<3, а другую для x>3 (т. е. первую слева от точки пересечения асимптот, а вторую справа от нее):

Отметив в координатной плоскости точки, координаты которых указаны в первой таблице, и соединив их плавной линией, получим одну ветвь гиперболы. Аналогично (используя вторую таблицу) получим вторую ветвь гиперболы. График функции изображен на рисунке 3.

Любую дробь
можно записать аналогичным образом, выделив ее целую часть. Следовательно, графики всех дробно-линейных функций являются гиперболами, различным образом сдвинутыми параллельно координатным осям и растянутыми по оси Оу.

Пример 3.

Построим график функции
.Поскольку мы знаем, что график есть гипербола, достаточно найти прямые, к которым приближаются ее ветви (асимптоты), и еще несколько точек. Найдем сначала вертикальную асимптоту. Функция не определена там, где 2х+2=0, т.е. при х=-1. Стало быть, вертикальной асимптотой служит прямая х=-1. Чтобы найти горизонтальную асимптоту, надо посмотреть, к чему приближаются значения функций, когда аргумент возрастает (по абсолютной величине), вторые слагаемые в числителе и знаменателе дроби
относительно малы. Поэтому

.

Стало быть, горизонтальная асимптота – прямая у=3/2. Определим точки пересечения нашей гиперболы с осями координат. При х=0 имеем у=5/2. Функция равна нулю, когда 3х+5=0, т.е. при х=-5/3.Отметив на чертеже точки (-5/3;0) и (0;5/2) и проведя найденные горизонтальную и вертикальную асимптоты, построим график (рис.4).

Вообще, чтобы найти горизонтальную асимптоту, надо разделить числитель на знаменатель, тогда y=3/2+1/(x+1), y=3/2 – горизонтальная асимптота.

2. Дробно-рациональная функция

Рассмотрим дробную рациональную функцию

,

У которой числитель и знаменатель - многочлены соответственно n-й и m-й степени. Пусть дробь - правильная (n < m). Известно, что любую несократимую рациональную дробь можно представить, и при том единственным образом, в виде суммы конечного числа элементарных дробей, вид которых определяется разложением знаменателя дроби Q(x) в произведение действительных сомножителей:Если:

Где k 1 ... k s – корни многочлена Q (x), имеющие соответственно кратности m 1 ... m s , а трёхчлены соответствуют парам сопряжения комплексных корней Q (x) кратности m 1 ... m t дроби вида

Называют элементарными рациональными дробями соответственно первого, второго, третьего и четвёртого типа. Тут A, B, C, к – действительные числа; m и м - натуральные числа, m, м>1; трёхчлен с действительными коэффициентами x 2 +px+q имеет мнимые корни.Очевидно, что график дробно-рациональной функции можно получить как сумму графиков элементарных дробей. График функции

Получаем из графика функции 1/x m (m~1, 2, …) с помощью параллельного переноса вдоль оси абсцисс на │k│ единиц масштаба вправо. График функции вида

Легко построить, если в знаменателе выделить полный квадрат, а затем осуществить соответствующее образование графика функции 1/x 2 . Построение графика функции

сводится к построению произведения графиков двух функций:

y = Bx + C и

Замечание . Построение графиков функции

где a d-b c 0 ,
,

где n - натуральное число, можно выполнять по общей схеме исследования функции и построения графика в некоторых конкретных примерах с успехом можно построить график, выполняя соответствующие преобразования графика; наилучший способ дают методы высшей математики. Пример 1. Построить график функции

.

Выделив целую часть, будем иметь

.

Дробь
изобразим в виде суммы элементарных дробей:

.

Построим графики функций:

После сложения этих графиков получаем график заданной функции:

Рисунки 6, 7, 8 представляют примеры построения графиков функций
и
. Пример 2. Построение графика функции
:

(1);
(2);
(3); (4)

Пример 3. Построение графика графика функции
:

(1);
(2);
(3); (4)

Заключение

При выполнении реферативной работы:- уточнила свои понятия дробно-линейной и дробно-рациональной функций:Определение 1. Дробно-линейная функция – это функция вида , где х – переменная, a, b, c, и d – заданные числа, причем с≠0 и bc-ad≠0. Определение 2. Дробно-рациональная функция – это функция вида

Где n

Сформировала алгоритм построения графиков этих функций;

Приобрела опыт построения графиков таких функций, как:

;

Научилась работать с дополнительной литературой и материалами, производить отбор научных сведений;- приобрела опыт выполнения графических работ на компьютере;- научилась составлять проблемно – реферативную работу.

Аннотация. Накануне 21-го века на нас обрушился нескончаемый поток разговоров и рассуждений на тему информационной магистрали (information highway) и наступающей эры технологии.

Накануне 21-го века на нас обрушился нескончаемый поток разговоров и рассуждений на тему информационной магистрали (information highway) и наступающей эры технологии.

  • Курсы по выбору одна из форм организации учебно-познавательной и учебно-исследовательской деятельности гимназистов

    Документ

    Настоящий сборник представляет собой пятый выпуск, подготовленный коллективом Московской городской педагогической гимназии-лаборатории №1505 при поддержке…….

  • Математика и опыт

    Книга

    В работе предпринята попытка масштабного сравнения различных под­ходов к соотношению математики и опыта, сложившихся главным образом в рамках априоризма и эмпиризма.

  • Поделиться: