Порядковая (ранговая, ординарная) шкала. Шкала измерения порядковая Порядковая шкала измерения значений выполняет

Порядковое измерение предоставляет больше информации, чем номинальное, так как дает возможность не только категоризовать, но и упорядочивать, или ранжировать, явления.

Располагая порядковым измерением, мы можем сказать, какие объекты характеризуются большим (или меньшим) количеством измеряемого свойства по сравнению с какими-то другими объектами; мы можем также расположить объекты по порядку в зависимости от количества того свойства, которое их характеризует.

Порядковая шкала устанавливает отношения равенства между явлениями в каждом классе и отношения последовательности в понятиях «больше» и «меньше» между всеми без исключения классами. Так, перечень профессий можно упорядочить по их сложности, по уровню квалификации, по разрядам и пр.

Порядковые шкалы часто употребляются в социологических исследованиях при опросах общественного мнения. Вот обычные наименования пунктов таких шкал: «вполне согласен», «пожалуй, согласен», «затрудняюсь ответить», «пожалуй, не согласен», «совершенно не согласен»; или: «уверен, что так», «думаю, что так», «затрудняюсь сказать», «думаю, что не так», «уверен, что не так» и т. п.

Ранговая, или порядковая, шкала устанавливает соотношение между выделенными признаками в соответствии с некоторым общим логическим основанием. Например, рассмотрим следующий фрагмент анкеты:

"Скажите, пожалуйста, помогло ли вам обучение на подготовительном отделении поступить в институт? "

· Да, подготовительное отделение дает хорошую подготовку и благодаря ему я поступил(а) в институт - 1

· Подготовительное отделение, безусловно, дает знания, но не очень хорошие, и их недостаточно для поступления в институт - 2

· В целом подготовительное отделение не дает хорошей подготовки, можно было поступить и без него - 3

Коды, проставленные справа, одновременно представляют собой ранги позиций вопроса альтернатив. С точки зрения эффективности подготовительного отделения для поступления в институт первая позиция более значима, чем вторая, а вторая более значима, чем третья. Но числовое обозначение альтернатив не позволяет нам утверждать, что первая позиция по крайней мере на треть значительнее, чем вторая, и на две трети, чем третья.

Хотя мы приписали позициям числовые коды – «1», «2» и «3», на самом деле с этими числами не все математические операции допустимы. Интервалы между позициями «на самом деле не равны».

Порядковое измерение не основано ни на какой стандартной для данной переменной единице и не позволяет установить, насколько далеко в терминах этой переменной отстоят друг от друга разные объекты. Оно лишь позволяет говорить, что у одних объектов данная переменная имеет большее или меньшее значение, чем у других.

· ранжирование (в ряд),

· группировка (ранжирование по группам),

· метод полярных профилей.

Ранжирование.

Часто употребляемая разновидность шкал порядкового типа - ранговые, которые предполагают полное упорядочение каких-то объектов: они располагаются в ряд по степени выраженности какого-либо качества.

Задание на ранжирование респонденту часто формулируется так: «Из перечисленных ниже суждений выберите самое для Вас предпочтительное, затем - наименее предпочтительное, а остальные расположите от первого к последнему».

При обработке данных шкала в цифровом выражении может быть «перевернута» в обратном порядке, т. е. последнему, низшему рангу можно приписать наименьшее числовое значение - 1, а первому - наибольшее.

Следует помнить, что численность объектов для ранжирования не может быть слишком большой, скажем - 15. В противном случае данные ранжирования крайне неустойчивы. При этом всегда более устойчивы первые и последние ранги (при повторных опросах опытных групп они обычно приписываются тем же объектам), а срединная зона, как правило, менее устойчива

Иногда необходимо ранжировать множество объектов, существенно больше 15. В таком случае можно прибегнуть к более трудоемкой для анализа, но более простой для респондента и более надежной процедуре ранжирования методом парных сравнений .

Ранжирование методом парных сравнений состоит в том, что предлагается попарно сопоставить предпочтительность объектов путем всех возможных их парных комбинаций.

Допустим, что у нас имеется 25 объектов, которые надо ранжировать по какому-то свойству. Сделать это непосредственно - психологически почти невыполнимая задача. Тогда предлагается рассматривать все возможные комбинации пар, и из каждой пары выбирать более предпочтительный объект, приписывая ему, например, балл +1. Затем все объекты ранжируются в соответствии с набранной суммой баллов. Естественно, может случиться, что одинаковые значения получат несколько объектов. Доказано, что результаты такого ранжирования весьма устойчивы.

Таким способом мы можем сопоставлять учащихся друг с другом по какому-то качеству. Например, если учащиеся признаются одинаковыми в отношении рассматриваемого свойства, то каждый получает по баллу. Если у одного этого качества больше, чем у другого, первый получает два балла, второй - 0 (как при спортивных играх по круговой системе). Суммируя полученные каждым баллы, получаем количественное выражение уровня развития данного качества у каждого учащегося (его ранг). В результате сравнения получается таблица следующего типа (табл.7.):

Таблица ранжирования методом парных сравнений

Следующим способом ранжирования является группировка всей совокупности объектов наблюдения в несколько рангов, достаточно ясно отличающихся друг от друга по степени измеряемого признака. Примеры: разделение учащихся согласно пятибалльной системе на отличников, хорошистов и т. д.; разбиение респондентов в результате анкетирования на группы «абсолютно согласных» с каким-либо утверждением, «скорее согласных», «скорее не согласных» и «категорически не согласных».

Частными случаями ранжирования являются методы рейтинга и метод полярных профилей . В первом приеме оценка объекта производится путем усреднения оценочных суждений группы компетентных экспертов. Имея общие критерии оценки (в порядковой шкале, в баллах), эксперты независимо друг от друга (в устной или письменной форме) выносят свои суждения. Усредненный результат экспертной оценки является достаточно объективным и называется рейтингом.

Метод полярных профилей предполагает применение для оценки условной шкалы, крайними точными которой являются противоположные значения признака (например, добрый - злой, теплый - холодный и т. п.). Промежуток между полюсами делится на произвольное количество частей (баллов). Например, оценка различных качеств учителя учениками дается в полярной шкале:

(Строгий) 10 - 9 - 8 - 7 - 6 - 5 - 4 - 3 - 2 - 1 (Совсем не строгий)

Операции с числами для порядковой шкалы следующие.

1. Числа поддаются монотонным преобразованиям: их можно заменить другими с сохранением прежнего порядка (поэтому ранговые шкалы являются порядковыми).

Так, вместо ранжирования от 1 до 5 можно упорядочить тот же ряд в числах от 2 до 10 или от (-1) до (+1). Отношения между рангами останутся неизменными. Это свойство важно в тех случаях, когда данные, измеренные шкалами с различным числом интервалов, приходится приводить к «общему знаменателю» , т. е. выражать в одной шкале с постоянной величиной заданных интервалов. При этом суммарные оценки по ряду ранговых шкал - допустимый и хороший способ измерять одно и то же свойство по набору различных индикаторов.

2. Для работы с материалом, собранным по упорядоченной шкале, можно использовать, помимо модальных показателей, поиск средней тенденции с помощью медианы (Me), которая делит ранжированный ряд пополам.

3. Наиболее сильный показатель для ранговых (порядковых) таких шкал - корреляция рангов (по Спирмену или по Кендаллу).

Ранговые корреляции указывают на потенциальное наличие или отсутствие связей в двух рядах признаков, измеренных ранговыми (порядковыми) шкалами.

Интервальное измерение предоставляет исследователю больше информации, чем порядковое или номинальное. Оно основано на представлении о существовании некоторой стандартной единицы измеряемого свойства.

Оно несет информацию о “расстоянии” между ними. Хороший пример такого рода – переменная доход (или возраст).

Если измерять возраст с помощью порядкового измерения, разделяя людей по их возрасту на такие категории, как моложе 20 лет, от 20 до 40 лет и т.д., мы сможем сказать, что у человека 1-й категории возраст меньше, чем у человека 2 категории и т.д., при этом «расстояние» между категориями мы выбрали в 20 лет и на самом деле не сможем сказать точно, насколько эти люди различаются по возрасту, так как не знаем, где именно находится человек внутри своей категории. То есть разницу в соотношении ответов в близких интервалах не всегда можно квалифицировать как содержательное различие.

Таким образом, шкала интервалов (иногда ее называют метрическая шкала равных интервалов ) представляет собой полностью упорядоченный ряд с одинаковыми интервалами между пунктами, причем отсчет начинается с произвольно избранной величины (нет «естественного нуля» на шкале). Она позволяет проводить более строгие математические операции с получаемой информацией. Главная трудность в построении таких шкал - обоснование равенства или разности дистанций между пунктами.

Чаще всего интервальную шкалу используют для снятия информации по четко фиксируемым количественными методами социальным характеристикам, например, по возрасту, зарплате, образованию, стажу работу и пр. Однако всегда возникает проблема, например, при оценке возраста, брать в качестве «цены» деления 5 или десять лет и т.п.

В целом, метрические шкалы в социально-педагогических исследованиях используются гораздо реже, чем порядковые.

Следует заметить, что неопытные исследователи принимают иногда за интервальную шкалу шкалы балльных оценок. Но это псевдометрическая шкала. Так, один из вариантов псевдошкалы с равными интервалами - «термометр общественного мнения». Это шкала, например, в 100 делений, где крайние точки (100 и 0) словесно интерпретируются как минимальное и максимальное одобрение. Например, «если вы категорически согласны с приведенным суждением, укажите свое положение на термометре как 100°», «если вы категорически не согласны, укажите 0°».

В действительности, нет оснований полагать, что лица, отметившие по термометру 35° и 42°, столь же различаются в своих оценках, как отметившие, скажем, 45° и 52°. Одни люди обладают высокой способностью дифференцировать свои оценки, а другие вовсе не могут различать нюансы. Данная шкала измеряет не что иное, как ранги, т.е. является упорядоченной номинальной или ранговой шкалой.

Числа в таких шкалах допускают линейные преобразования: у=ах+b.

Появляются новые возможности корреляционно­го и регрессионного анализа. Вместо рангового коэффи­циента можно использовать более чувствительный ко­эффициент парной корреляции по Пирсону и коэф­фициенты множественной корреляции.

Наконец, существует шкала пропорциональных оценок (идеальная метрическая ), которая напоминает шкалу равных интервалов, но с одним преимуществом: отсчет в этой шкале начинается не с произвольной точки, а с экспериментально установленного нулевого пункта.

Для таких шкал применимы решительно все операции с числами, так как можно определить, на сколько или во сколько данный пункт на шкале превышает другой. Подобные шкалы приняты в точных науках, где нулевой пункт экспериментально зафиксирован. Идеальные метрические шкалы успешно применяются для измерения некоторых физиологических и психических свойств человека. Точка отсчета определяется в этих случаях как порог восприятия и порог насыщения. Известно, например, что существует среднестатистический порог восприятия звуковых колебаний. То же относится и к некоторым психическим реакциям людей (например, порог различения сходных фигур).

В социально-педагогических исследованийх шкалы такого рода имеют весьма ограниченное применение. Ими пользуются для измерения протяженностей во времени и пространстве, для отсчета натуральных единиц (денежных единиц, продуктов деятельности, поступков). Во всех этих случаях нулевой пункт четко фиксируется.

Операции с числами для идеальных шкал не имеют никаких ограничений. Можно использовать все доступные математике операции с натуральными числами.

Когда речь идет о сравнении явлений, измерения номинального уровня – наименее полезный тип измерения.

Наша задача состоит в том, чтобы там, где это возможно и удобно, стремиться к операционализациям, позволяющим осуществлять измерение интервального уровня.

Естественно, не следует довольствоваться операционализацией, дающей номинальное измерение, когда теоретически оправданно и технически возможно порядковое или интервальное измерение.

Для этого на этапе построения теории мы должны прежде всего спросить себя, лежит ли в основе различий, наблюдаемых в отдельных случаях, некий континуум. Если да, то мы можем предложить для данного понятия порядковое или даже интервальное измерение, в противном случае в качестве измерения может выступать лишь номинальная шкала.

Восприятие шкал имеет свои особенности, которые надо учитывать исследователю.

Во-первых, размышляя о том, давать или не давать словесные наименования каждому элементу шкалы , надо помнить, что представление шкалы без наименований в общем неверно, поскольку респондент все равно осознанно или неосознанно переводит "голую" шкалу в шкалу с наименованиями, придавая то или иное словесное выражение ее элементам. Само по себе число не имеет содержательного значения. Оно существует в сознании человека только в некоторой смысловой определенности и находит выражение в конкретном контексте.

Во-вторых, большое значение имеет длина шкалы . В быту мы чаще всего оперируем трехбалльной шкалой. «Нравится ли Вам мой новый костюм?» - спрашиваем мы у приятеля, и, как правило, ответ легко укладывается в такую градацию: «понравился», «не очень понравился», «не понравился». Иногда добавляются две крайние позиции «очень понравился» или «очень не понравился». И только специалист-модельер может привести более дробные градации.

Применение той или иной шкалы имеет прежде всего содержательное, а не формальное значение. Иначе говоря, чем богаче содержание того или иного явления, тем тоньше должна быть шкала, тем больше градаций в ней должно заключаться. В школе при существующей пятибалльной системе оценок учителя фактически используют восьми-десятибалльную систему, вводя "нелегально" к оценкам плюсы и минусы и тем самым увеличивая общее количество баллов.

Необходимо учитывать также, насколько конкретный респондент способен воспринять многомерную шкалу. Восприятие зависит и от его общей культуры, и от уровня образования, и от умения аналитически мыслить, и от степени информированности, порога чувствительности и т.п.

В вопросах об оценках того или иного явления, в определении согласия с каким-то мнением и т.д. (наиболее распространенные вопросы в социально-педагогических опросах) наиболее хорошо себя зарекомендовали пятибалльные шкалы. Например, для ответа на вопрос: «Скажите, пожалуйста, насколько Вы устаете на занятиях в институте?» - лучше предлагать пятибалльную шкалу: «очень устаю»; «устаю, но не очень»; «немного устаю»; «практически не устаю»; «совсем не устаю».

При очень дробной шкале, когда респондент не может достаточно тонко оценить какое-то явление или определить отношение, происходит огрубление предлагаемой шкалы. Например, в десятибалльной шкале по изучению дружеских отношений в коллективе разница между девятой и десятой позициями редко воспринимается респондентами как существенная, также как и разница между первой и второй. Нередко респондент обводит общим кружком и первую, и вторую позиции или девятую и десятую, показывая тем самым, что не видит особых различий между ними.

Можно дать несколько общих советов по выбору измерительных шкал.

1) Приступая к разработке шкалирования, следует продумать, какие явления, свойства и объекты реально варьируют по их интенсивности, распространенности, состояниям выраженности, а какие могут быть фиксированы лишь на качественном уровне.

2) Определяя тип шкалы, нужно соизмерять его не только с природой объекта, но и с целями исследования и возможностями последующего количественного анализа: излишняя квантификация - напрасная трата усилий, недостаточная - упущенные возможности более обстоятельного изучения объекта.

3) Лучше опираться на достоверные и менее детальные сведения, чем на детальные и малодостоверные: отсюда - указания к выбору приемлемого типа шкал и дробности их метрики.

4) Самое главное состоит в том, что количественный анализ не самоцель, но лишь средство качественного : качественный анализ предшествует квантификации, качественным анализом завершается изучение количественных распределений и связей.

Количественный анализ данных может вводить в заблуждение, если ему не предшествовала тщательная проверка валидности и надежности разработанного инструментария.

Ошибки появляются при измерении всегда, но большое их число может привести в конце концов к ошибочным выводам.

Существует несколько основных источников ошибок измерения:

1) Если характер ответов сильно зависит, скажем, от интеллектуального уровня респондента или от его осведомленности в определенных вопросах.

2) Если ответы на вопросы зависят от настроения или состояния здоровья отвечающего.

3) Если вопросы сформулированы неоднозначно, и респонденты могут дать им разные интерпретации

4) Различия в условиях проведения измерения (например, может влиять пол и возраст интервьюера и т.п.)

5) Ошибки и неоднозначности в инструкциях по применению конкретного инструмента.

6) Ошибки кодировки, ввода данных в компьютер.

Различные ошибки, происходящие из перечисленных источников, обычно подразделяются на систематические и случайные. Систематические ошибки – это ошибки, которые появляются каждый раз, когда используется данный инструмент, и постоянно сопутствуют объектам и исследованиям, в которых используется данное измерение.

Случайные ошибки обусловлены преходящими характеристиками объектов, ситуационными различиями, ошибками в проведении измерения и обработке данных и другими факторами.

Как же избежать такого потенциально разрушительного воздействия на наши результаты ошибок измерения, чтобы оно не превратилось в бесполезное или ошибочное? Чтобы ответить на этот вопрос, необходимо рассмотреть такие понятия как валидность и надежность измерения и обсудить проблемы их обеспечения.

Термин валидность используется для обозначения степени соответствия измерений понятиям, которые эти измерения должны отражать . Интересоваться валидностью измерения – то же самое, что интересоваться, действительно ли с помощью данного измерения мы измеряем то, что предполагали измерять. Обеспечение валидности - одна из основных проблем, связанных с измерениями в социально-педагогических исследованиях.

Чтобы быть валидным, измерение должно быть исчерпывающим и полным. Обеспечение этих свойств происходит на этапе операционализации основных понятий: именно на этом этапе надо позаботиться о полноте. Получение уместных и относительно полных операционализаций зависит как от хорошего знания объекта нашего исследования, так и от осуществления тщательного логического анализа альтернативных операционализаций.

Процесс оценки валидности измерений называется валидизацией.

Существует несколько видов валидизации:

1) в прагматической валидизации мы сверяем результаты, полученные с использованием нашего инструментария, с результатами, полученными путем использования какого-то другого показателя, признанного в качестве валидного измерения соответствующего понятия;

2) внутренняя конструктная валидизация предполагает соотнесение нашего показателя с несколькими другими показателями для того же самого понятия, использующего множественные показатели;

3) внешняя валидизация заключается в соотнесении нашего показателя с показателями для других понятий, с которыми измеряемое понятие теоретически должно быть связано.

Все данные способы валидизации имеют один «маленький недостаток»: проверить валидность наших измерений можно лишь после того, как собраны данные.

С одной стороны, это говорит о необходимости специальных «пилотных» исследований до проведения основного эксперимента, целью которых должна быть апробация разрабатываемого исследовательского инструментария, определение его валидности и надежности.

С другой стороны, поскольку в педагогических исследованиях часто мы не располагаем возможностью проводить такие специальные исследования, особую значимость приобретает так называемая «очевидная валидизация» - признание валидности, исходя из непосредственной очевидности показателя. По сути она сводится к теоретическому обоснованию, к убеждению научного сообщества в том, что это валидный показатель для рассматриваемого понятия.

Когда говорят о надежности измерения, имеют в виду устойчивость получаемых с его помощью значений (воспроизводимость результатов при повторном наблюдении или на другой аналогичной выборке).

Если при неоднократном применении некоторого измерения один и тот же объект не получает одного и того же значения, это измерение является ненадежным показателем соответствующего понятия.

Заметим, что измерение может быть надежным, не будучи валидным, но не может быть валидным, не будучи надежным. Если измерение валидно, оно должно быть надежно.

Чтобы предотвратить угрозу ненадежности, следует продумывать реальный процесс измерения и проводить предварительное тестирование инструментов измерения для выявления возможных причин случайных ошибок.

Существует три типа методов установления надежности измерений:

1) метод неоднократного тестирования;

2) одно и то же измерение применяется к разным группам объектов;

3) метод подвыборки. Этот метод заключается в том, что, сформировав выборку из объектов, мы делим ее на несколько подвыборок таким образом, чтобы все они были похожи друг на друга. Затем мы применяем одно и то же измерение ко всем подвыборкам и используем сходство или различие результатов для подвыборок как показатель надежности измерения.

Надежность измерений, как и валидность, важно установить до того, как будет начат основной эксперимент. Это требует предварительного тестирования измерения посредством сбора данных, предназначенных исключительно для оценки инструментов, которые будут использоваться в самом исследовании. Предварительное тестирование валидности и надежности измерения не обязательно только в том случае, если в исследовании используются измерения, которые были где-то убедительно валидизированы, что отражено в соответствующих публикациях.

Задания и вопросы.

1. Рассмотрите приведенные ниже примеры вопросов и установите для каждого тип использованной шкалы. Предложите, где возможно, преобразования, переводящие шкалы на «более высокий уровень».

1. Какую литературу Вы чаще всего читаете?

2. Учебную, специальную

3. Научно-популярную

4. Художественную

5. Политическую

6. Социально-экономическую

1. К какой группе профессий Вашего завода Вы относите себя:

2. рабочие ручного труда, не требующего специальной подготовки;

3. рабочие ручного труда высокой квалификации;

4. рабочие, занятые на механизированном оборудовании, средней квалификации;

5. рабочие механизированного труда высокой квалификации;

6. автоматчики без навыков наладки;

7. пультовики-наладчики.

1. По какой причине Вы уводились с работы?

2. не устраивал заработок;

3. неудобная сменность;

4. плохие гигиенические условия труда;

5. неинтересная работа.

2. Обоснуйте размер той выборки, на которой Вы собираетесь проводить эксперимент. Какова должна быть численность экспериментальной и контрольной группы, чтобы прогнозируемые Вами различия были статистически достоверны?

3. Найдите в литературе, в интернете минимально достаточные сведения о понятиях нулевой гипотезы, достоверности различий в экспериментальной и контрольной группах, статистических критериях для определения достоверности различий.

4. Как Вы собираетесь проверять валидность и надежность инструментов количественного измерения? Какое пилотное исследование будет необходимо Вам спланировать?

5. Как Вы думаете собирать и обрабатывать данные (вручную, на компьютере, с использованием каких программ, с помощью специалистов и т.п.)?

Порядковая шкала (ordinal scale) - это ранговая шкала, в которой числа присваиваются объектам для обозначения относительной степени, в которой определенные характеристики присущи тому или иному объекту. Она позволяет узнать, в какой мере выражена конкретная характеристика данного объекта, но не дает представления о степени ее выраженности. Таким образом, порядковая шкала отображает относительную позицию, но не значительность разницы между объектами. Объект, находящийся по рангу на первом месте, имеет более сильно выраженную характеристику по сравнению с тем, что находится на втором месте, но при этом неизвестно, насколько значительно различие между ними. Примерами порядковых шкал являются качественные ранги, ранги команд в турнирах, социально-экономические классы и профессиональный статус. В маркетинговых исследованиях порядковые шкалы используются для измерения отношения, мнения, восприятия и предпочтения. Измерительные инструменты подобного типа включают такие суждения респондентов, как "более чем" или "менее чем".

В порядковой шкале, как и в номинальной, эквивалентные объекты имеют одинаковый ранг. Объектам могут присваиваться значения любого ряда чисел, при условии сохранения характера взаимосвязей между ними. Например, порядковые шкалы можно трансформировать любым способом, если при этом сохраняется первоначальный порядок расположения.

Другими словами, допустимо любое монотонное положительное (сохраняющее порядок) преобразование шкал, так как, кроме порядка расположения, другие свойства чисел полученного ряда значения не имеют (ниже приведен пример).

По этим причинам, кроме использования операций подсчета, допустимых для данных номинальной шкалы, для порядковых шкал можно использовать статистические методы, базирующиеся на процентилях. В данном случае имеют смысл расчеты процентилей, квартилей, медианы, ранговой корреляции или других сводных показателей порядковыхданных.

Интервальная шкала

При использовании интервальной шкалы (interval scale) количественно равные промежутки шкалы отображают равные значения измеряемых характеристик. Интервальная шкала не только содержит всю информацию, заложенную в порядковую, но также позволяет сравнивать различия между объектами. Разница между двумя значениями шкалы идентична разнице между двумя любыми другими смежными значениями интервальной шкалы. Между значениями интервальной шкалы существует постоянный или равный интервал. Разница между 1 и 2 та же, что и между 2 и 3, что соответствует также разнице между 5 и 6. Общеизвестным примером из повседневной жизни является шкала температуры. В маркетинговых исследованиях данные об отношениях покупателей, полученные по рейтинговым шкалам, часто обрабатываются как интервальные.

В интервальной шкале расположение точки начала отсчета не фиксируется. Точка начала отсчета и единицы измерения выбираются произвольно. Следовательно, любое позитивное линейное преобразование формы у = а + Ьх сохранит свойства шкалы. Здесь х - первоначальное значение шкалы, у - преобразованное значение шкалы, b - положительная константа. Таким образом, две интервальные шкалы, оценивающие объекты Л. В, С числами I. 2, 3 и 4 или 22, 24, 26 и 28, эквивалентны. Заметьте, что вторую шкалу можно получить из первой при преобразовании с а = 20 и b = 2. Поскольку точка начала отсчета не фиксирована, отношение значений шкалы не имеет смысла. Из приведенного выше примера видно, что при преобразовании соотношение значений В и D изменяется от 2:1 до 7:6. Тем не менее допускается использование отношений разниц между двумя значениями. При этом константы а и b в расчет не принимаются. Отношение разницы между D и В к разнице между С и В равно 2:1 и одинаково для обеих шкал.

Относительная шкала

Относительная шкала (ratio scale) обладает всеми свойствами номинальной, порядковой и интервальной шкал и, кроме того, имеет точку начала отсчета. Таким образом, с помощью относительных шкал мы можем определять и классифицировать объекты, ранжировать их, сравнивать интервалы и разницы Также имеет смысл расчет коэффициентов значений шкал и не только равенство разности между 2 и 5 и разности между 14 и 17, но и то, что 14 больше 2 в семь раз. Общеизвестные примеры относительной шкалы: рост, вес, возраст и деньги. В маркетинге с помощью относительной шкалы измеряются объемы продаж, затраты, доля рынка и число покупателей.

Относительные шкалы допускают только пропорциональные преобразования формы у = Ьх, где b - положительная константа. Нельзя добавить еще одну константу, как это делалось для интервальных величин. Примером трансформации может быть преобразование ярдов в футы (Ь = 3). Результаты сравнения объекта как в ярдах, так и в футах идентичны.

Рассмотренные выше четыре основных вида шкал не исчерпывают всех существующих вариантов методов измерения. Возможно построение номинальной шкалы, которая давала бы частичную информацию о порядке (частично порядковая шкала). Более того, порядковая шкала может отображать частичную информацию о расстоянии, как в случае упорядоченной метрической шкалы. Но рассмотрение этих шкал выходит за рамки данной книги.

Квалиметрия

- область науки, предметом которой являются количественные методы оценки качества продукции.

Объект квалиметрии – качество предметов и явлений реального мира, т.е. продукции, процессов производства, услуг и иных видов деятельности людей, процессов социальной жизни отдельных членов общества и их групп и т.д.

Квалиметрия как самостоятельная наука об оценивании качества любых объектов сформировалась в конце 60-х годов 20 века. Название предложено Г.Г.Азгальдовым. Решение об обобщении существующих различных методов количественных оценок качества различных объектов было принято в ноябре 1967 года в Москве группой советских ученых и инженеров, работавших в разных областях.

В структуру квалиметрии входят:

1) общая квалиметрия (общая теория квалиметрии) – методы оценки и измерения качества;

2) специальные квалиметрии больших группировок объектов, например, квалиметрия продукции, процессов, услуг, среды обитания и т.д.;

3) предметные квалиметрии отдельных видов продукции, процессов и услуг (квалиметрия нефтепродуктов, труда, образования, тканей и т.д.).

Принципы квалиметрии:

1. Квалиметрия должна давать практике хозяйственной деятельности людей (т.е. экономике) общественно полезные методы достоверной квалифицированной и количественной оценки качества различных объектов исследования.

Интересы производителей и потребителей расходятся, поэтому квалиметрия должна давать методы оценки качества, учитывающие интересы обеих сторон.

2. Приоритет в выборе определяющих показателей всегда на стороне потребителей.

3. Оценка качества продукции не может быть получена без наличия эталона для сравнения (базовых показателей).

4. Показатель любого обобщения, кроме самого нижнего (исходного), предопределяется соответствующими показателями предшествующего иерархического уровня.

Низший уровень – единичные показатели простейших свойств. Высший – интегральный показатель.

5. При использовании метода комплексной оценки качества продукции все разноразмерные показатели свойств должны быть преобразованы и приведены к одной размерности или выражены в безразмерных единицах измерения.

6. При определении комплексного показателя качества каждый показатель отдельного свойства должен быть скорректирован коэффициентом его весомости.

7. Сумма численных значений коэффициентов весомостей всех показателей качества на любых иерархических ступенях оценки имеет одинаковое значение.

8. Качество целого объекта обусловлено качеством его составных частей.

9. При количественной оценке качества, особенно по комплексному показателю, недопустимо использование взаимообусловленных и, следовательно, дублирующих показателей одного и того же свойства.

10. Обычно оценивается качество продукции, которая способна выполнять полезные функции в соответствии с ее назначением.

Квалиметрические шкалы

Любое измерение или количественное оценивание чего-либо проводится с помощью шкал.

Шкала – это упорядоченный ряд отметок, соответствующий соотношению последовательных значений измеряемых величин.

В квалиметрии шкала измерений является средством адекватного сопоставления и определения численных значений отдельных свойств и качеств отдельных объектов.

Все шкалы измерения делят на две группы - шкалы качественных признаков и шкалы количественных признаков.

Виды шкал

Шкала наименований (номинальная, эквивалентности, классификационная) – предназначены для различения объектов.

Измерение заключается только в определении равенства или отличия объекта от заранее заданного

В этой шкале числа используются лишь как метки, только для различения объектов.

В шкале наименований измерены, например, номера телефонов, автомашин, паспортов, студенческих билетов, номера страховых свидетельств государственного пенсионного страхования, медицинского страхования, ИНН (индивидуальный номер налогоплательщика). Пол людей тоже измерен в шкале наименований, результат измерения принимает два значения - мужской, женский. Раса, национальность, цвет глаз, волос - номинальные признаки. Номера букв в алфавите - тоже измерения в шкале наименований. Нельзя складывать или умножать номера телефонов, такие операции не имеют смысла. Нельзя сравнивать буквы и говорить, например, что буква П лучше буквы С, также никто не будет. Единственное, для чего годятся измерения в шкале наименований - это различать объекты. Например, шкафчики в раздевалках для взрослых различают по номерам, т.е. числам, а в детских садах используют рисунки, поскольку дети еще не знают чисел.

Еще пример: разделение дефектов на виды.

Порядковая шкала (Шкала порядка ранговая шкала, шкала рангов)

– это такой метод оценивания, при котором объекты оценивания располагаются в порядке увеличения или уменьшения значения параметра или свойств объекта, причем способ определения порядка расположения не связан с какой-либо численной характеристикой объектов. Классическим примером является оценивание твердости минералов на основе шкалы Мооса. Другим примером может служить органолептическое оценивание показателей качества продукции (вкус продукта питания, цвет ткани, различимость шрифта, соответствие моде) при помощи балльной шкалы оценок.

После оценивания качества объектов в этой шкале их можно только упорядочить в ряд, ранжированный по увеличению (или уменьшению) значения показателя качества, но при этом оказывается невозможным определить, насколько или, тем более, во сколько раз один объект по качеству отличается от другого. Например, пусть для двух объектов (А и Б) в результате оценивания их качества в какой-то количественной шкале (допус- тим, в балльной) получены следующие значения показателей их качества: КА = 60 баллов и КБ = 40 баллов. Причем заранее известно, что информативность этой шкалы не превышает возможности шкалы порядка. В этом случае было бы неправильным вычислять соотношения КА – КБ = 20 и КА/КБ = 1,5.

В шкале порядка возможны логические операции, но невозможны арифметические действия. Если значение параметра продукции, измеряемого в шкале порядка, у первого вида больше, чем у второго, а у третьего больше, чем у первого, то можно сделать вывод о том, что значение этого параметра у третьего вида больше, чем у второго.

Реальный пример измерения (но не качества, а температуры) в порядковой шкале: мать меряет ребенку температуру, прикладывая руку к его лбу. Здесь повышение температуры измеряется в шкале порядка: мать может сказать, повышена ли температура по сравнению с нормальной или нет, но не может сказать, на сколько десятых градуса (или, тем более, во сколько раз) она повышена.

С целью увеличения достоверности и объективности в шаклу порядко часто вводятся ранжированные реперные (опорные) точки, с поощью которых определяют ранг или безразмерный балл измеряемой величины. Такая шкала называется реперной шкалой порядка.

С помощью реперных шкал порядка измеряются морские волны, чувствительность фотоматериалов (фотопленок, фотопластин, фотобумаги), температура и некоторые другие величины.

Широкое применение шкалы порядка получили при измерениях в социальной сфере, в области интеллектуального труда, в искусстве и гуманитарных науках, где использование точных метрологических методов измерений затруднено или практически невозможно.

Числа используются не только для различения объектов, но и для установления порядка между объектами.

Порядковыми шкалами в географии являются - бофортова шкала ветров ("штиль", "слабый ветер", "умеренный ветер" и т.д.), шкала силы землетрясений. Очевидно, нельзя утверждать, что землетрясение в 2 балла (лампа качнулась под потолком - такое бывает и в Москве) ровно в 5 раз слабее, чем землетрясение в 10 баллов (полное разрушение всего на поверхности земли).

В медицине порядковыми шкалами являются - шкала стадий гипертонической болезни (по Мясникову), шкала степеней сердечной недостаточности (по Стражеско-Василенко-Лангу), шкала степени выраженности коронарной недостаточности (по Фогельсону), и т.д. Все эти шкалы построены по схеме: заболевание не обнаружено; первая стадия заболевания; вторая стадия; третья стадия. Иногда выделяют стадии 1а, 1б и др. Каждая стадия имеет свойственную только ей медицинскую характеристику. При описании групп инвалидности числа используются в противоположном порядке: самая тяжелая - первая группа инвалидности, затем - вторая, самая легкая - третья.

Чаще всего врачи используют классификацию, которая была рекомендована ВОЗ и Международным обществом по гипертензии (МОАГ) в 1999 году. По ВОЗ гипертоническая болезнь классифицируется в первую очередь по степени повышения АД, которых выделяют три:

1. Первая степень – мягкая (пограничная гипертензия) – характеризуется давлением от 140/90 до 159/99 мм рт. столба.

2. При второй степени гипертонии – умеренной – АГ находится в пределах от 160/100 до 179/109 мм рт. столба.

3. При третьей степени – тяжелой – давление составляет 180/110 мм рт. столба и выше.

Номера домов также измерены в порядковой шкале - они показывают, в каком порядке стоят дома вдоль улицы. Номера томов в собрании сочинений писателя или номера дел в архиве предприятия обычно связаны с хронологическим порядком их создания.

Порядковые шкалы популярны в квалиметрии при оценке качества продукции и услуг. Единица продукции оценивается как годная или не годная. При более тщательном анализе используется шкала с тремя градациями: есть значительные дефекты - присутствуют только незначительные дефекты - нет дефектов. Иногда применяют четыре градации: имеются критические дефекты (делающие невозможным использование) - есть значительные дефекты - присутствуют только незначительные дефекты - нет дефектов. Аналогичный смысл имеет сортность продукции - высший сорт, первый сорт, второй сорт.

При оценке экологических воздействий первая, наиболее обобщенная оценка - обычно порядковая, например: природная среда стабильна - природная среда угнетена (деградирует). Аналогично в эколого-медицинской шкале: нет выраженного воздействия на здоровье людей - отмечается отрицательное воздействие на здоровье.

Шкала интервалов (интервальная шкала).

Шкала интервалов – это такой метод оценивания, при котором существенной характеристикой является разность между значениями оцениваемых параметров, которая может быть выражена числом установленных в этой шкале единиц. При этом начало отсчета может быть установлено произвольно.

Дополнительно позволяет определить, насколько один объект отличается по качеству от другого (т. е. применительно к предыдущему примеру правомерно вычислять разность КА – КБ = 20 баллов, но не правомерно пытаться определить отношение КА/КБ = 1,5).

Нельзя определить, во сколько данный параметр больше или меньше другого.

По шкале интервалов измеряют величину потенциальной энергии или координату точки на прямой. В этих случаях на шкале нельзя отметить ни естественное начало отсчета, ни естественную единицу измерения. Исследователь должен сам задать точку отсчета и сам выбрать единицу измерения. Допустимыми преобразованиями в шкале интервалов являются линейные возрастающие преобразования, т.е. линейные функции.

Если требуется более жесткая привязка результатов, получаемых по шкале интервалов к определенному (произвольно выбранному или предпочтительному) размеру, то устанавливается базовый (опорный) размер – реперная точка.

Примерами шкал интервалов с одной реперной точкой являются календари летоисчислений. В христианском календаре за нулевую точку отсчета принят год рождения Христа («от рождества Христова»).

Дату сотворения мира различные авторы рассчитывают по-разному, равно как и момент рождества Христова. Так, согласно новой статистической хронологии, разработанной группой известного историка акад. РАН А.Т.Фоменко, Господь Иисус Христос родился примерно в 1054 г. по принятому ныне летоисчислению в Стамбуле (он же - Царьград, Византия, Троя, Иерусалим, Рим).

Классическим примером измерений по шкале интервалов с двумя реперными точками является измерение температур по шкале Цельсия. Здесь в качестве опорных размеров взяты температуры замерзания (таяния льда) и кипения чистой воды. Интервал между этими температурами разделен на 100 равных частей. Одна часть, принятая за единицу измерения температур, была названа градусом. Шкала Цельсия неограниченно распространяется за пределы температур 0 ± 100°С при условии, что любые значения температур измеряются единицами, равными 1/100 части интервала температур от замерзания до кипения воды.

В температурной шкале Реомюра тот же интервал (между температурами таяния и кипения) разбит на 80 интервалов, а в шкале Фаренгейта на 180 интервалов (градус Реомюра больше, а градус Фаренгейта меньше градуса Цельсия). В шкале Фаренгейта в отличие от шкал Цельсия и Реомюра установлено другое начало отсчета – оно сдвинуто на 32 градуса в отрицательную сторону.

Температурные шкалы Цельсия и Фаренгейта связаны именно такой зависимостью: 0 С = 5/9 (0 F - 32), где 0 С - температура (в градусах) по шкале Цельсия, а 0 F - температура по шкале Фаренгейта.

Шкала интервалов применяется для характеристики таких свойств продукции, которые связаны с температурными режимами, например, минимальная рабочая температура и диапазон рабочих температур криоинструмента, морозостойкость искусственной кожи, минимальная температура морозильной камеры.

Рис. Построение шкалы интервалов с нулевой отметкой

Шкала отношений – это измерительная шкала, на которой отсчитывается численное значение величины q i как математического отношения измеряемого размера Q i . к другому известному размеру, принимаемому за единицу измерений [Q ].

В квалиметрии считается, что «любое измерение по шкале отношений предполагает сравнение неизвестного размера с известным и выражение первого через второй в кратном или дольном отношении». Математическая запись измерения по шкале

отношений имеет вид:

где i = 1, 2, 3, п – это номер измеряемого размера.

Шкала отношений – это шкала интервалов, в которой определен нулевой элемент – начало отсчета, а также размер (масштаб) единицы измерений [Q ].

По шкале отношений определяются такие значения измеряемых размеров, как: равно (=), не равно (≠), больше (>), меньше (<), сумма (+), разница размеров (–), умножение (х), деление (÷).

Шкала отношений наиболее приемлема для измерений большинства показателей качества, особенно для таких численных характеристик, как геометрические размеры объектов, их плотность, сила, напряжение, частота колебаний и прочие.

Шкала отношений наиболее совершенна и допускает любые арифметические действия. Шкала отношений применима к большинству параметров, представляющих собой физические величины: размер, вес, плотность, сила, напряжение, частота и т.д.

Пример использования шкалы отношений - измерение температуры в шкале Кельвина.

В шкалах отношений есть естественное начало отсчета - нуль, т.е. отсутствие величины, но нет естественной единицы измерения. По шкале отношений измерены большинство физических единиц: масса тела, длина, заряд, а также цены в экономике.

Шкала абсолютных величин . Во многих случаях напрямую измеряется величина чего-либо. Например, непосредственно подсчитывается число дефектов в изделии, количество единиц произведенной продукции, сколько студентов присутствует на

лекции, количество прожитых лет и т.д. и т.п. При таких измерениях на измерительной шкале отмечаются абсолютные количественные значения измеряемого. Такая шкала абсолютных значений обладает и теми же свойствами, что и шкала отношений,

с той лишь разницей, что величины, обозначенные на этой шкале, имеют абсолютные, а не относительные значения.

В процессе развития соответствующей области знания тип шкалы может меняться. Так, сначала температура измерялась по порядковой шкале (холоднее - теплее). Затем - по интервальной (шкалы Цельсия, Фаренгейта, Реомюра). Наконец, после открытия абсолютного нуля температуру можно считать измеренной по шкале отношений (шкала Кельвина). Надо отметить, что среди специалистов иногда имеются разногласия по поводу того, по каким шкалам следует считать измеренными те или иные реальные величины. Другими словами, процесс измерения включает в себя и определение типа шкалы (вместе с обоснованием выбора определенного типа шкалы). Кроме перечисленных шести основных типов шкал, иногда используют и иные шкалы.

Измерительные шкалы, основанные на использовании рядов предпочтительных чисел, обычно являются метрическими шкалами интервалов или абсолютных величин, исчисляемых, например, единицами допусков измеряемых линейных размеров или квалитетами.

Предпочтительными называют числа, наиболее часто используемые в технике, в технологии, в науке и в других сферах деятельности людей. Предпочтительные числа представляют собой определенное множество взаимосвязанных чисел (ряд чисел), которые обладают систематизирующим свойством, что позволяет использовать их при выборе, назначении и измерении размеров различных величин. Чаще всего математические выражения изменяющихся состояний имеют вид простой арифметической (линейной) или геометрической (нелинейной) прогрессии.

Так как везде принята десятичная система счета чисел, начиная с единицы, то наиболее удобными являются геометрические прогрессии, включающие число 1 и имеющие

с n, кратным 10. Международная организация по стандартизации (ISO)

В отдельных обоснованных случаях допускается использование рядов более высокого порядка.

Ряды предпочтительных чисел используются для установления унифицированных размеров сверл, фрез, разверток, зенкеров и других инструментов, а также размеров и допусков (отклонений) деталей машин, изделий в целом, технических параметров (свойств) продукции, процента дефектности в партиях продукции, величин напряжений электрического тока, номинальных значений длин электромагнитных волн радиовеща-тельных диапазонов и т.д.

Поэтому не случайно числа номинальных значений радиовещательных диапазонов λ и грузоподъемности железнодорожных цистерн Р имеют сходные величины, такие как:

λ → 80 м, 63 м, 49 м, 41 м, 31 м, 25 м, 19 м, 16 м, 12 м, 10 м;

Р → 80 т, 63 т, 50 т, 40 т, 32 т, 25 т, 20 т, 16 т, 12 т, 10 т.

Предпочтительные числа геометрических прогрессий используются, в частности, в квалиметрии для установления величин коэффициентов весомости (значимости) отдельных показателей качества, при градации мер, при делении диапазона оценивая на интервалы (формирование шкал измерений) и т.д.

Известно, что номинальные линейные размеры (диаметры, длины, глубины, расстояния между осями и т.д.) изделий, их частей, отдельных деталей и соединений в соответствии с требованиями стандартов назначаются равными предпочтительным числам того или иного ряда R. Эти номинальные размеры являются базовыми, по отношению к которым назначаются допуски разрешенных отклонений. Фактические отклонения должны быть в пределах допусков, и этим оценивается точность изготовленных изделий.

Градация допусков осуществлена в виде набора классов, или степеней точности. Под степенью точности понимается совокупность допусков, соответствующих одному относительному уровню точности для определенного количества номинальных размеров. Степень точности геометрических размеров (характеризуемая величиной допуска, выраженного в микрометрах) для установленного количества номинальных размеров называется квалитетоми обозначается буквами IT –сокращение от слов ISO Tolerance (ИСО допуск).

Под квалитетом понимают совокупность допусков, характеризуемых постоянной относительной точностью для всех номинальных размеров установленного диапазона. Иначе говоря, квалитет – характеристика точности изготовления изделия (например, детали), определяющая соответствующие методы и средства обработки, а также контроля качества обработки. Единой системой допусков и посадок (ЕСДП), основанной на системе допусков ИСО, для размеров от 1 до 10 000 мм установлено 19 квалитетов.

Обозначения последовательного ряда квалитетов, в порядке возрастания допуска на номинальный размер, таково: IT01, ITO, IT1, IT2, IT3... IT17.

С. Стивенсом предложена классификация из четырех типов шкал измерения: номинальная, порядковая, интервальная и шкала отношений.

Номинальная шкала (шкала наименований, номинативная шкала) состоит в присваивании какому-либо свойству или признаку определенного обозначения или символа (численного, буквенного и т.д.). По сути это- классификация свойств, группирование объектов, объединение их в классы при условии, что объекты, принадлежащие к одному классу, идентичны (или аналогичны) друг другу в отношении какого-либо признака или свойства, тогда как объекты, различающиеся по этому признаку, попадают в разные классы.

Пример: а) классификация вкусовых качеств: А - сладкое, В - горь­кое, С - кислое; б) цвета видимого спектра: красный, зеленый, синий и пр.; в) национальность: А белорус, В - русский, С - украинец; г) раз­биение людей по четырем типам темперамента: сангвиник, флегматик, меланхолик, холерик.

Номинальная шкала определяет, что разные свойства или признаки качественно отличаются друг от друга. Привычные операции с числами - упорядочивание, сложение-вычитание, деление - при измерении в номинативной шкале теряют смысл. Так, для признаков, измеренных по этой шкале, нельзя сказать, что какой-то из них больше, а какой-то меньше, какой-то лучше, а какой-то хуже. То есть при сравнении объектов мы можем делать вывод только о том, принадлежат они к одному или разным классам, тождественны или нет по измеренному свойству.

Следует подчеркнуть, что присваиваемые объектам в номинативной шкале символы являются условными и допускаются любые замены или перестановки буквенных (численных) обозначений.

Простейший случай номинативной шкалы - дихотомическая шкала. При измерениях по этой шкале измеряемые признаки можно кодировать двумя символами или цифрами, например 0 и 1 или 3 и 5, или буквами А и Б, а также любыми двумя отличающимися друг от друга символами. Признак, измеренный по дихотомической шкале, называется альтернативным.

В дихотомической шкале все объекты, признаки или изучаемые свойства разбиваются на два непересекающихся класса, при этом исследователь ставит вопрос о том, «проявился» ли интересующий его признак у испытуемого или нет. Например, в конкретном исследовании признак «леворукости» проявился у 8 испытуемых из 20, то есть 8 испытуемым можно поставить цифру 1, соответствующую признаку «леворукость», остальным цифру 0, соответствующую признаку «праворукость».

Пример: а) классификация по полу: 1 - мужской, 0 - женский;
б) ответы на опросник: 1 - да, 0 - нет; в) состав семьи: А - полная семья, Б -неполная семья.

В номинативной шкале можно подсчитать частоту встречаемости признака, то есть число испытуемых, явлений и т.п., попавших в данный класс и обладающих данным свойством. Допустим, мы выясняем число мальчиков и девочек в классе. Для этого мы кодируем мальчиков, например, цифрой 1, а девочек - цифрой 0. После этого подсчитываем общее количество цифр (кодов) 1 и 0. Это и есть подсчет частоты признака.


Единица измерения, которой мы при этом оперируем - количество наблюдений (испытуемых, реакций, выборов и т.п.), или частота. Точнее, единица измерения - это одно наблюдение. Общее число наблюдений (испытуемых, реакций, выборов и т.п.) принимается за 100%, и тогда можно вычислить процентное соотношение, например, мальчиков и девочек в классе.

К результатам измерений, полученным в номинативной шкале, возможно применить небольшое число статистических методов. Такие данные могут быть обработаны, например, с помощью метода %, биномиального критерия m, углового преобразования Фишера φ и др.

Порядковая шкала (ранговая шкала) - это шкала, классифицирующая по принципу «больше - меньше», «выше - ниже», «сильнее - слабее». Измерение в этой шкале предполагает приписывание объектам чисел в зависимости от степени выраженности измеряемого свойства. Если в предыдущей шкале было несущественно, в каком порядке располагаются измеренные признаки, то в порядковой шкале все признаки располагаются по рангу - от самого большего (высокого, сильного, умного и т.п.) до самого маленького (низкого, слабого, глупого и т. п.) или наоборот. Типичный и очень хорошо известный всем пример порядковой шкалы - это школьные оценки: от 5 до 1 балла или от 0 до 10 баллов.

В порядковой шкале должно быть не менее трех классов, например «положительная реакция - нейтральная реакция - отрицательная реак­ция» или «высокий - средний - низкий» и т. п., с тем расчетом, чтобы можно было расставить измеренные признаки по порядку.

Существует множество способов получения измерения в порядковой шкале. Но суть остается общей: при сравнении испытуемых друг с другом мы можем сказать, больше или меньше выражено свойство, но не можем сказать, насколько больше или насколько меньше оно выражено, а уж тем более - во сколько раз больше или меньше. При измерении в ранговой шкале, таким образом, из всех свойств чисел учитывается то, что они разные, и то, что одно число больше, чем другое.

Пример: а) места, занятые студентами в соревновании (1, 2, 3); б) ранг студента по среднему баллу успеваемости (1, 2, 3, 4, 5, 6 и т.д.); в) ответы на тест: 1 - никогда, 2 - иногда, 3 - часто, 4 - всегда.

В порядковой шкале мы не знаем истинного расстояния между классами, а знаем лишь, что они образуют последовательность. От классов можно просто перейти к числам, если считать, что низший класс получает ранг (код или цифру) 1, средний - 2, высший - 3 (или наоборот). Чем больше число классов разбиений всей экспериментальной совокупности, тем шире возможности статистической обработки полученных данных.

При кодировании порядковых переменных им можно приписывать любые цифры (коды), но в этих кодах (цифрах) обязательно должен сохраняться порядок, или, иначе говоря, каждая последующая цифра должна быть больше (или меньше) предыдущей, Например, необходимо закодировать уровень тревожности по пяти градациям: самый низкий - 1, низкий - 2, средний - 3, высокий - 4, самый высокий - 5. Можно использовать и другие способы кодировки (например, 14, 23, 34, 45, 56 соответственно), однако предложенный первоначально способ кодировки является наиболее привычным и поэтому наиболее предпочтительным. Числа в ранговых шкалах обозначают лишь порядок следования признаков, а операции с числами в этой шкале - это операция с рангами.

При ранжировании необходимо учитывать два обстоятельства:
1. Установите для себя и запомните порядок ранжирования. Можно ранг 1 присваивать тому, у которого 1-е место по выраженности данного признака (например, «самый сильный»). Или можно ранг 1 присваивать тому, у которого наименьшая выраженность признака, и далее - увеличение ранга по мере увеличения уровня признака. Строгих правил выбора здесь нет, но важно помнить, в каком направлении производилось ранжирование. 2. Соблюдайте правило ранжирования для связанных рангов, когда двое или более испытуемых имеют одинаковую выраженность измеряемого свойства. В этом случае таким испытуемым присваивается один и тот же, средний ранг. Например, если вы ранжируете испытуемых по «месту в группе» и двое имеют одинаковые самые высокие исходные оценки, то обоим присваивается средний ранг 1,5: (1+2)/2=1,5. Следующему за этой парой испытуемому присваивается ранг 3 и т.д. Это правило основано на соглашении соблюдения одинаковой суммы рангов для связанных или несвязанных рангов. В соответствии с этим правилом сумма всех присвоенных рангов для группы численностью N должна равняться N(N+1)/2, вне зависимости от наличия или отсутствия связей в рангах.

В порядковой шкале применяется множество разнообразных статистических методов. Наиболее часто к измерениям, полученным в этой шкале, применяются коэффициенты корреляции Спирмена и Кендалла, кроме того, применительно к данным, полученным в этой шкале, используют разнообразные критерии различий.

Интервальная шкала (шкала интервалов) - это шкала, классифицирующая по принципу «больше на определенное количество единиц -меньше на определенное количество единиц». Каждое из возможных значений признака отстоит от другого на равном расстоянии. Главное понятие этой шкалы - интервал, который можно определить как долю или часть измеряемого свойства между двумя соседними позициями на шкале. Размер интервала - величина фиксированная и постоянная на всех участках шкалы. Для измерения посредством шкалы интервалов устанавливаются специальные единицы измерения (в психологии, например, стены и стенайны). Объекту присваивается число единиц измерения, пропорциональное выраженности измеряемого свойства. Важной особенностью шкалы интервалов является то, что у нее нет естественной точки отсчета (нуль условен и не указывает на отсутствие измеряемого свойства). Следовательно, применяя эту шкалу, мы можем судить, насколько больше или насколько меньше выражено свойство при сравнении объектов, но не можем судить о том, во сколько раз больше или меньше выражено свойство.

Пример: а) измерение температуры по шкале Цельсия (°С); б) тесты интеллекта (условная единица измерения IQ); в) 16-факторный опросник Кеттелла (сырые баллы переведены в стены).

К экспериментальным данным, полученным по этой шкале, применимо достаточно большое число статистических методов.

Шкала отношений - это шкала, классифицирующая объекты или субъекты пропорционально степени выраженности измеряемого свойства. В шкалах отношений классы обозначаются числами, которые пропорциональны друг другу: 2 так относится к 4, как 4 к 8. Это предполагает наличие абсолютной нулевой точки отсчета, поэтому при сравнении объектов мы можем сказать не только о том, насколько больше или меньше выражено свойство, но и о том, во сколько раз (на сколько процентов и т.д.) больше или меньше оно выражено. Измерив время решения задачи парой испытуемых, мы можем сказать не только о том, кто и на сколько секунд (минут) решил задачу быстрее, но и о том, во сколько раз быстрее.

Следует отметить, что, несмотря на привычность и обыденность абсолютной шкалы, в психологии она используется не часто. Возможности человеческой психики столь велики, что трудно представить себе абсолютный нуль в какой-либо измеряемой психологической переменной.

Пример: а) измерение времени реакции (обычно в миллисекундах); б) измерение абсолютных порогов чувствительности.

Перечисленные шкалы полезно характеризовать по признаку их дифференцирующей способности (мощности). В этом отношении шкалы по мере возрастания мощности располагаются следующим образом: номинальная, порядковая, интервальная, шкала отношений. Таким образом, неметрические шкалы заведомо менее мощные - они отражают меньше информации о различии объектов (испытуемых) по измеренному свойству, и, напротив, метрические шкалы более мощные, так как они лучше дифференцируют испытуемых. Поэтому если у исследователя есть возможность выбора, необходимо применить более мощную шкалу. Другое дело, что чаще такого выбора нет, и приходится использовать доступную измерительную шкалу.

Определение того, в какой шкале измерено явление (представлен признак), - ключевой момент анализа данных: от этого зависит выбор метода и интерпретация результатов.

Обычно идентификация номинативной шкалы, ее дифференциация от ранговой, а тем более от метрической шкалы не вызывает проблем.

Пример: рассмотрим вопрос анкеты «Насколько Вы уверены в своих силах?» для ответа, на который испытуемые выбирают один из предложенных вариантов:

1) совершенно уверен;

2) затрудняюсь ответить;

3) совершенно неуверен.

Если исследователя интересует, в какой степени испытуемые уверены или не уверены в своих силах, то логично предполагать, что признак представлен в порядковой шкале. Если же исследователя интересует то, как распределились ответы по вариантам или чем характеризуется каждая из трех соответствующих групп, то разумнее рассматривать этот признак как номинальный.

Значительно сложнее определить различие между порядковой и метрической шкалами. Проблема связана с тем, что измерения в психологии, как правило, косвенные. Непосредственно мы измеряем некоторые наблюдаемые явления или события: количество ответов на вопросы или заданий, решенных за отведенное время, или время решения набора заданий и т.д. Но при этом выносим суждения о некотором скрытом, латентном свойстве, недоступном прямому наблюдению: об агрессивности, общительности, способности и т.д.

Количество заданий, решенных за отведенное время, - это, конечно, измерение в метрической шкале. Но само по себе это количество нас интересует лишь в той мере, в какой оно отражает некоторую изучаемую нами способность. Соответствуют ли равные разности решенных задач равным разностям выраженности изучаемого свойства (способности)? Если ответ «да» - шкала метрическая (интервальная или равных отношений), если «нет» - шкала порядковая.

В подобных ситуациях проще всего согласиться с тем, что признак представлен в порядковой шкале. Но при этом мы существенно ограничиваем себя в выборе методов последующего анализа. Более того, переход к менее мощной шкале обрекает нас на утрату части ценной для нас эмпирической информации. Следствием этого может являться падение статистической достоверности результатов исследования. Поэтому исследователь стремиться все же найти свидетельство того, что используемая шкала - более мощная.

Задания:

Определите, в какой шкале представлено каждое из приведенных ниже измерений; наименований, порядка, интервалов, отношений.

1. Упорядочивание испытуемых по времени решения тестовой задачи.

2. Предпочтение домашних животных: собаки, кошки, крысы, никакие.

3. Воинское звание (рядовой, ефрейтор, сержант, лейтенант, капитан) как мера продвижения по службе.

4. Количество агрессивных реакций за день.

5. Академический статус (ассистент, доцент, профессор) как указание на принадлежность к соответствующей категории.

6. Упорядочивание испытуемым 18 инструментальных ценностей (по Рокичу) по степени их значимости для него.

7. Цвет волос (блондинки, брюнетки, шатенки, рыжие).

8. Время решения задачи.

9. Статус ученика в группе (звезда, предпочитаемый, принятый, непринятый).

Библиография

1. Ермолаев, О.Ю. Математическая статистика для психологов /
О.Ю. Ермолаев. - М.: МПСИ: Флинта. - 2002. – 325 с.

2. Наследов, А.Д. Математические методы в психологическом исследовании. Анализ и интерпретация данных / А.Д. Наследов. - СПб.: Речь. - 2004.

3. Сидоренко, Е.В. Методы математической обработки в психологии. – СПб.: ООО «Речь» - 2004. – 350с.

4. Бурлачук, Л.Ф., Морозов С.М. Словарь – справочник по психодиагностике / Л.Ф. Бурлачук, С.М. Морозов – СПб: Питер Ком. - 1999. – 528с.

5. Суходольский, Г. В. Математические методы в психологии / Г.В. Суходольский. - Харьков: Изд-во Гуманитарный Центр. - 2006. – 512с.

6. Тарасов, С.Г. Основы применения математических методов в психологии. / С.Г. Тарасов. - СПб.: Изд-во: Санкт - Петербург. ун-та. - 1999. – 326с.

7. Глинский, В. В., Ионин, В. Г. Статистический анализ данных /
В.В. Глинский, В.Г. Ионин. - М.: Филин. - 2008. – 265 с.

Измерение по этой шкале расчленяет всю совокупность из­меренных признаков на такие множества, которые связаны меж­ду собой отношениями типа «больше -- меньше», «выше - ниже», «сильнее - слабее» и т.п. Если в предыдущей шкале было несущественно, в каком порядке располагаются измеренные признаки, то в порядковой (ранговой) шкале все признаки распо­лагаются по рангу - от самого большего (высокого, сильного, умного и т.п.) до самого маленького (низкого, слабого, глупого и т.п.) или наоборот.

Типичный и очень хорошо известный всем пример порядко­вой шкалы - это школьные оценки: от 5 до 1 балла. Еще при­мер - судейство в некоторых видах спорта или зрелищных про­граммах (КВН, ДОГШОУ и др.), которые также представляют собой вариант ранжирования.

1.3. Порядкова (ранговая, ординарная) шкала

Еще пример: психолог изучает группу спортсменов, имею­щих следующую градацию званий: мастер спорта, кандидат в ма­стера и перворазрядник. В этом случае удобно каждую отдельную группу обозначить собственным символом, например, 1, 2 и 3 (или наоборот - 3, 2 и 1). Эти же градации можно обозначить и другими символами, например, буквами А, Б и В. При этом на основе этих символов можно сказать, что представитель норной группы имеет более высокую спортивную квалификацию, чем представители двух других.

В порядковой (ранговой) шкале должно быть не меньше трех классов (групп): например, ответы на опросник: «да», «не знаю», «нет»; или -- низкий, средний, высокий; и т.п., с тем расчетом, чтобы можно было расставить измеренные признаки по порядку. Именно поэтому эта шкала и называется порядко­вой, или ранговой, шкалой.

От классов просто перейти к числам, если считать, что низ­ший класс получает ранг (код или цифру) 1, средний - 2, выс­ший - 3 (или наоборот). Чем больше число классов разбиении всей экспериментальной совокупности, тем шире возможности статистической обработки полученных данных и проверки стати­стических гипотез.

При кодировании порядковых переменных им можно припи­сывать любые цифры (коды), но в этих кодах (цифрах) обязатель­но должен сохраняться порядок, или, иначе говоря, каждая пос­ледующая цифра должна быть больше (или меньше) предыдущей.

Например, пусть необходимо закодировать уровень агрессив­ности по пяти градациям. Это можно сделать самыми разными способами, представленными в таблице 1.1:

Таблица 1.1

Каждый из вариантов кодирования правильный - поскольку он сохраняет порядок. Ни про один из них нельзя сказать, что он самый точный, однако последний вариант кодировки (ранжиро­вания) наиболее естественный, привычный, и поэтому он и яв­ляется наиболее предпочтительным. Как правило, все случаи ранжирования реализуются в этой форме кодирования.

Этот пример хорошо иллюстрирует положение о том, что ин­тервалы в ранговой шкале не равны между собой. Например, рас­смотрим разность рангов по абсолютной величине в первом стол­бце кодов: 3 - 1= 2, 6 - 3 = 3, 10 - 6 = 4, 15 - 10 = 5. Во втором столбце кодов она такова: 23 - 14 = 9, 34 - 23 = 11, 56 - 34 = 22, 119 - 56 = 143. Именно поэтому числа в ранговых шкалах обо­значают лишь порядок следования признаков, а операции с чис­лами в этой шкале - это операции с рангами.

1.3.1. Правила ранжирования

Пример 1.1. Испытуемому предлагается задание, в котором семь личностных качеств необходимо упорядочить (проранжиро-вать) в двух столбцах: в левом столбце в соответствии с особен­ностями его «Я реального», а в правом столбце, в соответствии с особенностями «Я идеального».

Результаты ранжирования даны в таблице 1.2:

Таблица 1.2

Ранжирование в левом столбце осуществляется следующим образом: поскольку всего имеется 7 качеств, то максимальный

ранг 7 приписывается качеству наиболее значимому на данный момент времени, а минимальный 1 - наименее значимому. Ос­тальным качествам, в соответствии со степенью их значимости, приписываются цифры (ранги) от 6 до 2.

В правом столбце проводится ранжирование в соответствии с тем, какими качествами человек хотел бы обладать в идеале. Максимально желательному ставится в соответствие наибольший ранг и так далее, причем наименее желательным ставятся наи­меньшие величины рангов.

Процедура ранжирования по сути является формальной, по­этому в зависимости от предпочтения можно проставлять вели­чины рангов и в противоположном порядке, т.е. наиболее значи­мому качеству приписать ранг 1, наименее значимому ранг 7.

Подчеркнем, что ранжировать можно не только качествен­ные признаки, но и количественные признаки какого-либо из­меренного психологического свойства, например, показатель невербального интеллекта, по тесту Векслера или показатель уровня тревожности по тесту Тейлора и многое другое.

Например, в результате экспресс диагностики невроза у пяти испытуемых по методике К. Хека и X. Хесса были получены сле­дующие баллы:

24, 25, 37, 13, 12 - этому ряду чисел можно проставить ран­ги двумя способами:

1. Большему числу в ряду ставится больший ранг - в этом слу­чае получиться: 3, 4, 5, 2, 1.

2. Большему числу в ряду ставится меньший ранг - в этом слу­чае получится: 3, 2, 1, 4, 5.

Поделиться: