Значимость квантовой механики. Квантовая физика для чайников: суть простыми словами. Поймёт даже ребёнок. Точнее, особенно ребенок

Квантовая механика - это механика микромира. Явления, которые она изучает, в основном лежат за пределами нашего чувственного восприятия, поэтому не следует удивляться кажущейся парадоксальности законов, управляющих этими явлениями.

Основные законы квантовой механики не удается сформулировать как логическое следствие результатов некоторой совокупности фундаментальных физических экспериментов. Иными словами, до сих пор неизвестна формулировка квантовой механики, основанная на системе проверенных на опыте аксиом. Более того, некоторые из основных положений квантовой механики принципиально не допускают опытной проверки. Наша уверенность в справедливости квантовой механики основана на том, что все физические результаты теории согласуются с экспериментом. Таким образом, на опыте проверяются только следствия из основных положений квантовой механики, а не ее основные законы. С этими обстоятельствами связаны, по-видимому, главные трудности, возникающие при первоначальном изучении квантовой механики.

Такого же характера, но, очевидно, гораздо большие трудности стояли перед создателями квантовой механики. Эксперименты со всей определенностью указывали на существование особых квантовых закономерностей в микромире, но ни в коей мере не подсказывали форму квантовой теории. Этим можно объяснить поистине драматическую историю создания квантовой механики и, в частности, тот факт, что первоначальные формулировки квантовой механики носили чисто рецептурный характер. Они содержали некоторые правила, позволяющие вычислять измеряемые на опыте величины, а физическое истолкование теории появилось после того, как в основном был создан ее математический формализм.

При построении квантовой механики в настоящем курсе мы не будем следовать историческому пути. Мы очень коротко опишем ряд физических явлений, попытки объяснить которые на основе законов классической физики приводили к непреодолимым трудностям. Далее мы попытаемся выяснить, какие черты описанной в предыдущих параграфах схемы классической механики должны сохраниться в механике микромира и от чего можно и нужно отказаться. Мы увидим, что отказ только от одного утверждения классической механики, а именно от утверждения, что наблюдаемые есть функции на фазовом пространстве, позволит построить схему механики, описывающую системы с поведением, существенно отличным от классического. Наконец, в последующих параграфах мы убедимся, что построенная теория является более общей, чем классическая механика, и содержит последнюю как предельный случай.

Исторически первая квантовая гипотеза была выдвинута Планком в 1900 г. в связи с теорией равновесного излучения. Планку удалось получить согласующуюся с опытом формулу для спектрального распределения энергии теплового излучения, выдвинув предположение о том, что электромагнитное излучение испускается и поглощается дискретными порциями - квантами, энергия которых пропорциональна частоте излучения

где - частота колебаний в световой волне, - постоянная Планка.

Гипотеза Планка о световых квантах позволила Эйнштейну дать чрезвычайно простое объяснение закономерностей фотоэффекта (1905 г.). Явление фотоэффекта состоит в том, что под действием светового потока из металла выбиваются электроны. Основная задача теории фотоэффекта - найти зависимость энергии выбиваемых электронов от характеристик светового потока. Пусть V - работа, которую нужно затратить на выбивание электрона из металла (работа выхода). Тогда закон сохранения энергии приводит к соотношению

где Т - кинетическая энергия выбитого электрона. Мы видим, что эта энергия линейно зависит от частоты и не зависит от интенсивности светового потока. Кроме того, при частоте (красная граница фотоэффекта) явление фотоэффекта становится невозможным, так как . Эти выводы, основанные на гипотезе о световых квантах, полностью согласуются с опытом. В то же время по классической теории энергия вырванных электронов должна зависеть от интенсивности световых волн, что противоречит результатам экспериментов.

Эйнштейн дополнил представление о световых квантах, введя импульс светового кванта по формуле

Здесь k - так называемый волновой вектор, имеющий направление распространения световых волн; длина этого вектора k связана с длиной волны , частотой и скоростью света с соотношениями

Для световых квантов справедлива формула

являющаяся частным случаем формулы теории относительности

для частицы с массой покоя .

Заметим, что исторически первые квантовые гипотезы относились к законам излучения и поглощения световых волн, т. е. к электродинамике, а не к механике. Однако вскоре стало ясно, что не только для электромагнитного излучения, но и для атомных систем характерна дискретность значений ряда физических величин. Опыты Франка и Герца (1913 г.) показали, что при столкновениях электронов с атомами энергия электронов изменяется дискретными порциями. Результаты этих опытов можно объяснить тем, что энергия атомов может иметь только определенные дискретные значения. Позднее, в 1922 г. опыты Штерна и Герлаха показали, что аналогичным свойством обладает проекция момента количества движения атомных систем на некоторое направление. В настоящее время хорошо известно, что дискретность значений ряда наблюдаемых хотя и характерная, но не обязательная черта систем микромира. Так, например, энергия электрона в атоме водорода имеет дискретные значения, а энергия свободно движущегося электрона может принимать любые положительные значения. Математический аппарат квантовой механики должен быть приспособлен к описанию наблюдаемых, принимающих как дискретные, так и непрерывные значения.

В 1911 г. Резерфордом было открыто атомное ядро и предложена планетарная модель атома (опыты Резерфорда по рассеянию а-частиц на образцах из различных элементов показали, что атом имеет положительно заряженное ядро, заряд которого равен - номер элемента в таблице Менделеева, а - заряд электрона, размеры ядра не превышают сами атомы имеют линейные размеры порядка см). Планетарная модель атома противоречит основным положениям классической электродинамики. Действительно, двигаясь вокруг ядра по классическим орбитам, электроны, как всякие ускоренно движущиеся заряды, должны излучать электромагнитные волны. При этом электроны должны терять свою энергию и в конце концов упасть на ядро. Поэтому такой атом не может быть устойчивым, что, конечно, не соответствует действительности. Одна из основных задач квантовой механики - объяснить устойчивость и описать структуру атомов и молекул как систем, состоящих из положительно заряженных ядер и электронов.

Совершенно удивительным с точки зрения классической механики представляется явление дифракции микрочастиц. Это явление было предсказано де Бройлем в 1924 г., который предположил, что свободно движущейся частице с импульсом р

и энергией Е в каком-то смысле соответствует волна с волновым вектором k и частотой , причем

т. е. соотношения (1) и (2) справедливы не только для световых квантов, но и для частиц. Физическое истолкование волн де Бройля было дано позднее Борном, и мы его пока обсуждать не будем. Если движущейся частице соответствует волна, то независимо от того, какой точный смысл вкладывается в эти слова, естественно ожидать, что это проявится в существовании дифракционных явлений для частиц. Впервые дифракция электронов наблюдалась в опытах Девиссона и Джермера в 1927 г. Впоследствии явления дифракции наблюдались и для других частиц.

Покажем, что дифракционные явления несовместимы с классическими представлениями о движении частиц по траекториям. Рассуждение удобнее всего провести на примере мысленного эксперимента по дифракции пучка электронов на двух щелях, схема которого изображена на рис. 1. Пусть электроны от источника А двигаются к экрану Б и, проходя через щели и в нем, попадают на экран В.

Нас интересует распределение электронов по координате у, попадающих на экран В. Явления дифракции на одной и двух щелях хорошо изучены, и мы можем утверждать, что распределение электронов имеет вид а, изображенный на рис. 2, если открыта только первая щель, вид (рис. 2), - если открыта вторая и вид в, - если открыты обе щели. Если предположить, что каждый электрон двигался по определенной классической траектории, то все электроны, попавшие на экран В, можно разбить на две группы в зависимости от того, через какую щель они прошли. Для электронов первой группы совершенно безразлично, открыта ли вторая щель, и поэтому их

распределение на экране должно изображаться кривой а; аналогично электроны второй группы должны иметь распределение . Поэтому в случае, когда открыты обе щели, на экране должно получиться распределение, являющееся суммой распределений а и б. Такая сумма распределений не имеет ничего общего с интерференционной картиной в. Это противоречие показывает, что разделение электронов на группы по тому признаку, через какую щель они прошли, в условиях описанного эксперимента невозможно, а значит, мы вынуждены отказаться от понятия траектории.

Сразу же возникает вопрос, а можно ли так поставить эксперимент, чтобы выяснить, через какую щель проходил электрон. Разумеется, такая постановка эксперимента возможна, для этого достаточно поместить источник света между экранами и Б и наблюдать рассеяние световых квантов на электронах. Для того чтобы добиться достаточного разрешения, мы должны использовать кванты с длиной волны, по порядку не превосходящей расстояния между щелями, т. е. с достаточно большой энергией и импульсом. Наблюдая кванты, рассеянные на электронах, мы действительно сможем определить, через какую щель прошел электрон. Однако взаимодействие квантов с электронами вызовет неконтролируемое изменение их импульсов, а следовательно, распределение электронов, попавших на экран, должно измениться. Таким образом, мы приходим к выводу, что ответить на вопрос, через какую щель прошел электрон, можно только за счет изменения как условий, так и окончательного результата эксперимента.

На этом примере мы сталкиваемся со следующей общей особенностью поведения квантовых систем. Экспериментатор не имеет возможности следить за ходом эксперимента, так как это приводит к изменению его окончательного результата. Эта особенность квантового поведения тесно связана с особенностями измерений в микромире. Всякое измерение возможно только при взаимодействии системы с измерительным прибором. Это взаимодействие приводит к возмущению движения системы. В классической физике всегда предполагается, что

это возмущение может быть сделано сколь угодно малым, так же как и длительность процесса измерения. Поэтому всегда возможно одновременное измерение любого числа наблюдаемых.

Детальный анализ процесса измерения некоторых наблюдаемых для микросистем, который можно найти во многих учебниках по квантовой механике, показывает, что с увеличением точности измерения наблюдаемых воздействие на систему увеличивается и измерение вносит неконтролируемые изменения в численные значения некоторых других наблюдаемых. Это приводит к тому, что одновременное точное измерение некоторых наблюдаемых становится принципиально невозможным. Например, если для измерения координаты частицы использовать рассеяние световых квантов, то погрешность такого измерения имеет порядок длины волны света . Повысить точность измерения можно, выбирая кванты с меньшей длиной волны, а следовательно, с большим импульсом . При этом в численные значения импульса частицы вносится неконтролируемое изменение порядка импульса кванта. Поэтому погрешности измерения координаты и импульса связаны соотношением

Более точное рассуждение показывает, что это соотношение связывает только одноименные координату и проекцию импульса. Соотношения, связывающие принципиально возможную точность одновременного измерения двух наблюдаемых, называются соотношениями неопределенности Гейзенберга. В точной формулировке они будут получены в следующих параграфах. Наблюдаемые, на которые соотношения неопределенности не накладывают никаких ограничений, являются одновременно измеримыми. Мы увидим в дальнейшем, что одновременно измеримыми являются декартовы координаты частицы или проекции импульса, а неизмеримыми одновременно - одноименные координаты и проекция импульса или две декартовы проекции момента количества движения. При построении квантовой механики мы должны помнить о возможности существования неизмеримых одновременно величин.

Теперь после небольшого физического вступления попытаемся ответить на уже поставленный вопрос: какие особенности классической механики следует сохранить и от чего естественно отказаться при построении механики микромира. Основными понятиями классической механики были понятия наблюдаемой и состояния. Задача физической теории-предсказание результатов экспериментов, а эксперимент всегда есть измерение некоторой характеристики системы или наблюдаемой при определенных условиях, которые определяют состояние системы. Поэтому понятия наблюдаемой и состояния должны появиться

в любой физической теории. С точки зрения экспериментатора определить наблюдаемую - значит задать способ ее измерения. Наблюдаемые мы будем обозначать символами а, b, с,... и пока не будем делать никаких предположений об их математической природе (напомним, что в классической механике наблюдаемые есть функции на фазовом пространстве). Множество наблюдаемых, как и прежде, мы будем обозначать через .

Разумно предположить, что условия эксперимента определяют по крайней мере вероятностные распределения результатов измерения всех наблюдаемых, поэтому определение состояния, данное в § 2, разумно сохранить. Состояния по-прежнему мы будем обозначать через соответствующую наблюдаемой а вероятностную меру на действительной оси через функцию распределения наблюдаемой а в состоянии через и, наконец, среднее значение наблюдаемой а в состоянии через .

Теория должна содержать определение функции от наблюдаемой. Для экспериментатора утверждение, что наблюдаемая b есть функция от наблюдаемой а означает, что для измерения b достаточно измерить а, и, если в результате измерения наблюдаемой а получится число , то численное значение наблюдаемой b есть . Для соответствующих а и вероятностных мер справедливо равенство

для любых состояний .

Заметим, что всевозможные функции от одной наблюдаемой а измеримы одновременно, так как для измерения этих наблюдаемых достаточно измерить наблюдаемую а. В дальнейшем мы увидим, что в квантовой механике этим примером исчерпываются случаи одновременной измеримости наблюдаемых, т. е. если наблюдаемые измеримы одновременно, то найдется такая наблюдаемая а и такие функции , что .

Среди множества функций наблюдаемой а, очевидно, определены , где - вещественное число. Существование первой из этих функций показывает, что наблюдаемые можно умножать на вещественные числа. Утверждение, что наблюдаемая есть константа подразумевает, что ее численное значение в любом состоянии совпадает с этой константой.

Попытаемся теперь выяснить, какой смысл можно придать сумме и произведению наблюдаемых. Эти операции были бы определены, если бы у нас было определение функции от двух наблюдаемых Здесь, однако, возникают принципиальные трудности, связанные с возможностью существования неизмеримых одновременно наблюдаемых. Если а и b

измеримы одновременно, то определение совершенно аналогично определению . Для измерения наблюдаемой достаточно измерить наблюдаемые а и b, и такое измерение приведет к численному значению , где - численные значения наблюдаемых а и b соответственно. Для случая неизмеримых одновременно наблюдаемых а и b не существует никакого разумного определения функции . Это обстоятельство заставляет нас отказаться от предположения, что наблюдаемые есть функции на фазовом пространстве , так как у нас есть физические основания считать q и р неизмеримыми одновременно и искать наблюдаемые среди математических объектов иной природы.

Мы видим, что определить сумму и произведение используя понятие функции от двух наблюдаемых, можно только в том случае, если они одновременно измеримы. Однако возможен другой подход, позволяющий ввести сумму в общем случае. Мы знаем, что вся информация о состояниях и наблюдаемых получается в результате измерений, поэтому разумно предположить, что состояний достаточно много, чтобы по ним можно было различать наблюдаемые, и аналогично наблюдаемых достаточно много, чтобы по ним можно было различать состояния.

Более точно мы предполагаем, что из равенства

справедливого для любого состояния а, следует, что наблюдаемые а и b совпадают а из равенства

справедливого для любой наблюдаемой а, следует, что совпадают СОСТОЯНИЯ и .

Первое из сделанных предположений дает возможность определить сумму наблюдаемых как такую наблюдаемую, для которой справедливо равенство

при любом состоянии а. Сразу заметим, что это равенство является выражением известной теоремы теории вероятностей о среднем значении суммы только в случае, когда наблюдаемые а и b имеют общую функцию распределения. Такая общая функция распределения может существовать (и в квантовой механике действительно существует) только для одновременно измеримых величин. В этом случае определение суммы по формуле (5) совпадает со сделанным прежде. Аналогичное определение произведения невозможно, так как среднее от произведения

не равно произведению средних даже для одновременно измеримых наблюдаемых.

Определение суммы (5) не содержит никакого указания на способ измерения наблюдаемой по известным способам измерения наблюдаемых а и b и в этом смысле является неявным.

Чтобы дать представление о том, насколько понятие суммы наблюдаемых может отличаться от обычного понятия суммы случайных величин, мы приведем пример наблюдаемой, которая будет подробно изучена в дальнейшем. Пусть

Наблюдаемая Н (энергия одномерного гармонического осциллятора) есть сумма двух наблюдаемых, пропорциональных квадратам импульса и координаты. Мы увидим, что эти последние наблюдаемые могут принимать любые неотрицательные численные значения, в то время как значения наблюдаемой Н должны совпадать с числами где , т. е. наблюдаемая Н с дискретными численными значениями является суммой наблюдаемых с непрерывными значениями.

Фактически все наши предположения сводятся к тому, что при построении квантовой механики разумно сохранить структуру алгебры наблюдаемых классической механики, но следует отказаться от реализации этой алгебры функциями на фазовом пространстве, так как мы допускаем существование неизмеримых одновременно наблюдаемых.

Наша ближайшая задача - убедиться в том, что существует реализация алгебры наблюдаемых, отличная от реализации классической механики. В следующем параграфе мы приведем пример такой реализации, построив конечномерную модель квантовой механики. В этой модели алгебра наблюдаемых есть алгебра самосопряженных операторов в -мерном комплексном пространстве . Изучая эту упрощенную модель, мы сумеем проследить за основными особенностями квантовой теории. В то же время, дав физическое толкование построенной модели, мы увидим, что она слишком бедна, чтобы соответствовать действительности. Поэтому конечномерную модель нельзя рассматривать как окончательный вариант квантовой механики. Однако усовершенствование этой модели - замена на комплексное гильбертово пространство будет представляться весьма естественным.

Если Вы вдруг поняли, что подзабыли основы и постулаты квантовой механики или вообще не знаете, что это за механика такая, то самое время освежить в памяти эту информацию. Ведь никто не знает, когда квантовая механика может пригодиться в жизни.

Зря вы усмехаетесь и ехидствуете, думая, что уж с этим предметом вам в жизни вообще никогда не придется сталкиваться. Ведь квантовая механика может быть полезной практически каждому человеку, даже бесконечно далекому от нее. Например, у Вас бессонница. Для квантовой механики это не проблема! Почитайте перед сном учебник – и Вы спите крепчайшим сном странице уже эдак на третьей. Или можете назвать так свою крутую рок группу. Почему бы и нет?

Шутки в сторону, начинаем серьезный квантовый разговор.

С чего начать? Конечно, с того, что такое квант.

Квант

Квант (от латинского quantum – ”сколько”) – это неделимая порция какой-то физической величины. Например, говорят - квант света, квант энергии или квант поля.

Что это значит? Это значит, что меньше быть уже просто не может. Когда говорят о том, что какая-то величина квантуется, понимают, что данная величина принимает ряд определенных, дискретных значений. Так, энергия электрона в атоме квантуется, свет распространяется «порциями», то есть квантами.

Сам термин «квант» имеет множество применений. Квантом света (электромагнитного поля) является фотон. По аналогии квантами называются частицы или квазичастицы, соответствующие иным полям взаимодействия. Здесь можно вспомнить про знаменитый бозон Хиггса, который является квантом поля Хиггса. Но в эти дебри мы пока не лезем.


Квантовая механика для "чайников"

Как механика может быть квантовой?

Как Вы уже заметили, в нашем разговоре мы много раз упоминали о частицах. Возможно, Вы и привыкли к тому, что свет – это волна, которая просто распространяется со скоростью с . Но если посмотреть на все с точки зрения квантового мира, то есть мира частиц, все изменяется до неузнаваемости.

Квантовая механика – это раздел теоретической физики, составляющая квантовой теории, описывающая физические явления на самом элементарном уровне – уровне частиц.

Действие таких явлений по величине сравнимо с постоянной Планка, а классическая механика Ньютона и электродинамика оказались совершенно непригодными для их описания. Например, согласно классической теории электрон, вращаясь с большой скоростью вокруг ядра, должен излучать энергию и в конце концов упасть на ядро. Этого, как известно, не происходит. Именно поэтому и придумали квантовую механику – открытые явления нужно было как-то объяснить, и она оказалась именно той теорией, в рамках которой объяснение было наиболее приемлемым, а все экспериментальные данные "сходились".


Кстати! Для наших читателей сейчас действует скидка 10% на

Немного истории

Зарождение квантовой теории произошло в 1900 году, когда Макс Планк выступил на заседании немецкого физического общества. Что тогда сообщил Планк? А то, что излучение атомов дискретно, а наименьшая порция энергии этого излучения равна

Где h - постоянная Планка, ню - частота.

Затем Альберт Эйнштейн, введя понятие “квант света” использовал гипотезу Планка для объяснения фотоэффекта. Нильс Бор постулировал существование у атома стационарных энергетических уровней, а Луи де Бройль развил идею о корпускулярно-волновом дуализме, то есть о том, что частица (корпускула) обладает также и волновыми свойствами. К делу присоединились Шредингер и Гейзенберг, и вот, в 1925 году публикуется первая формулировка квантовой механики. Собственно, квантовая механика – далеко не законченная теория, она активно развивается и в настоящее время. Также следует признать, что квантовая механика с ее допущениями не имеет возможности объяснить все стоящие перед ней вопросы. Вполне возможно, что на смену ей придет более совершенная теория.


При переходе от мира квантового к миру привычных нам вещей законы квантовой механики естественным образом трансформируются в законы механики классической. Можно сказать, что классическая механика – это частный случай квантовой механики, когда действие имеет место быть в нашем с Вами привычном и родном макромире. Здесь тела спокойно движутся в неинерциальных системах отсчета со скоростью, гораздо меньшей скорости света, и вообще - все вокруг спокойно и понятно. Хочешь узнать положение тела в системе координат – нет проблем, хочешь измерить импульс – всегда пожалуйста.

Совершенно иной подход к вопросу имеет квантовая механика. В ней результаты измерений физических величин носят вероятностный характер. Это значит, что при изменении какой-то величины возможно несколько результатов, каждому из которых соответствует определенная вероятность. Приведем пример: монетка крутится на столе. Пока она крутится, она не находится в каком-то определенном состоянии (орел-решка), а имеет лишь вероятность в одном из этих состояний оказаться.

Здесь мы плавно подходим к уравнению Шредингера и принципу неопределенности Гейзенберга .

Согласно легенде Эрвин Шредингер, в 1926 году выступая на одном научном семинаре с докладом на тему корпускулярно-волнового дуализма, был подвергнут критике со стороны некоего старшего ученого. Отказавшись слушать старших, Шредингер после этого случая активно занялся разработкой волнового уравнения для описания частиц в рамках квантовой механики. И справился блестяще! Уравнение Шредингера (основное уравнение квантовой механики) имеет вид:

Данный вид уравнения – одномерное стационарное уравнение Шредингера – самый простой.

Здесь x - расстояние или координата частицы, m - масса частицы, E и U - соответственно ее полная и потенциальная энергии. Решение этого уравнения – волновая функция (пси)

Волновая функция – еще одно фундаментальное понятие в квантовой механике. Так, у любой квантовой системы, находящейся в каком-то состоянии, есть волновая функция, описывающая данное состояние.

Например, при решении одномерного стационарного уравнения Шредингера волновая функция описывает положение частицы в пространстве. Точнее говоря, вероятность нахождения частицы в определенной точке пространства. Иными словами, Шредингер показал, что вероятность может быть описана волновым уравнением! Согласитесь, до этого нужно было додуматься!


Но почему? Почему мы должны иметь дело с этими непонятными вероятностями и волновыми функциями, когда, казалось бы, нет ничего проще, чем просто взять и измерить расстояние до частицы или ее скорость.

Все очень просто! Ведь в макромире это действительно так – мы с определенной точностью измеряем расстояние рулеткой, а погрешность измерения определяется характеристикой прибора. С другой стороны, мы можем практически безошибочно на глаз определить расстояние до предмета, например, до стола. Во всяком случае, мы точно дифференцируем его положение в комнате относительно нас и других предметов. В мире же частиц ситуация принципиально иная – у нас просто физически нет инструментов измерения, чтобы с точностью измерить искомые величины. Ведь инструмент измерения вступает в непосредственный контакт с измеряемым объектом, а в нашем случае и объект, и инструмент – это частицы. Именно это несовершенство, принципиальная невозможность учесть все факторы, действующие на частицу, а также сам факт изменения состояния системы под действием измерения и лежат в основе принципа неопределенности Гейзенберга.

Приведем самую простую его формулировку. Представим, что есть некоторая частица, и мы хотим узнать ее скорость и координату.

В данном контексте принцип неопределенности Гейзенберга гласит: невозможно одновременно точно измерить положение и скорость частицы . Математически это записывается так:

Здесь дельта x - погрешность определения координаты, дельта v - погрешность определения скорости. Подчеркнем – данный принцип говорит о том, что чем точнее мы определим координату, тем менее точно будем знать скорость. А если определим скорость, не будем иметь ни малейшего понятия о том, где находится частица.

На тему принципа неопределенности существует множество шуток и анекдотов. Вот один из них:

Полицейский останавливает квантового физика.
- Сэр, Вы знаете, с какой скоростью двигались?
- Нет, зато я точно знаю, где я нахожусь


И, конечно, напоминаем Вам! Если вдруг по какой-то причине решение уравнения Шредингера для частицы в потенциальной яме не дает Вам уснуть, обращайтесь к – профессионалам, которые были взращены с квантовой механикой на устах!

Формирование квантовой механики как последовательной теории с конкретными физическими основами во многом связано с работой В.Гейзенберга, в которой было сформулировано соотношение (принцип) неопределенностей . Это фундаментальное положение квантовой механики раскрывает физический смысл ее уравнений, а также определяет ее связь с классической механикой.

Принцип неопределенности постулирует:объект микромира не может находиться в состояниях, в которых координаты его центра инерции и импульс одновременно принимают вполне определенные, точные значения .

Количественно этот принцип формулируется следующим образом. Если ∆x – неопределенность значения координатыx , а∆p - неопределенность импульса, то произведение этих неопределенностей по порядку величины не может быть меньше постоянной Планка:

x p h.

Из принципа неопределенности следует, что, чем точнее определена одна из входящих в неравенство величин, тем с меньшей точностью определено значение другой. Никаким экспериментом невозможно одновременно точно измерить эти динамические переменные, причем это связано не с воздействием измерительных приборов или их несовершенством. Соотношение неопределенностей отражает объективные свойства микромира, проистекая из его корпускулярно-волнового дуализма.

То обстоятельство, что один и тот же объект проявляет себя и как частица, и как волна разрушает традиционные представления, лишает описание процессов привычной наглядности. Понятие частицы подразумевает объект, заключенный в малую область пространства, волна же распространяется в его протяженных областях. Представить себе объект, обладающий одновременно этими качествами невозможно, да и не следует пытаться. Невозможно построить наглядную для человеческого мышления модель, которая была бы адекватна микромиру. Уравнения квантовой механики, впрочем, и не ставят такой цели. Их смысл состоит в математически адекватном описании свойств объектов микромира и происходящих с ними процессов.

Если говорить о связи квантовой механики с механикой классической, то соотношение неопределенностей является квантовым ограничением применимости классической механики к объектам микромира . Строго говоря, соотношение неопределенностей распространяется на любую физическую систему, однако, поскольку волновая природа макрообъектов практически не проявляется, координаты и импульс таких объектов можно одновременно измерить с достаточно высокой точностью. Это означает, что для описания их движения вполне достаточно использовать законы классической механики. Вспомним, что аналогичным образом обстоит дело в релятивистской механике (специальной теории относительности): при скоростях движения, значительно меньших скорости света, релятивистские поправки становятся несущественными и преобразования Лоренца переходят в преобразования Галилея.

Итак, соотношение неопределенностей для координат и импульса отражает корпускулярно-волновой дуализм микромира и не связано с воздействием измерительных приборов . Несколько другой смысл имеет аналогичное соотношение неопределенностей дляэнергии Е ивремени t :

E t h.

Из него следует, что энергию системы можно измерить лишь с точностью, не превышающей h /∆ t, где t – длительность измерения.Причина такой неопределенности состоит уже в самом процессе взаимодей ствия системы (микрообъекта) с измерительным прибором . Для стационарной ситуации приведенное неравенство означает, что энергия взаимодействия между измерительным прибором и системой может быть учтена только с точностью доh /∆t . В предельном же случае мгновенного измерения происходящий обмен энергией оказывается полностью неопределенным.

Если под Е понимается неопределенность значения энергии нестационарного состояния, то тогдаt есть характерное время, в течение которого значения физических величин в системе изменяются существенным образом. Отсюда, в частности, следует важный вывод относительно возбужденных состояний атомов и других микросистем: энергия возбужденного уровня не может быть строго определена, что говорит о наличииестественной ширины этого уровня.

Объективные свойства квантовых систем отражает еще одно принципиальное положение квантовой механики – принцип дополнительности Бора , согласно которомуполучение любым экспериментальным путем информации об одних физических величинах, описывающих микрообъект, неизбежно связано с потерей информации о некоторых других величинах, дополнительных к первым .

Взаимно дополнительными являются, в частности, координата частицы и ее импульс (см. выше – принцип неопределенности), кинетическая и потенциальная энергия, напряженность электрического поля и количество фотонов.

Рассмотренные фундаментальные принципы квантовой механики свидетельствуют о том, что, в силу корпускулярно-волнового дуализма изучаемого ею микромира, ей чужд детерминизм классической физики. Полный уход от наглядного моделирования процессов придает особый интерес вопросу о том, какова же физическая природа волн де Бройля. В ответе на этот вопрос принято «отталкиваться» от поведения фотонов. Известно, что при пропускании светового пучка через полупрозрачную пластину S часть света проходит сквозь нее, а часть отражается (рис. 4).

Рис. 4

Что же при этом происходит с отдельными фотонами? Эксперименты со световыми пучками очень малой интенсивности с использованием современной техники (А – детектор фотонов), позволяющей следить за поведением каждого фотона (так называемый режим счета фотонов), показывают, что о расщеплении отдельного фотона не может быть и речи (иначе свет изменял бы свою частоту). Достоверно установлено, что некоторые фотоны проходят сквозь пластину, а некоторые отражаются от нее. Это означает, чтоодинаковые частицы в одинаковых условиях могут вести себя по-разному ,т. е. поведение отдельного фотона при встрече с поверхностью пластины не может быть предсказано однозначно .

Отражение фотона от пластины или прохождение сквозь нее суть случайные события. А количественные закономерности таких событий описываются с помощью теории вероятностей. Фотон может с вероятностью w 1 пройти сквозь пластину и с вероятностьюw 2 отразиться от нее. Вероятность того, что с фотоном произойдет одно из этих двух альтернативных событий, равна сумме вероятностей:w 1 + w 2 = 1.

Аналогичные эксперименты с пучком электронов или других микрочастиц также показывают вероятностный характер поведения отдельных частиц. Таким образом, задачу квантовой механики можно сформулировать как предсказание вероятности процессов в микромире , в отличие от задачи классической механики– предсказывать достоверность событий в макромире .

Известно, однако, что вероятностное описание применяется и в классической статистической физике. Так в чем же принципиальная разница? Для ответа на этот вопрос усложним опыт по отражению света. С помощью зеркала S 2 развернем отраженный пучок, поместив детекторA , регистрирующий фотоны в зоне его пресечения с прошедшим пучком, т. е. обеспечим условия интерференционного эксперимента (рис. 5).

Рис. 5

В результате интерференции интенсивность света в зависимости от расположения зеркала и детектора будет периодически меняться по поперечному сечению области перекрытия пучков в широких пределах (в том числе обращаться в ноль). Как же ведут себя отдельные фотоны в этом опыте? Оказывается, что в этом случае два оптических пути к детектору уже не являются альтернативными (взаимоисключающими) и поэтому нельзя сказать, каким путем прошел фотон от источника к детектору. Приходится допускать, что он мог попасть в детектор одновременно двумя путями, образуя в итоге интерференционную картину. Опыт с другими микрочастицами дает аналогичный результат: последовательно проходящие частицы создают такую же картину, как и поток фотонов.

Вот это уже кардинальное отличие от классических представлений: ведь невозможно представить себе движение частицы одновременно по двум разным путям. Впрочем, такой задачи квантовая механика и не ставит. Она предсказывает результат, состоящий в том, что светлым полосам соответствует высокая вероятность появления фотона.

Волновая оптика легко объясняет результат интерференционного опыта с помощью принципа суперпозиции, в соответствии с которым световые волны складываются с учетом соотношения их фаз. Иными словами, волны вначале складываются по амплитуде с учетом разности фаз, образуется периодическое распределение амплитуды, а затем уже детектор регистрирует соответствующую интенсивность (что соответствует математической операции возведения в квадрат по модулю, т. е. происходит потеря информации о распределении фазы). При этом распределение интенсивности носит периодический характер:

I = I 1 + I 2 + 2 A 1 A 2 cos (φ 1 – φ 2 ),

где А , φ , I = | A | 2 амплитуда ,фаза иинтенсивность волн соответственно, а индексы 1, 2 указывают на их принадлежность к первой или второй из этих волн. Ясно, что приА 1 = А 2 иcos (φ 1 φ 2 ) = – 1 значение интенсивностиI = 0 , что соответствует взаимному гашению световых волн (при их суперпозиции и взаимодействии по амплитуде).

Для интерпретации волновых явлений с корпускулярной точки зрения принцип суперпозиции переносится в квантовую механику, т. е. вводится понятие амплитуды вероятности – по аналогии с оптическими волнами:Ψ = А exp ( ). При этом имеется в виду, что вероятность есть квадрат этой величины (по модулю) т. е.W = |Ψ| 2 .Амплитуда вероятности называется в квантовой механикеволновой функцией . Это понятие ввел в 1926 г. немецкий физик М. Борн, дав тем самымвероятностную интерпретацию волн де Бройля. Удовлетворение принципу суперпозиции означает, что еслиΨ 1 и Ψ 2 – амплитуды вероятности прохождения частицы первым и вторым путями, то амплитуда вероятности при прохождении обоих путей должна быть:Ψ = Ψ 1 + Ψ 2 . Тогда формально утверждение о том, что «частица прошла двумя путями», приобретает волновой смысл, а вероятностьW = |Ψ 1 + Ψ 2 | 2 проявляет свойствоинтерференционного распределения .

Таким образом, величиной, описывающей состояние физической системы в квантовой механике, является волновая функция системы в предположении о справедливости принципа суперпозиции . Относительно волновой функции и записано основное уравнение волновой механики – уравнение Шрёдингера. Поэтому одна из основных задач квантовой механики состоит в нахождении волновой функции, отвечающей данному состоянию исследуемой системы.

Существенно, что описание состояния частицы с помощью волновой функции носит вероятностный характер, поскольку квадрат модуля волновой функции определяет вероятность нахождения частицы в данный момент времени в определенном ограниченном объеме . Этим квантовая теория фундаментально отличается от классической физики с ее детерминизмом.

В свое время именно высокой точности предсказания поведения макрообъектов была обязана своим триумфальным шествием классическая механика. Естественно, в среде ученых долгое время бытовало мнение, что прогресс физики и науки вообще будет неотъемлемо связан с возрастанием точности и достоверности такого рода предсказаний. Принцип неопределенности и вероятностный характер описания микросистем в квантовой механике коренным образом изменили эту точку зрения.

Тогда стали появляться другие крайности. Поскольку из принципа неопределенности следует невозможность одновременного определения координаты и импульса , можно сделать вывод о том, что состояние системы в начальный момент времени точно не определено и, следовательно, не могут быть предсказаны последующие состояния, т. е. нарушаетсяпринцип причинности .

Однако подобное утверждение возможно только при классическом взгляде на неклассическую реальность. В квантовой механике состояние частицы полностью определяется волновой функцией. Ее значение, заданное для определенного момента времени, определяет последующие ее значения. Поскольку причинность выступает как одно из проявлений детерминизма, целесообразно в случае квантовой механики говорить о вероятностном детерминизме, опирающемся на статистические законы, т. е. обеспечивающем тем более высокую точность, чем больше зафиксировано однотипных событий. Поэтому современная концепция детерминизма предполагает органическое сочетание, диалектическое единство необходимости ислучайности .

Развитие квантовой механики оказало, таким образом, заметное влияние на прогресс философской мысли. С гносеологической точки зрения особый интерес представляет уже упоминавшийся принцип соответствия , сформулированный Н. Бором в 1923 г., согласно которомувсякая новая, более общая теория, являющаяся развитием классической, не отвергает ее полностью, а включает в себя классическую теорию, указывая границы ее применимости и переходя в нее в определенных предельных случаях .

Нетрудно убедиться, что принцип соответствия прекрасно иллюстрирует взаимоотношение классической механики и электродинамики с теорией относительности и квантовой механикой.

Наверняка Вы много раз слышали о необъяснимых тайнах квантовой физики и квантовой механики . Её законы завораживают мистикой, и даже сами физики признаются, что до конца не понимают их. С одной стороны, любопытно понять эти законы, но с другой стороны, нет времени читать многотомные и сложные книги по физике. Я очень понимаю Вас, потому что тоже люблю познание и поиск истины, но времени на все книги катастрофически не хватает. Вы не одиноки, очень многие любознательные люди набирают в поисковой строке: «квантовая физика для чайников, квантовая механика для чайников, квантовая физика для начинающих, квантовая механика для начинающих, основы квантовой физики, основы квантовой механики, квантовая физика для детей, что такое квантовая механика». Именно для Вас эта публикация .

Вам станут понятны основные понятия и парадоксы квантовой физики. Из статьи Вы узнаете:

  • Что такое квантовая физика и квантовая механика?
  • Что такое интерференция?
  • Что такое квантовая запутанность (или Квантовая телепортация для чайников)? (см. статью )
  • Что такое мысленный эксперимент «Кот Шредингера»? (см. статью )

Квантовая механика — это часть квантовой физики.

Почему же так сложно понять эти науки? Ответ прост: квантовая физика и квантовая механика (часть квантовой физики) изучают законы микромира. И законы эти абсолютно отличаются от законов нашего макромира. Поэтому нам трудно представить то, что происходит с электронами и фотонами в микромире.

Пример отличия законов макро- и микромиров : в нашем макромире, если Вы положите шар в одну из 2-х коробок, то в одной из них будет пусто, а в другой - шар. Но в микромире (если вместо шара - атом), атом может находиться одновременно в двух коробках. Это многократно подтверждено экспериментально. Не правда ли, трудно это вместить в голове? Но с фактами не поспоришь.

Ещё один пример. Вы сфотографировали быстро мчащуюся красную спортивную машину и на фото увидели размытую горизонтальную полосу, как будто-машина в момент фото находилась с нескольких точках пространства. Несмотря на то, что Вы видите на фото, Вы всё равно уверены, что машина в ту секунду, когда Вы ёё фотографировали находилась в одном конкретном месте в пространстве . В микро же мире всё не так. Электрон, который вращается вокруг ядра атома, на самом деле не вращается, а находится одновременно во всех точках сферы вокруг ядра атома. Наподобие намотанного неплотно клубка пушистой шерсти. Это понятие в физике называется «электронным облаком» .

Небольшой экскурс в историю. Впервые о квантовом мире учёные задумались, когда в 1900 году немецкий физик Макс Планк попытался выяснить, почему при нагревании металлы меняют цвет. Именно он ввёл понятие кванта. До этого учёные думали, что свет распространяется непрерывно. Первым, кто серьёзно воспринял открытие Планка, был никому тогда неизвестный Альберт Энштейн. Он понял, что свет – это не только волна. Иногда он ведёт себя, как частица. Энштейн получил Нобелевскую премию за своё открытие, что свет излучается порциями, квантами. Квант света называется фотоном (фотон, Википедия ) .

Для того, чтобы легче было понять законы квантовой физики и механики (Википедия) , надо в некотором смысле абстрагироваться от привычных нам законов классической физики. И представить, что Вы занырнули, как Алиса, в кроличью нору, в Страну чудес.

А вот и мультик для детей и взрослых. Рассказывает о фундаментальном эксперименте квантовой механики с 2-мя щелями и наблюдателем. Длится всего 5 минут. Посмотрите его перед тем, как мы углубимся в основные вопросы и понятия квантовой физики.

Квантовая физика для чайников видео . В мультике обратите внимание на «глаз» наблюдателя. Он стал серьёзной загадкой для учёных-физиков.

Что такое интерференция?

В начале мультика было показано на примере жидкости, как ведут себя волны – на экране за пластиной со щелями появляются чередующиеся тёмные и светлые вертикальные полосы. А в случае, когда в пластину «стреляют» дискретными частицами (например, камушками), то они пролетают сквозь 2 щели и попадают на экран прямо напротив щелей. И «рисуют» на экране только 2 вертикальные полосы.

Интерференция света – это «волновое» поведение света, когда на экране отображается много чередующихся ярких и тёмных вертикальных полос. Еще эти вертикальные полосы называются интерференционной картиной .

В нашем макромире мы часто наблюдаем, что свет ведёт себя, как волна. Если поставить руку напротив свечи, то на стене будет не чёткая тень от руки, а с расплывающимися контурами.

Итак, не так уж всё и сложно! Нам сейчас вполне понятно, что свет имеет волновую природу и если 2 щели освещать светом, то на экране за ними мы увидим интерференционную картину. Теперь рассмотрим 2-й эксперимент. Это знаменитый эксперимент Штерна-Герлаха (который провели в 20-х годах прошлого века).

В установку, описанную в мультике, не светом светили, а «стреляли» электронами (как отдельными частицами). Тогда, в начале прошлого века, физики всего мира считали, что электроны – это элементарные частицы материи и должны иметь не волновую природу, а такую же, как камушки. Ведь электроны – это элементарные частицы материи, правильно? То есть, если ими «бросать» в 2 щели, как камушками, то на экране за прорезями мы должны увидеть 2 вертикальные полоски.

Но… Результат был ошеломляющий. Учёные увидели интерференционную картину – много вертикальных полосок. То есть электроны, как и свет тоже могут иметь волновую природу, могут интерферировать. А с другой стороны стало понятно, что свет не только волна, но немного и частица — фотон (из исторической справки в начале статьи мы узнали, что за это открытие Энштейн получил Нобелевскую премию).

Может помните, в школе нам рассказывали на физике про «корпускулярно-волновой дуализм» ? Он означает, что когда речь идет об очень маленьких частицах (атомах, электронах) микромира, то они одновременно и волны, и частицы

Это сегодня мы с Вами такие умные и понимаем, что 2 выше описанных эксперимента – стрельба электронами и освещение щелей светом – суть одно и тоже. Потому что мы стреляем по прорезям квантовыми частицами. Сейчас мы знаем, что и свет, и электроны имеют квантовую природу, являются и волнами, и частицами одновременно. А в начале 20-го века результаты этого эксперимента были сенсацией.

Внимание! Теперь перейдём к более тонкому вопросу.

Мы светим на наши щели потоком фотонов (электронов) – и видим за щелями на экране интерференционную картину (вертикальные полоски). Это ясно. Но нам интересно увидеть, как пролетает каждый из электронов в прорези.

Предположительно, один электрон летит в левую прорезь, другой – в правую. Но тогда должны на экране появиться 2 вертикальные полоски прямо напротив прорезей. Почему же получается интерференционная картина? Может электроны как-то взаимодействуют между собой уже на экране после пролёта через щели. И в результате получается такая волновая картина. Как нам за этим проследить?

Будем бросать электроны не пучком, а по одному. Бросим, подождём, бросим следующий. Теперь, когда электрон летит один, он уже не сможет взаимодействовать на экране с другими электронами. Будем регистрировать на экране каждый электрон после броска. Один-два конечно не «нарисуют» нам понятной картины. Но когда по одному отправим в прорези их много, то заметим…о ужас – они опять «нарисовали» интерференционную волновую картину!

Начинаем медленно сходить с ума. Ведь мы ожидали, что будет 2 вертикальные полоски напротив щелей! Получается, что когда мы бросали фотоны по одному, каждый из них проходил, как бы через 2 щели одновременно и интерферировал сам с собой. Фантастика! Вернёмся к пояснению этого феномена в следующем разделе.

Что такое спин и суперпозиция?

Мы теперь знаем, что такое интерференция. Это волновое поведение микро частиц – фотонов, электронов, других микро частиц (давайте для простоты с этого момента называть их фотонами).

В результате эксперимента, когда мы бросали в 2 щели по 1 фотону, мы поняли, что он пролетает как будто через две щели одновременно. Иначе как объяснить интерференционную картину на экране?

Но как представить картину, что фотон пролетает сквозь две щели одновременно? Есть 2 варианта.

  • 1-й вариант: фотон, как волна (как вода) «проплывает» сквозь 2 щели одновременно
  • 2-й вариант: фотон, как частица, летит одновременно по 2-м траекториям (даже не по двум, а по всем сразу)

В принципе, эти утверждения равносильны. Мы пришли к «интегралу по траекториям». Это формулировка квантовой механики от Ричарда Фейнмана.

Кстати, именно Ричарду Фейнману принадлежит известное выражение, что уверенно можно утверждать, что квантовую механику не понимает никто

Но это его выражение работало в начале века. Но мы то теперь умные и знаем, что фотон может вести себя и как частица, и как волна. Что он может каким-то непонятным для нас способом пролетать одновременно через 2 щели. Поэтому нам легко будет понять следующее важное утверждение квантовой механики:

Строго говоря, квантовая механика говорит нам, что такое поведение фотона – правило, а не исключение. Любая квантовая частица находится, как правило, в нескольких состояниях или в нескольких точках пространства одновременно .

Объекты макромира могут находится только в одном определенном месте и в одном определенном состоянии. Но квантовая частица существует по своим законам. И ей и дела нет до того, что мы их не понимаем. На этом — точка.

Нам остаётся просто признать, как аксиому, что «суперпозиция» квантового объекта означает то, что он может находится на 2-х или более траекториях одновременно, в 2-х или более точках одновременно

То же относится и к другому параметру фотона – спину (его собственному угловому моменту). Спин — это вектор. Квантовый объект можно представить как микроскопический магнитик. Мы привыкли, что вектор магнита (спин) либо направлен вверх, либо вниз. Но электрон или фотон опять говорят нам: «Ребята, нам плевать, к чему Вы привыкли, мы можем быть в обоих состояниях спина сразу (вектор вверх, вектор вниз), точно так же, как мы можем находиться на 2-х траекториях одновременно или в 2-х точках одновременно!».

Что такое «измерение» или «коллапс волновой функции»?

Нам осталось немного — понять ещё, что такое «измерение» и что такое «коллапс волновой функции».

Волновая функция — это описание состояния квантового объекта (нашего фотона или электрона).

Предположим, у нас есть электрон, он летит себе в неопределённом состоянии, спин его направлен и вверх, и вниз одновременно . Нам надо измерить его состояние.

Измерим при помощи магнитного поля: электроны, у которых спин был направлен по направлению поля, отклонятся в одну сторону, а электроны, у которых спин направлен против поля — в другую. Ещё фотоны можно направлять в поляризационный фильтр. Если спин (поляризация) фотона +1 – он проходит через фильтр, а если -1, то нет.

Стоп! Вот тут у Вас неизбежно возникнет вопрос: до измерения ведь у электрона не было какого-то конкретного направления спина, так? Он ведь был во всех состояниях одновременно?

В этом-то и заключается фишка и сенсация квантовой механики . Пока Вы не измеряете состояние квантового объекта, он может вращаться в любую сторону (иметь любое направление вектора собственного углового момента – спина). Но в момент, когда Вы измерили его состояние, он как будто принимает решение, какой вектор спина ему принять.

Вот такой крутой этот квантовый объект – сам принимает решение о своём состоянии. И мы не можем заранее предсказать, какое решение он примет, когда влетит в магнитное поле, в котором мы его измеряем. Вероятность того, что он решит иметь вектор спина «вверх» или «вниз» – 50 на 50%. Но как только он решил – он находится в определённом состоянии с конкретным направлением спина. Причиной его решения является наше «измерение»!

Это и называется «коллапсом волновой функции» . Волновая функция до измерения была неопределённой, т.е. вектор спина электрона находился одновременно во всех направлениях, после измерения электрон зафиксировал определённое направление вектора своего спина.

Внимание! Отличный для понимания пример-ассоциация из нашего макромира:

Раскрутите на столе монетку, как юлу. Пока монетка крутиться, у нёё нет конкретного значения — орёл или решка. Но как только Вы решите «измерить» это значение и прихлопните монету рукой, вот тут-то и получите конкретное состояние монеты – орёл или решка. А теперь представьте, что это монета принимает решение, какое значение Вам «показать» – орёл или решка. Примерно также ведёт себя и электрон.

А теперь вспомните эксперимент, показанный в конце мультика. Когда фотоны пропускали через щели, они вели себя, как волна и показывали на экране интерференционную картину. А когда учёные захотели зафиксировать (измерить) момент пролёта фотонов через щель и поставили за экраном «наблюдателя», фотоны стали вести себя, не как волны, а как частицы. И «нарисовали» на экране 2 вертикальные полосы. Т.е. в момент измерения или наблюдения квантовые объекты сами выбирают, в каком состоянии им быть.

Фантастика! Не правда ли?

Но это ещё не всё. Наконец-то мы добрались до самого интересного.

Но… мне кажется, что получится перегруз информации, поэтому 2 эти понятия мы рассмотрим в отдельных постах:

  • Что такое ?
  • Что такое мысленный эксперимент .

А сейчас, хотите, чтобы информация разложилась по полочкам? Посмотрите документальный фильм, подготовленный Канадским институтом теоретической физики. В нём за 20 минут очень кратко и в хронологическом порядке Вам поведают о всех открытиях квантовой физики, начиная с открытия Планка в 1900 году. А затем расскажут, какие практические разработки выполняются сейчас на базе знаний по квантовой физике: от точнейших атомных часов до суперскоростных вычислений квантового компьютера. Очень рекомендую посмотреть этот фильм.

До встречи!

Желаю всем вдохновения для всех задуманных планов и проектов!

P.S.2 Пишите Ваши вопросы и мысли в комментариях. Пишите, какие ещё вопросы по квантовой физике Вам интересны?

P.S.3 Подписывайтесь на блог - форма для подписки под статьёй.

КВАНТОВАЯ МЕХАНИКА, раздел теоретической физики, представляющий собой систему понятий и математический аппарат, необходимые для описания физических явлений, обусловленных существованием в природе наименьшего кванта действия h (Планка постоянной). Численное значение h = 6,62607∙10ˉ 34 Дж∙с (и другое, часто используемое значение ħ = h/2π = 1,05457∙10ˉ 34 Дж∙с) чрезвычайно мало, но тот факт, что оно конечно, принципиально отличает квантовые явления от всех других и определяет их основные особенности. К квантовым явлениям относятся процессы излучения, явления атомной и ядерной физики, физики конденсированных сред, химическая связь и др.

История создания квантовой механики. Исторически первым явлением, для объяснения которого в 1900 году было введено понятие кванта действия h, был спектр излучения абсолютно чёрного тела, т. е. зависимость интенсивности теплового излучения от его частоты v и температуры Т нагретого тела. Первоначально связь этого явления с процессами, происходящими в атоме, не была ясна; в то время не была общепризнанной и сама идея атома, хотя уже тогда были известны наблюдения, которые указывали на сложную внутриатомную структуру.

В 1802 У. Волластон обнаружил в спектре излучения Солнца узкие спектральные линии, которые в 1814 году подробно описал Й. Фраунгофер. В 1859 Г. Кирхгоф и Р. Бунзен установили, что каждому химическому элементу присущ индивидуальный набор спектральных линий, а швейцарский учёный И. Я. Бальмер (1885), шведский физик Й. Ридберг (1890) и немецкий учёный В. Ритц (1908) обнаружили в их расположении определённые закономерности. В 1896 году П. Зееман наблюдал расщепление спектральных линий в магнитном поле (эффект Зеемана), которое Х. А. Лоренц в следующем году объяснил движением электрона в атоме. Существование электрона экспериментально доказал в 1897 Дж. Дж. Томсон.

Существующие физические теории оказались недостаточными для объяснения законов фотоэффекта: оказалось, что энергия электронов, вылетающих из вещества при облучении его светом, зависит только от частоты света v, а не от его интенсивности (А. Г. Столетов, 1889; Ф. фон Ленард, 1904). Этот факт полностью противоречил общепринятой в то время волновой природе света, но естественно объяснялся в предположении, что свет распространяется в виде квантов энергии Е=hv (А. Эйнштейн, 1905), названных впоследствии фотонами (Г. Льюис, 1926).

В течение 10 лет после открытия электрона было предложено несколько моделей атома, не подкреплённых, однако, экспериментами. В 1909-11 Э. Резерфорд, изучая рассеяние α-частиц на атомах, установил существование компактного положительно заряженного ядра, в котором сосредоточена практически вся масса атома. Эти эксперименты стали основой планетарной модели атома: положительно заряженное ядро, вокруг которого вращаются отрицательно заряженные электроны. Такая модель, однако, противоречила факту стабильности атома, поскольку из классической электродинамики следовало, что через время порядка 10 -9 с вращающийся электрон упадёт на ядро, потеряв энергию на излучение.

В 1913 году Н. Бор предположил, что стабильность планетарного атома объясняется конечностью кванта действия h. Он постулировал, что в атоме существуют стационарные орбиты, на которых электрон не излучает (первый постулат Бора), и выделил эти орбиты из всех возможных условием квантования: 2πmυr = nh, где m - масса электрона, υ - его орбитальная скорость, r - расстояние до ядра, n= 1,2,3,... - целые числа. Из этого условия Бор определил энергии E n = -me 4 /2ħ 2 n 2 (е - электрическbй заряд электрона) стационарных состояний, а также диаметр атома водорода (порядка 10 -8 см) - в полном соответствии с выводами кинетической теории материи.

Второй постулат Бора утверждал, что излучение происходит только при переходах электронов с одной стационарной орбиты на другую, причём частота излучения v nk переходов из состояния Е n в состояние E k равна v nk = (E k - Е n)/h (смотри Атомная физика). Теория Бора естественным образом объясняла закономерности в спектрах атомов, однако её постулаты находились в очевидном противоречии с классической механикой и теорией электромагнитного поля.

В 1922 году А. Комптон, изучая рассеяние рентгеновских лучей на электронах, установил, что падающий и рассеянный рентгеновские кванты энергии ведут себя как частицы. В 1923 Ч. Т. Р. Вильсон и Д. В. Скобельцын наблюдали электрон отдачи в этой реакции и тем самым подтвердили корпускулярную природу рентгеновских лучей (ядерного γ-излучения). Это, однако, противоречило опытам М. Лауэ, который ещё в 1912 году наблюдал дифракцию рентгеновских лучей и тем самым доказал их волновую природу.

В 1921 году немецкий физик К. Рамзауэр обнаружил, что при определённой энергии электроны проходят сквозь газы, практически не рассеиваясь, подобно световым волнам в прозрачной среде. Это было первое экспериментальное свидетельство о волновых свойствах электрона, реальность которых в 1927 году была подтверждена прямыми опытами К. Дж. Дэвиссона, Л. Джермера и Дж.П. Томсона.

В 1923 году Л. де Бройль ввёл понятие о волнах материи: каждой частице с массой m и скоростью υ можно сопоставить волну с длиной λ = h/mυ, точно так же как каждой волне с частотой v = с/λ можно сопоставить частицу с энергией Е = hv. Обобщение этой гипотезы, известное как корпускулярно-волновой дуализм, стало фундаментом и универсальным принципом квантовой физики. Суть его состоит в том, что одни и те же объекты исследования проявляют себя двояко: либо как частица, либо как волна - в зависимости от условий их наблюдения.

Соотношения между характеристиками волны и частицы были установлены ещё до создания квантовой механики: Е = hv (1900) и λ = h/mυ = h/р (1923), где частота v и длина волны λ - характеристики волны, а энергия Е и масса m, скорость υ и импульс р = mυ - характеристики частицы; связь между этими двумя типами характеристик осуществляется через постоянную Планка h. Наиболее отчётливо соотношения дуальности выражаются через круговую частоту ω = 2πν и волновой вектор k = 2π/λ:

Е = ħω, р = ħk.

Наглядная иллюстрация дуализма волна-частица представлена на рисунке 1: дифракционные кольца, наблюдаемые при рассеянии электронов и рентгеновских лучей, практически идентичны.

Квантовая механика - теоретический базис всей квантовой физики - была создана за неполных три года. В 1925 В. Гейзенберг, опираясь на идеи Бора, предложил матричную механику, которая к концу того же года приобрела вид законченной теории в трудах М. Борна, немецкого физика П. Йордана и П. Дирака. Основными объектами этой теории стали матрицы специального вида, которые в квантовой механике представляют физические величины классической механики.

В 1926 году Э. Шрёдингер, исходя из представлений Л. де Бройля о волнах материи, предложил волновую механику, где основную роль играет волновая функция квантового состояния, которая подчиняется дифференциальному уравнению 2-го порядка с заданными граничными условиями. Обе теории одинаково хорошо объясняли устойчивость планетарного атома и позволяли вычислить его основные характеристики. В том же году М. Борн предложил статистическую интерпретацию волновой функции, Шрёдингер (а также независимо В. Паули и др.) доказал математическую эквивалентность матричной и волновой механик, а Борн совместно с Н. Винером ввёл понятие оператора физической величины.

В 1927 году В. Гейзенберг открыл соотношение неопределённостей, а Н. Бор сформулировал принцип дополнительности. Открытие спина электрона (Дж. Уленбек и С. Гаудсмит, 1925) и вывод уравнения Паули, учитывающего спин электрона (1927), завершили логическую и расчётную схемы нерелятивистской квантовой механики, а П. Дирак и Дж. фон Нейман изложили квантовую механику как законченную концептуально независимую теорию на базе ограниченного набора понятий и постулатов, таких как оператор, вектор состояния, амплитуда вероятности, суперпозиция состояний и др.

Основные понятия и формализм квантовой механики. Основным уравнением квантовой механики является волновое уравнение Шрёдингера, роль которого подобна роли уравнений Ньютона в классической механике и уравнениям Максвелла в электродинамике. В пространстве переменных х (координата) и t (время) оно имеет вид

где Н - оператор Гамильтона; его вид совпадает с оператором Гамильтона классической механики, в котором координата х и импульс р заменены на операторы х и р этих переменных, т. е.

где V(х) - потенциальная энергия системы.

В отличие от уравнения Ньютона, из которого находится наблюдаемая траектория х(t) материальной точки, движущейся в поле сил потенциала V(х), из уравнения Шрёдингера находят ненаблюдаемую волновую функцию ψ(х) квантовой системы, с помощью которой, однако, можно вычислить значения всех измеримых величин. Сразу же после открытия уравнения Шрёдингера М. Борн объяснил смысл волновой функции: |ψ(х)| 2 - это плотность вероятности, а |ψ(x)| 2 ·Δx - вероятность обнаружить квантовую систему в интервале Δх значений координаты х.

Каждой физической величине (динамической переменной классической механики) в квантовой механике сопоставляется наблюдаемая а и соответствующий ей эрмитов оператор Â, который в выбранном базисе комплексных функций |i> = f i (х) представляется матрицей

где f*(х) - функция, комплексно сопряжённая к функции f (х).

Ортогональным базисом в этом пространстве является набор собственных функций |n) = f n (х)), n = 1,2,3, для которых действие оператора Â сводится к умножению на число (собственное значение а n оператора Â):

Базис функций |n) нормирован условием при n = n’ , при n ≠ n’.

а число базисных функций (в отличие от базисных векторов трёхмерного пространства классической физики) бесконечно, причём индекс n может изменяться как дискретно, так и непрерывно. Все возможные значения наблюдаемой а содержатся в наборе {а n } собственных значений соответствующего ей оператора Â, и только эти значения могут стать результатами измерений.

Основным объектом квантовой механики является вектор состояния |ψ), который может быть разложен по собственным функциям |n) выбранного оператора Â:

где ψ n - амплитуда вероятности (волновая функция) состояния |n), а |ψ n | 2 равно весу состояния n в разложении |ψ), причем

т. е. полная вероятность найти систему в одном из квантовых состояний n равна единице.

В квантовой механике Гейзенберга операторы Â и соответствующие им матрицы подчиняются уравнениям

где |Â,Ĥ|=ÂĤ - ĤÂ - коммутатор операторов Â и Ĥ. В отличие от схемы Шрёдингера, где от времени зависит волновая функция ψ, в схеме Гейзенберга временная зависимость отнесена к оператору Â. Оба эти подхода математически эквивалентны, однако в многочисленных приложениях квантовой механики подход Шрёдингера оказался предпочтительнее.

Собственное значение оператора Гамильтона Ĥ есть полная энергия системы Е, не зависящая от времени, которая находится как решение стационарного уравнения Шрёдингера

Его решения подразделяются на два типа в зависимости от вида граничных условий.

Для локализованного состояния волновая функция удовлетворяет естественному граничному условию ψ(∞) = 0. В этом случае уравнение Шрёдингера имеет решение только для дискретного набора энергий Е n , n = 1,2,3,..., которым соответствуют волновые функции ψ n (r):

Примером локализованного состояния является атом водорода. Его гамильтониан Ĥ имеет вид

где Δ = ∂ 2 /∂х 2 + ∂ 2 /∂у 2 + ∂ 2 /∂z 2 - оператор Лапласа, е 2 /r - потенциал взаимодействия электрона и ядра, r - расстояние от ядра до электрона, а собственные значения энергии Е n , вычисленные из уравнения Шрёдингера, совпадают с уровнями энергии атома Бора.

Простейший пример нелокализованного состояния - свободное одномерное движение электрона с импульсом р. Ему соответствует уравнение Шрёдингера

решением которого является плоская волна

где в общем случае С = |С|exp{iφ} - комплексная функция, |С| и φ - её модуль и фаза. В этом случае энергия электрона Е = р 2 /2m, а индекс р решения ψ р (х) принимает непрерывный ряд значений.

Операторы координаты и импульса (и любой другой пары канонически сопряжённых переменных) подчиняются перестановочному (коммутационному) соотношению:

Общего базиса собственной функций для пар таких операторов не существует, а соответствующие им физические величины не могут быть определены одновременно с произвольной точностью. Из соотношения коммутации для операторов х̂ и р̂ следует ограничение на точность Δх и Δр определения координаты х и сопряжённого ей импульса р квантовой системы (соотношение неопределённостей Гейзенберга):

Отсюда, в частности, сразу следует вывод об устойчивости атома, поскольку соотношение Δх = Δр = 0, соответствующее падению электрона на ядро, в этой схеме запрещено.

Совокупность одновременно измеримых величин, характеризующих квантовую систему, представляется набором операторов

коммутирующих между собой, т. е. удовлетворяющих соотношениям А̂В̂ - В̂А̂ = А̂С̂ - С̂А̂ = В̂С̂ - С̂В̂ =... = 0. Для нерелятивистского атома водорода такой набор составляют, например, операторы: Ĥ (оператор полной энергии), (квадрат оператора момента) и (z-компонента оператора момента). Вектор состояния атома определяется как совокупность общих собственных функций ψ i (r) всех операторов

которые нумеруются набором {i} = (nlm) квантовых чисел энергии (n = 1,2,3,...), орбитального момента (l = 0,1, . . . , n - 1) и его проекции на ось z (m = -l,...,-1,0,1,...,l). Функции |ψ i (r)| 2 можно условно рассматривать как форму атома в различных квантовых состояниях i (так называемые силуэты Уайта).

Значение физической величины (наблюдаемая квантовая механика) определяется как среднее значение Ā соответствующего ей оператора Â:

Это соотношение справедливо для чистых состояний, т. е. для изолированных квантовых систем. В общем случае смешанных состояний мы всегда имеем дело с большой совокупностью (статистическим ансамблем) идентичных систем (например, атомов), свойства которой определяются путём усреднения по этому ансамблю. В этом случае среднее значение Ā оператора Â принимает вид

где р nm - матрица плотности (Л. Д. Ландау; Дж.фон Нейман, 1929) с условием нормировки ∑ n ρ пп = 1. Формализм матрицы плотности позволяет объединить квантовомеханическое усреднение по состояниям и статистическое усреднение по ансамблю. Матрица плотности играет важную роль также в теории квантовых измерений, суть которых всегда состоит во взаимодействии квантовой и классической подсистем. Понятие матрицы плотности является основой квантовой статистики и базисом для одной из альтернативных формулировок квантовой механики. Ещё одну форму квантовой механики, основанную на понятии континуального интеграла (или интеграла по траекториям), предложил Р. Фейнман в 1948 году.

Принцип соответствия . Квантовая механика имеет глубокие корни, как в классической, так и в статистической механике. Уже в своей первой работе Н. Бор сформулировал принцип соответствия, согласно которому квантовые соотношения должны переходить в классические при больших квантовых числах n. П. Эренфест в 1927 году показал, что с учётом уравнений квантовой механики среднее значение Ā оператора Â удовлетворяет уравнению движения классической механики. Теорема Эренфеста есть частный случай общего принципа соответствия: в пределе h → 0 уравнения квантовой механики переходят в уравнения классической механики. В частности, волновое уравнение Шрёдингера в пределе h → 0 переходит в уравнение геометрической оптики для траектории светового луча (и любого излучения) без учёта его волновых свойств. Представив решение ψ(х) уравнения Шрёдингера в виде ψ(х) = exp{iS/ħ}, где S = ∫ p(x)dx - аналог классического интеграла действия, можно убедиться, что в пределе ħ → 0 функция S удовлетворяет классическому уравнению Гамильтона - Якоби. Кроме того, в пределе h → 0 операторы х̂ и р̂ коммутируют и соответствующие им значения координаты и импульса могут быть определены одновременно, как это и предполагается в классической механике.

Наиболее существенные аналогии между соотношениями классической и квантовой механик для периодических движений прослеживаются на фазовой плоскости канонически сопряжённых переменных, например координаты х и импульса р системы. Интегралы типа ∮р(х)dx, взятые по замкнутой траектории (интегральные инварианты Пуанкаре), известны в предыстории квантовой механики как адиабатические инварианты Эренфеста. А. Зоммерфельд использовал их для описания квантовых закономерностей на языке классической механики, в частности для пространственного квантования атома и введения квантовых чисел l и m (именно он ввёл этот термин в 1915).

Размерность фазового интеграла ∮pdx совпадает с размерностью постоянной Планка h, и в 1911 году А. Пуанкаре и М. Планк предложили рассматривать квант действия h как минимальный объём фазового пространства, число n ячеек которого кратно h:n = ∮pdx/h. В частности, при движении электрона по круговой траектории с постоянным импульсом р из соотношения n = ∮р(х)dx/h = р ∙ 2πr/h сразу следует условие квантования Бора: mυr=nħ (П. Дебай, 1913).

Однако в случае одномерного движения в потенциале V(x) = mω 2 0 х 2 /2 (гармонический осциллятор с собственной частотой ω 0) из условия квантования ∮р(х)dx = nh следует ряд значений энергии Е n = ħω 0 n, в то время как точное решение квантовых уравнений для осциллятора приводит к последовательности Е n = ħω 0 (n + 1/2). Этот результат квантовой механики, впервые полученный В. Гейзенбергом, принципиально отличается от приближённого наличием нулевой энергии колебаний Е 0 = ħω 0 /2, которая имеет чисто квантовую природу: состояние покоя (х = 0, р = 0) в квантовой механике запрещено, поскольку оно противоречит соотношению неопределённостей Δх∙ Δр ≥ ħ/2.

Принцип суперпозиции состояний и вероятностная интерпретация. Основное и наглядное противоречие между корпускулярной и волновой картинами квантовых явлений удалось устранить в 1926 году, после того, как М. Борн предложил интерпретировать комплексную волновую функцию ψ n (x) = |ψ n (x)|·exp(iφ n) как амплитуду вероятности состояния n, а квадрат её модуля |ψ n (х)| 2 - как плотность вероятности обнаружить состояние n в точке х. Квантовая система может находиться в различных, в том числе альтернативных, состояниях, а её амплитуда вероятности равна линейной комбинации амплитуд вероятности этих состояний: ψ = ψ 1 + ψ 2 + ...

Плотность вероятности результирующего состояния равна квадрату суммы амплитуд вероятности, а не сумме квадратов амплитуд, как это имеет место в статистической физике:

Этот постулат - принцип суперпозиции состояний - один из важнейших в системе понятий квантовой механики; он имеет много наблюдаемых следствий. Одно из них, а именно прохождение электрона через две близко расположенные щели, обсуждается чаще других (рис. 2). Пучок электронов падает слева, проходит сквозь щели в перегородке и затем регистрируется на экране (или фотопластинке) справа. Если поочерёдно закрывать каждую из щелей, то на экране справа мы увидим изображение открытой щели. Но если открыть обе щели одновременно, то вместо двух щелей мы увидим систему интерференционных полос, интенсивность которых описывается выражением:

Последний член в этой сумме представляет интерференцию двух волн вероятности, пришедших в данную точку экрана из разных щелей в перегородке, и зависит от разности фаз волновых функций Δφ = φ 1 - φ 2 . В случае равных амплитуд |ψ 1 | = |ψ 2 |:

т. е. интенсивность изображения щелей в разных точках экрана меняется от 0 до 4|ψ 1 | 2 - в соответствии с изменением разности фаз Δφ от 0 до π/2. В частности, при этом может оказаться, что при двух открытых щелях на месте изображения одиночной щели мы не обнаружим никакого сигнала, что с корпускулярной точки зрения абсурдно.

Существенно, что эта картина явления не зависит от интенсивности пучка электронов, т. е. это не результат их взаимодействия между собой. Интерференционная картина возникает даже в пределе, когда электроны проходят через щели в перегородке поодиночке, т. е. каждый электрон интерферирует сам с собой. Такое невозможно для частицы, но вполне естественно для волны, например при её отражении или дифракции на препятствии, размеры которого сравнимы с её длиной. В этом опыте дуализм волна-частица проявляется в том, что один и тот же электрон регистрируется как частица, но распространяется как волна особой природы: это волна вероятности обнаружить электрон в какой-либо точке пространства. В такой картине процесса рассеяния вопрос: «Через какую из щелей прошёл электрон-частица?» теряет смысл, поскольку соответствующая ему волна вероятности проходит через обе щели сразу.

Другой пример, иллюстрирующий вероятностный характер явлений квантовой механики, - прохождение света через полупрозрачную пластинку. По определению, коэффициент отражения света равен отношению числа фотонов, отражённых от пластинки, к числу падающих. Однако это есть не результат усреднения большого числа событий, а характеристика, изначально присущая каждому фотону.

Принцип суперпозиции и концепция вероятности позволили осуществить непротиворечивый синтез понятий «волна» и «частица»: каждое из квантовых событий и его регистрация дискретны, но их распределение диктуется законом распространения непрерывных волн вероятности.

Туннельный эффект и резонансное рассеяние. Туннельный эффект - едва ли не самое известное явление квантовой физики. Он обусловлен волновыми свойствами квантовых объектов и только в рамках квантовой механики получил адекватное объяснение. Пример туннельного эффекта - распад ядра радия на ядро радона и α-частицу: Ra → Rn + α.

На рисунке 3 приведена схема потенциала α-распада V(r): α-частица колеблется с частотой v в «потенциальной яме» ядра с зарядом Z 0 , а покинув её, движется в отталкивающем кулоновском потенциале 2Ze 2 /r, где Z=Z 0 -2. В классической механике частица не может покинуть потенциальную яму, если её энергия Е меньше, чем высота потенциального барьера V мaкc . В квантовой механике вследствие соотношения неопределённостей частица с конечной вероятностью W проникает в подбарьерную область r 0 < r < r 1 и может «просочиться» из области r < r 0 в область r > r 1 аналогично тому, как свет проникает в область геометрической тени на расстояния, сравнимые с длиной световой волны. Используя уравнение Шрёдингера, можно вычислить коэффициент D прохождения α-частицы через барьер, который в квазиклассическом приближении равен:

Со временем число ядер радия N(t) убывает по закону: N(t) = N 0 exp{-t/τ}, где τ - среднее время жизни ядра, N 0 - начальное число ядер при t = 0. Вероятность α-распада W = vD связана со временем жизни соотношением W = l/τ, откуда следует закон Гейгера - Неттола:

где υ - скорость α-частицы, Z - заряд образовавшегося ядра. Экспериментально эта зависимость была обнаружена ещё в 1909 году, но только в 1928 Г. Гамов (и независимо английский физик Р. Гёрни и американский физик Э. Кондон) впервые объяснил её на языке квантовой механики. Тем самым было показано, что квантовая механика описывает не только процессы излучения и другие явления атомной физики, но также явления ядерной физики.

В атомной физике туннельный эффект объясняет явление автоэлектронной эмиссии. В однородном электрическом поле напряжённостью Е кулоновский потенциал V(r) = -е 2 /r притяжения между ядром и электроном искажается: V(r) = - е 2 /r - eEr, уровни энергии атома E nl m при этом смещаются, что приводит к изменению частот ν nk переходов между ними (эффект Штарка). Кроме того, качественно этот потенциал становится подобным потенциалу α-распада, вследствие чего возникает конечная вероятность туннелирования электрона через потенциальный барьер (Р. Оппенгеймер, 1928). При достижении критических значений Е барьер понижается настолько, что электрон покидает атом (так называемая лавинная ионизация).

Альфа-распад есть частный случай распада квазистационарного состояния, который тесно связан с понятием квантовомеханического резонанса и позволяет понять дополнительные аспекты нестационарных процессов в квантовой механике. Из уравнения Шрёдингера следует зависимость его решений от времени:

где Е - собственное значение гамильтониана Ĥ, которое для эрмитовых операторов квантовой механики действительно, а соответствующая ему наблюдаемая (полная энергия Е) не зависит от времени. Однако энергия нестационарных систем от времени зависит, и этот факт можно формально учесть, если энергию такой системы представить в комплексном виде: Е = Е 0 - iΓ/2. В этом случае зависимость волновой функции от времени имеет вид

а вероятность обнаружить соответствующее состояние убывает по экспоненциальному закону:

который совпадает по форме с законом α-распада с постоянной распада τ = ħ/Г.

В обратном процессе, например при столкновении ядер дейтерия и трития, в результате которого образуются гелий и нейтрон (реакция термоядерного синтеза), используется понятие сечения реакции σ, которое определяется как мера вероятности реакции при единичном потоке сталкивающихся частиц.

Для классических частиц сечение рассеяния на шарике радиусом r 0 совпадает с его геометрической сечением и равно σ = πr 0 2 . В квантовой механике оно может быть представлено через фазы рассеяния δl(k):

где k = р/ħ = √2mE/ħ - волновое число, l - орбитальный момент системы. В пределе очень малых энергий столкновения сечение квантового рассеяния σ = 4πr 0 2 в 4 раза превышает геометрическое сечение шарика. (Этот эффект - одно из следствий волновой природы квантовых явлений.) В окрестности резонанса при Е ≈ Е 0 фаза рассеяния ведёт себя как

а сечение рассеяния равно

где λ = 1/k, W(Е) - функция Брейта - Вигнера:

При малых энергиях рассеяния l 0 ≈ 0, а длина волны де Бройля λ значительно больше размеров ядер, поэтому при Е = Е 0 , резонансные сечения ядер σ рез ≈ 4πλ 0 2 могут в тысячи и миллионы раз превышать их геометрические сечения πr 0 2 . В ядерной физике именно от этих сечений зависит работа ядерного и термоядерного реакторов. В атомной физике это явление впервые наблюдали Дж. Франк и Г. Герц (1913) в опытах по резонансному поглощению электронов атомами ртути. В противоположном случае (δ 0 = 0) сечение рассеяния аномально мало (эффект Рамзауэра, 1921).

Функция W(Е) известна в оптике как лоренцевский профиль линии излучения и имеет вид типичной резонансной кривой с максимумом при Е = Е 0 , а ширина резонанса Г = 2∆Е = 2 (Е - Е 0) определяется из соотношения W(Е 0 ± ΔΕ) = W(Е 0)/2. Функция W(Е) носит универсальный характер и описывает как распад квазистационарного состояния, так и резонансную зависимость сечения рассеяния от энергии столкновения Е, а в явлениях излучения определяет естественную ширину Г спектральной линии, которая связана с временем жизни τ излучателя соотношением τ = ħ/Г. Это соотношение определяет также время жизни элементарных частиц.

Из определения τ = ħ/Г с учётом равенства Г = 2∆Е следует соотношение неопределённостей для энергии и времени: ∆Е ∙ ∆t ≥ ħ/2, где ∆t ≥ τ. По форме оно аналогично соотношению ∆х ∙ ∆р ≥ ħ/2, однако онтологический статус этого неравенства другой, поскольку в квантовой механике время t не является динамической переменной. Поэтому соотношение ∆Е ∙ ∆t ≥ ħ/2 не следует непосредственно из основных постулатов стационарной квантовой механики и, строго говоря, имеет смысл только для систем, энергия которых меняется во времени. Его физический смысл состоит в том, что за время ∆t энергия системы не может быть измерена точнее, чем величина ∆Е, определяемая соотношением ∆Е ∙ ∆t ≥ ħ/2. Стационарное состояние (ΔЕ→0) существует бесконечно долго (∆t→∞).

Спин, тождественность частиц и обменное взаимодействие. Понятие «спин» утвердилось в физике трудами В. Паули, нидерландского физика Р. Кронига, С. Гаудсмита и Дж. Уленбека (1924-27), хотя экспериментальные свидетельства о его существовании были получены задолго до создания квантовой механики в опытах А. Эйнштейна и В. Й. де Хааза (1915), а также О. Штерна и немецкого физика В. Герлаха (1922). Спин (собственный механический момент частицы) для электрона равен S = ħ/2. Это такая же важная характеристика квантовой частицы, как и заряд и масса, которая, однако, не имеет классической аналогов.

Оператор спина Ŝ = ħσˆ/2, где σˆ= (σˆ х, σˆ у, σˆ z) - двумерные матрицы Паули, определён в пространстве двухкомпонентных собственных функций u = (u + , u -) оператора Ŝ z проекции спина на ось z: σˆ z u = σu, σ=±1/2. Собственный магнитный момент μ частицы с массой m и спином S равен μ = 2μ 0 S, где μ 0 = еħ/2mс - магнетон Бора. Операторы Ŝ 2 и Ŝ z коммутируют с набором Ĥ 0 L 2 и L z операторов атома водорода и вместе они формируют гамильтониан уравнения Паули (1927), решения которого нумеруются набором i = (nlmσ) квантовых чисел собственных значений совокуп̭ност̭и коммутирующих операторов Ĥ 0 , L 2 , L z , Ŝ 2 , Ŝ z . Эти решения описывают самые тонкие особенности наблюдаемых спектров атомов, в частности расщепление спектральных линий в магнитном поле (нормальный и аномальный эффект Зеемана), а также их мультиплетную структуру в результате взаимодействия спина электрона с орбитальным моментом атома (тонкая структура) и спином ядра (сверхтонкая структура).

В 1924, ещё до создания квантовой механики, В. Паули сформулировал принцип запрета: в атоме не может быть двух электронов с одним и тем же набором квантовых чисел i = (nlmσ). Этот принцип позволил понять структуру периодической системы химических элементов и объяснить периодичность изменения их химических свойств при монотонном увеличении заряда их ядер.

Принцип запрета есть частный случай более общего принципа, который устанавливает связь между спином частицы и симметрией её волновой функции. В зависимости от значения спина все элементарные частицы разделяются на два класса: фермионы - частицы с полуцелым спином (электрон, протон, μ-мезон и т.д.) и бозоны - частицы с нулевым или целым спином (фотон, π-мезон, К-мезон и т.д.). В 1940 Паули доказал общую теорему о связи спина со статистикой, из которой следует, что волновые функции любой системы фермионов обладают отрицательной чётностью (меняют знак при их попарной перестановке), а чётность волновой функции системы бозонов всегда положительна. В соответствии с этим существуют два типа распределений частиц по энергиям: распределение Ферми - Дирака и распределение Бозе - Эйнштейна, частным случаем которого является распределение Планка для системы фотонов.

Одно из следствий принципа Паули - существование так называемого обменного взаимодействия, которое проявляется уже в системе двух электронов. В частности, именно это взаимодействие обеспечивает ковалентную химическую связь атомов в молекулах Н 2 , N 2 , О 2 и т. п. Обменное взаимодействие - исключительно квантовый эффект, аналога такого взаимодействия в классической физике нет. Его специфика объясняется тем, что плотность вероятности волновой функции системы двух электронов |ψ(r 1 ,r 2)| 2 содержит не только члены |ψ n (r 1)| 2 |ψ m (r 2)| 2 , где n и m - квантовые состояния электронов обоих атомов, но также «обменные члены» ψ n * (r 1)ψ m * (r 1)ψ n (r 2)ψ m (r 2), возникающие как следствие принципа суперпозиции, который позволяет каждому электрону находиться одновременно в различных квантовых состояниях n и m обоих атомов. Кроме того, в силу принципа Паули, спиновая часть волновой функции молекулы должна быть антисимметричной по отношению к перестановке электронов, т. е. химическая связь атомов в молекуле осуществляется парой электронов с противоположно направленными спинами. Волновая функция сложных молекул может быть представлена как суперпозиция волновых функций, соответствующих различным возможным конфигурациям молекулы (теория резонанса, Л. Полинг, 1928).

Развитые в квантовой механике методы расчёта (метод Хартри - Фока, метод молекулярных орбиталей и др.) позволяют вычислить на современных компьютерах все характеристики устойчивых конфигураций сложных молекул: порядок заполнения электронных оболочек в атоме, равновесные расстояния между атомами в молекулах, энергию и направление химических связей, расположение атомов в пространстве, а также построить потенциальные поверхности, которые определяют направление химических реакций. Такой подход позволяет также вычислить потенциалы межатомных и межмолекулярных взаимодействий, в частности силы Ван дер Ваальса, оценить прочность водородных связей и др. Тем самым проблема химической связи сводится к задаче расчёта квантовых характеристик системы частиц с кулоновским взаимодействием, и с этой точки зрения структурную химию можно рассматривать как один из разделов квантовой механики.

Обменное взаимодействие существенно зависит от вида потенциального взаимодействия между частицами. В частности, в некоторых металлах именно благодаря ему более устойчивым является состояние пар электронов с параллельными спинами, что объясняет явление ферромагнетизма.

Приложения квантовой механики. Квантовая механика - теоретический базис квантовой физики. Она позволила понять строение электронных оболочек атомов и закономерности в их спектрах излучения, структуру ядер и законы их радиоактивного распада, происхождение химических элементов и эволюцию звёзд, включая взрывы новых и сверхновых звёзд, а также источник энергии Солнца. Квантовая механика объяснила смысл периодической системы элементов, природу химической связи и строение кристаллов, теплоёмкость и магнитные свойства веществ, явления сверхпроводимости и сверхтекучести и др. Квантовая механика - физическая основа многочисленных технических приложений: спектрального анализа, лазера, транзистора и компьютера, ядерного реактора и атомной бомбы и т. д.

Свойства металлов, диэлектриков, полупроводников и других веществ в рамках квантовой механики также получают естественное объяснение. В кристаллах атомы совершают около положений равновесия малые колебания с частотой ω, которым сопоставляются кванты колебаний кристаллической решётки и соответствующие им квази-частицы - фононы с энергией Е = ħω. Теплоёмкость кристалла в значительной степени определяется теплоёмкостью газа его фононов, а его теплопроводность можно трактовать как теплопроводность фононного газа. В металлах электроны проводимости представляют собой газ фермионов, а их рассеяние на фононах является основной причиной электрического сопротивления проводников, а также объясняет подобие тепловых и электрических свойств металлов (смотри Видемана - Франца закон). В магнитоупорядоченных структурах возникают квазичастицы - магноны, которым соответствуют спиновые волны, в квантовых жидкостях возникают кванты вращательного возбуждения - ротоны, а магнитные свойства веществ определяются спинами электронов и ядер (смотри Магнетизм). Взаимодействие спинов электронов и ядер с магнитным полем - основа практических приложений явлений электронного парамагнитного и ядерного магнитного резонансов, в частности в медицинских томографах.

Упорядоченная структура кристаллов порождает дополнительную симметрию гамильтониана по отношению к сдвигу х → х + а, где а - период кристаллической решётки. Учёт периодической структуры квантовой системы приводит к расщеплению её энергетического спектра на разрешённые и запрещённые зоны. Такая структура уровней энергии лежит в основе работы транзисторов и всей базирующейся на них электроники (телевизор, компьютер, сотовый телефон и др.). В начале 21 века достигнуты существенные успехи в создании кристаллов с заданными свойствами и структурой энергетических зон (сверхрешётки, фотонные кристаллы и гетероструктуры: квантовые точки, квантовые нити, нанотрубки и др.).

При понижении температуры некоторые вещества переходят в состояние квантовой жидкости, энергия которой при температуре Т → 0 приближается к энергии нулевых колебаний системы. В некоторых металлах при низких температурах образуются куперовские пары - системы из двух электронов с противоположными спинами и импульсами. При этом электронный газ фермионов трансформируется в газ бозонов, что влечёт за собой бозе-конденсацию, которая объясняет явление сверхпроводимости.

При низких температурах длина волны де Бройля тепловых движений атомов становится сравнимой с межатомными расстояниями и возникает корреляция фаз волновых функций многих частиц, что приводит к макроскопическим квантовым эффектам (эффект Джозефсона, квантование магнитного потока, дробный квантовый эффект Холла, андреевское отражение).

На основе квантовых явлений созданы наиболее точные квантовые эталоны различных физических величин: частоты (гелий-неоновый лазер), электрического напряжения (эффект Джозефсона), сопротивления (квантовый эффект Холла) и т.д., а также приборы для различных прецизионных измерений: сквиды, квантовые часы, квантовый гироскоп и т.д.

Квантовая механика возникла как теория для объяснения специфических явлений атомной физики (её вначале так и называли: атомная динамика), но постепенно стало ясно, что квантовая механика образует также основу всей субатомной физики, и все её основные понятия применимы для описания явлений физики ядра и элементарных частиц. Первоначальная квантовая механика была нерелятивистской, то есть описывала движение систем со скоростями много меньшими скорости света. Взаимодействие частиц в этой теории по-прежнему описывалось в классических терминах. В 1928 П. Дирак нашёл релятивистское уравнение квантовой механики (уравнение Дирака), которое при сохранении всех её понятий учитывало требования теории относительности. Кроме того, был развит формализм вторичного квантования, который описывает рождение и уничтожение частиц, в частности рождение и поглощение фотонов в процессах излучения. На этой основе возникла квантовая электродинамика, которая позволила с большой точностью рассчитывать все свойства систем с электромагнитным взаимодействием. В дальнейшем она развилась в квантовую теорию поля, объединяющую в едином формализме частицы и поля, посредством которых они взаимодействуют.

Для описания элементарных частиц и их взаимодействий используются все основные понятия квантовой механики: остаётся справедливым дуализм волна-частица, сохраняется язык операторов и квантовых чисел, вероятностная трактовка наблюдаемых явлений и т.д. В частности, для объяснения взаимопревращения трёх типов нейтрино: v e , ν μ и ν τ (осцилляции нейтрино), а также нейтральных К-мезонов используется принцип суперпозиции состояний.

Интерпретация квантовой механики . Справедливость уравнений и заключений квантовой механики многократно подтверждена многочисленными опытами. Система её понятий, созданная трудами Н. Бора, его учеников и последователей, известная как «копенгагенская интерпретация», является ныне общепринятой, хотя ряд создателей квантовой механики (М. Планк, А. Эйнштейн и Э. Шрёдингер и др.) до конца жизни остались в убеждении, что квантовая механика - незавершённая теория. Специфическая трудность восприятия квантовой механики обусловлена, в частности, тем обстоятельством, что большая часть её основных понятий (волна, частица, наблюдение и т.д.) взяты из классической физики. В квантовой механике их смысл и область применимости ограничены в силу конечности кванта действия h, а это, в свою очередь, потребовало ревизии устоявшихся положений философии познания.

Прежде всего в квантовой механике изменился смысл понятия «наблюдение». В классической физике предполагали, что возмущения изучаемой системы, вызванные процессом измерения, могут быть корректно учтены, после чего можно восстановить исходное состояние системы, независимое от средств наблюдения. В квантовой механике соотношение неопределённостей ставит на этом пути принципиальный предел, который никак не связан с искусством экспериментатора и тонкостью используемых методов наблюдения. Квант действия h определяет границы квантовой механики, подобно скорости света в теории электромагнитных явлений или абсолютному нулю температур в термодинамике.

Причину неприятия соотношения неопределённостей и способ преодоления трудностей восприятия его логических следствий предложил Н. Бор в концепции дополнительности (смотри Дополнительности принцип). Согласно Бору, для полного и адекватного описания квантовых явлений необходима пара дополнительных понятий и соответствующая им пара наблюдаемых. Для измерения этих наблюдаемых необходимы два разных типа приборов с несовместимыми свойствами. Например, для точного измерения координаты нужен стабильный, массивный прибор, а для измерения импульса, наоборот, лёгкий и чувствительный. Оба эти прибора несовместимы, но они дополнительны в том смысле, что обе величины, измеряемые ими, равно необходимы для полной характеристики квантового объекта или явления. Бор объяснил, что «явление» и «наблюдение» - дополнительные понятия и не могут быть определены порознь: процесс наблюдения уже есть некое явление, а без наблюдения явление есть «вещь в себе». В действительности мы всегда имеем дело не с явлением самим по себе, а с результатом наблюдения явления, и результат этот зависит, в том числе от выбора типа прибора, используемого для измерения характеристик квантового объекта. Результаты таких наблюдений квантовая механика объясняет и предсказывает без всякого произвола.

Важное отличие квантовых уравнений от классических состоит также в том, что волновая функция квантовой системы сама не наблюдаема, а все величины, вычисленные с её помощью, имеют вероятностный смысл. Кроме того, понятие вероятности в квантовой механике в корне отличается от привычного понимания вероятности как меры нашего незнания деталей процессов. Вероятность в квантовой механике - это внутреннее свойство индивидуального квантового явления, присущее ему изначально и независимо от измерений, а не способ представления результатов измерений. В соответствии с этим принцип суперпозиции в квантовой механике относится не к вероятностям, а к амплитудам вероятности. Кроме того, в силу вероятностного характера событий суперпозиция квантовых состояний может включать в себя состояния, несовместимые с классической точки зрения, например состояния отражённого и прошедшего фотонов на границе полупрозрачного экрана или альтернативные состояния электрона, проходящего через любую из щелей в знаменитом интерференционном опыте.

Неприятие вероятностной трактовки квантовой механики породило массу попыток модифицировать основные положения квантовой механики. Одна из таких попыток - введение в квантовую механику скрытых параметров, которые изменяются в соответствии со строгими законами причинности, а вероятностный характер описания в квантовой механике возникает как результат усреднения по этим параметрам. Доказательство невозможности введения в квантовую механику скрытых параметров без нарушения системы её постулатов было дано Дж. фон Нейманом ещё в 1929 году. Более детальный анализ системы постулатов квантовой механики был предпринят Дж. Беллом в 1965 году. Экспериментальная проверка так называемых неравенств Белла (1972) ещё раз подтвердила общепринятую схему квантовой механики.

Ныне квантовая механика представляет собой законченную теорию, которая всегда даёт правильные предсказания в границах её применимости. Все известные попытки её модификации (их известно около десяти) не изменили её структуры, но положили начало новым отраслям наук о квантовых явлениях: квантовой электродинамике, квантовой теории поля, теории электрослабого взаимодействия, квантовой хромодинамике, квантовой теории гравитации, теории струн и суперструн и др.

Квантовая механика стоит в ряду таких достижений науки, как классическая механика, учение об электричестве, теория относительности и кинетическая теория. Ни одна физическая теория не объяснила такого широкого круга физических явлений природы: из 94 Нобелевских премий по физике, присуждённых в 20 веке, только 12 не связаны напрямую с квантовой физикой. Значение квантовой механики во всей системе знаний об окружающей природе выходит далеко за рамки учения о квантовых явлениях: она создала язык общения в современной физике, химии и даже биологии, привела к пересмотру философии науки и теории познания, а её технологические следствия до сих пор определяют направление развития современной цивилизации.

Лит.: Нейман И. Математические основы квантовой механики. М., 1964; Давыдов А. С. Квантовая механика. 2-е изд. М., 1973; Дирак П. Принципы квантовой механики. 2-е изд. М., 1979; Блохинцев Д. И. Основы квантовой механики. 7-е изд. СПб., 2004; Ландау Л. Д., Лифшиц Е. М. Квантовая механика. Нерелятивистская теория. 5-е изд. М., 2004; Фейнман Р., Лейтон Р., Сэндс М. Квантовая механика. 3-е изд. М., 2004; Пономарев Л. И. Под знаком кванта. 2-е изд. М., 2007; Фок В. А. Начала квантовой механики. 5-е изд. М., 2008.

Поделиться: