Отрицательные эффекты ивл. Положительные эффекты ивл. Вентиляция с положительным давлением в дыхательных путях

ИСКУССТВЕННАЯ ВЕНТИЛЯЦИЯ ЛЕГКИХ.

Под ИВЛ понимают перемещение воздуха между внешней средой и альвеолами под влиянием внешней силы.

Способы ИВЛ можно разделить на две группы.

1. Воздействие на грудную клетку и диафрагму:

Сжатие и расширение грудной клетки вручную или аппаратом (типа железные легкие),

Электростимуляция межреберных мышц и диафрагмы,

С помощью специальных камер создающих перепады давления,

Гравитационный метод (движение внутренних органов и ди­афрагмы при изменении положения тела).

Эти методы используются редко и только по специальным по­казаниям или же в примитивных условиях.

2. Наиболее распространен способ вдувание воздушной смеси в легкие , который можно проводить как без аппаратов и так и с помощью аппаратов, как вручную так и автоматически.

Ручная вентиляция осуществляется либо портативными респи­раторами, например мешком АМБУ, либо мехом наркозного аппара­та. Ручную вентиляцию осуществляют ритмично, с частотой 15-20 в мин, соотношение вдоха и выдоха 1:2. Недостатком ручной ИВЛ является невозможность регулирования параметров вентиляции.

Первый благоприятный эффект от ИВЛ у больных с ОДН связан с несколькими причинами:

1. Резкое снижение энергозатрат организма на работу дыхания, которая при выраженной ДН может порой составлять половину и больше затрат всего организма. За счет этого потребности в кислороде снижаются, следовательно, снижаются и потребности в газообмене и объёме вентиляции.

2. Вторым важным фактором, благоприятно влияющим на снижение уровня гипоксемии, нужно считать увеличение объёма альвеолярной вентиляции за счет открытия ригидных бронхов, расправления ателектазированных участков легких, уменьшения объёма экспираторного закрытия, связанных с подъёмом внутрибронхиального давления во время искусственного вдоха (и выдоха при ПДКВ).

3. ИВЛ практически всегда сопровождается повышением FiO2 во вдыхаемой больным смеси. Это тоже способствует улучшению оксигенации крови и коррекции гипоксемии.

4. Приток хорошо оксигенированной крови к сердцу приводит к увеличению сердечного выброса и, следовательно, снижает вероятность циркуляторной гипоксии, а кроме того, нормализует давление в малом круге, устраняет нарушения ВПО, что также создает условия для нормального газообмена в легких.

В большинстве публикаций на эту тему подчеркивается важность своевременного подключения к ИВЛ больных с ОДН. В противном случае, гипоксемия и гипоксия могут привести к необратимым изменениям, как в аппарате газообмена, так и в системе циркуляции, дезинтоксикации, выделения и на этом фоне благоприятные результаты ИВЛ, даже сразу после включения, не смогут быть реализованы полностью.

– Какие параметры вдоха и выдоха измеряет аппарат ИВЛ?

Время (time), объём (volume), поток (flow), давление (pressure).

Время

– Что такое ВРЕМЯ?

Время – это мера длительности и последовательности явлений (на графиках давления, потока и объёма время бежит по горизонтальной оси «Х»). Измеряется в секундах, минутах, часах. (1час=60мин, 1мин=60сек)

С позиций респираторной механики нас интересует длительность вдоха и выдоха, поскольку произведение потокового времени вдоха (Inspiratory flow time) на поток равно объёму вдоха, а произведение потокового времени выдоха (Expiratory flow time) на поток равно объёму выдоха.

Временные интервалы дыхательного цикла (их четыре) Что такое «вдох – inspiration» и «выдох – expiration»?

Вдох это вход воздуха в легкие. Длится до начала выдоха. Выдох – это выход воздуха из легких. Длится до начала вдоха. Иными словами, вдох считается с момента начала поступления воздуха в дыхательные пути и длится до начала выдоха, а выдох – с момента начала изгнания воздуха из дыхательных путей и длится до начала вдоха.

Эксперты делят вдох на две части.

Inspiratory time = Inspiratory flow time + Inspiratory pause.
Inspiratory flow time – временной интервал, когда в легкие поступает воздух.

Что такое «инспираторная пауза» (inspiratory pause или inspiratory hold)? Это временной интервал, когда клапан вдоха уже закрыт, а клапан выдоха еще не открыт. Хотя в это время поступления воздуха в легкие не происходит, инспираторная пауза является частью времени вдоха. Так договорились. Инспираторная пауза возникает, когда заданный объём уже доставлен, а время вдоха ещё не истекло. Для спонтанного дыхания – это задержка дыхания на высоте вдоха. Задержка дыхания на высоте вдоха широко практикуется индийскими йогами и другими специалистами по дыхательной гимнастике.

В некоторых режимах ИВЛ инспираторная пауза отсутствует.

Для аппарата ИВЛ PPV выдох expiratory time – это временной интервал от момента открытия клапана выдоха до начала следующего вдоха. Эксперты делят выдох на две части. Expiratory time = Expiratory flow time + Expiratory pause. Expiratory flow time – временной интервал, когда воздух выходит из легких.

Что такое «экспираторная пауза» (expiratory pause или expiratory hold)? Это временной интервал, когда поток воздуха из легких уже не поступает, а вдох ещё не начался. Если мы имеем дело с «умным» аппаратом ИВЛ, мы обязаны сообщить ему сколько времени, по нашему мнению, может длиться экспираторная пауза. Если время экспираторной паузы истекло, а вдох не начался, «умный» аппарат ИВЛ объявляет тревогу (alarm) и начинает спасать пациента, поскольку считает, что произошло апноэ (apnoe). Включается опция Apnoe ventilation.

В некоторых режимах ИВЛ экспираторная пауза отсутствует.

Total cycle time – время дыхательного цикла складывается из времени вдоха и времени выдоха.

Total cycle time (Ventilatory period) = Inspiratory time + Expiratory time или Total cycle time = Inspiratory flow time + Inspiratory pause + Expiratory flow time + Expiratory pause

Этот фрагмент убедительно демонстрирует трудности перевода:

1. Expiratory pause и Inspiratory pause вообще не переводят, а просто пишут эти термины кириллицей. Мы используем буквальный перевод, – задержка вдоха и выдоха.

2. Для Inspiratory flow time и Expiratory flow time в русском языке нет удобных терминов.

3. Когда мы говорим «вдох» – приходится уточнять: – это Inspiratory time или Inspiratory flow time. Для обозначения Inspiratory flow time и Expiratory flow time мы будем использовать термины потоковое время вдоха и выдоха.

Инспираторная и/или экспираторная паузы могут отсутствовать.


Объём (volume)

– Что такое ОБЪЁМ?

Некоторые наши курсанты отвечают: «Объём – это количество вещества». Для несжимаемых (твердых и жидких) веществ это верно, а для газов не всегда.

Пример: Вам принесли баллон с кислородом, емкостью (объёмом) 3л, – а сколько в нём кислорода? Ну конечно, нужно измерить давление, и тогда, оценив степень сжатия газа и ожидаемый расход, можно сказать, надолго ли его хватит.

Механика – наука точная, поэтому прежде всего, объём – это мера пространства.


И, тем не менее, в условиях спонтанного дыхания и ИВЛ при нормальном атмосферном давлении мы используем единицы объема для оценки количества газа. Сжатием можно пренебречь.* В респираторной механике объёмы измеряют в литрах или миллилитрах.
*Когда дыхание происходит под давлением выше атмосферного (барокамера, глобоководные аквалангисты и т.д.), сжатием газов пренебрегать нельзя, поскольку меняются их физические свойства, в частности растворимость в воде. В результате – кислородное опьянение и кесонная болезнь.

В высокогорных условиях при низком атмосферном давлении здоровый спортсмен-альпинист с нормальным уровнем гемоглобина в крови испытывает гипоксию, несмотря на то, что дышит глубже и чаще (дыхательный и минутный объёмы увеличены).

Для описания объёмов используются три слова

1. Пространство (space).

2. Ёмкость (capacity).

3. Объём (volume).

Объёмы и пространства в респираторной механике.

Минутный объём (MV) – по-английски Minute volume – это сумма дыхательных объёмов за минуту. Если все дыхательные объемы в течение минуты равны, можно просто умножить дыхательный объём на частоту дыханий.

Мертвое пространство (DS) по-английски Dead* space – это суммарный объём воздухоносных путей (зона дыхательной системы, где нет газообмена).

*второе значение слова dead – бездыханный

Объемы, исследуемые при спирометрии

Дыхательный объём (VT ) по-английски Tidal volume – это величина одного обычного вдоха или выдоха.

Резервный объём вдоха – РОвд (IRV) по-английски Inspired reserve volume – это объём максимального вдоха по завершении обычного вдоха.

Ёмкость вдоха – ЕВ (IC) по-английски Inspiratory capacity – это объём максимального вдоха после обычного выдоха.

IC = TLC – FRC или IC = VT + IRV

Общая ёмкость лёгких – ОЕЛ (TLC) по-английски Total lung capacity – это объём воздуха в лёгких по завершении максимального вдоха.

Остаточный объём – ОО (RV) по-английски Residual volume – это объём воздуха в лёгких по завершении максимального выдоха.

Жизненная ёмкость лёгких – ЖЕЛ (VC) по-английски Vital capacity – это объём вдоха после максимального выдоха.

VC = TLC – RV

Функциональная остаточная ёмкость – ФОЕ (FRC) по-английски Functional residual capacity – это объём воздуха в лёгких по завершении обычного выдоха.

FRC = TLC – IC

Резервный объём выдоха – РОвыд (ERV) по-английски Expired reserve volume – это объём максимального выдоха по завершении обычного выдоха.

ERV = FRC – RV

Поток(flow)

– Что такое ПОТОК?

– «Объёмная скорость» – точное определение, удобное для оценки работы насосов и трубопроводов, но для респираторной механики больше подходит:

Поток – это скорость изменения объёма

В респираторной механике поток() измеряют в литрах в минуту.

1. Поток() = 60л/мин, Длительность вдоха(Тi) = 1сек(1/60мин),

Дыхательный объём (VT ) = ?

Решение: х Тi =VT

2. Поток() = 60л/мин, Дыхательный объём(VT ) = 1л,

Длительность вдоха(Тi) = ?

Решение: VT / = Тi

Ответ: 1сек(1/60мин)


Объём – это произведение потока на время вдоха или площадь под кривой потока.


VT = х Тi

Это представление о взаимоотношении потока и объема используется при описании режимов вентиляции.

Давление(pressure)

– Что такое ДАВЛЕНИЕ?

Давление(pressure) – это сила, приложенная к единице площади.

Давление в дыхательных путях измеряют в сантиметрах водного столба (см H 2 O) и в миллибарах (mbar или мбар). 1 миллибар=0,9806379 см водного столба.

(Бар - внесистемная единица измерения давления, равная 105 Н/м 2 (ГОСТ 7664-61) или 106 дин/см 2 (в системе СГС).

Значения давлений в разных зонах дыхательной системы и градиенты (gradient) давления По определению давление – это сила, которая уже нашла себе применение, – она (эта сила) давит на площадь и ничего никуда не перемещает. Грамотный доктор знает, что вздох, ветер, и даже ураган, создается разностью давлений или градиентом (gradient).

Например: в баллоне газ под давлением 100 атмосфер. Ну и что, стоит себе баллон и никого не трогает. Газ в баллоне спокойно себе давит на площадь внутренней поверхности баллона и ни на что не отвлекается. А если открыть? Возникнет градиент (gradient), который и создаёт ветер.

Давления:

Paw – давление в дыхательных путях

Pbs - давление на поверхности тела

Ppl - плевральное давление

Palv- альвеолярное давление

Pes - пищеводное давление

Градиенты:

Ptr-трансреспиратонное давление: Ptr = Paw – Pbs

Ptt-трансторакальное давление: Ptt = Palv – Pbs

Pl-транспульмональное давление: Pl = Palv – Ppl

Pw-трансмуральное давление: Pw = Ppl – Pbs

(Легко запомнить: если использована приставка «транс» – речь идёт о градиенте).

Главной движущей силой, позволяющей сделать вдох, является разность давлений на входе в дыхательные пути (Pawo- pressure airway opening) и давлением в том месте, где дыхательные пути заканчиваются – то есть в альвеолах (Palv). Проблема в том, что в альвеолах технически сложно померить давление. Поэтому для оценки дыхательного усилия на спонтанном дыхании оценивают градиент между пищеводным давлением (Pes), при соблюдении условий измерения оно равно плевральному(Ppl), и давлением на входе в дыхательные пути (Pawo).

При управлении аппаратом ИВЛ наиболее доступным и информативным является градиент между давлением в дыхательных путях (Paw) и давлением на поверхности тела (Pbs- pressure body surface). Этот градиент (Ptr) называется «трансреспиратораное давление», и вот как он создаётся:

Как видите, ни один из методов ИВЛ не соответствует полностью спонтанному дыханию, но если оценивать воздействие на венозный возврат и лимфоотток аппараты ИВЛ NPV типа «Kirassa» кажутся более физиологичными. Аппараты ИВЛ NPV типа «Iron lung», создавая отрицательное давление над всей поверхностью тела, снижают венозный возврат и, соответственно, сердечный выброс.

Без Ньютона здесь не обойтись.

Давление (pressure) – это сила, с которой ткани лёгких и грудной клетки противодействуют вводимому объёму, или, иными словами, сила, с которой аппарат ИВЛ преодолевает сопротивление дыхательных путей, эластическую тягу лёгких и мышечно-связочных структур грудной клетки (по третьему закону Ньютона это одно и то же поскольку «сила действия равна силе противодействия»).

Equation of Motion уравнение сил, или третий закон Ньютона для системы «аппарат ИВЛ – пациент»

В том случае, если аппарат ИВЛ осуществляет вдох синхронно с дыхательной попыткой пациента, давление, создаваемое аппаратом ИВЛ (Pvent), суммируется с мышечным усилием пациента (Pmus) (левая часть уравнения) для преодоления упругости легких и грудной клетки (elastance) и сопротивления (resistance) потоку воздуха в дыхательных путях (правая часть уравнения).

Pmus + Pvent = Pelastic + Presistive

(давление измеряют в миллибарах)

(произведение упругости на объём)

Presistive = R x

(произведение сопротивления на поток) соответственно

Pmus + Pvent = E x V + R x

Pmus(мбар) + Pvent(мбар) = E(мбар/мл) x V(мл) + R (мбар/л/мин) x (л/мин)

Заодно вспомним, размерность E - elastance (упругость) показывает на сколько миллибар возрастает давление в резервуаре на вводимую единицу объёма (мбар/мл); R - resistance сопротивление потоку воздуха проходящему через дыхательные пути (мбар/л/мин).

Ну и для чего нам пригодится это Equation of Motion (уравнение сил)?

Понимание уравнения сил позволяет нам делать три вещи:

Во-первых, любой аппарат ИВЛ PPV может управлять одномоментно только одним из изменяемых параметров входящих в это уравнение. Эти изменяемые параметры – давление объём и поток. Поэтому существуют три способа управления вдохом: pressure control, volume control, или flow control. Реализация варианта вдоха зависит от конструкции аппарата ИВЛ и выбранного режима ИВЛ.

Во-вторых, на основе уравнения сил созданы интеллектуальные программы, благодаря которым аппарат рассчитывает показатели респираторной механики (напр.: compliance (растяжимость), resistance (сопротивление) и time constant (постоянная времени «τ »).

В-третьих, без понимания уравнения сил не понять такие режимы вентиляции как “proportional assist”, “automatic tube compensation”, и “adaptive support”.

Главные расчетные параметры респираторной механики resistance, elastance, compliance

1. Сопротивление дыхательных путей (airway resistance)

Сокращенное обозначение – Raw. Размерность – смH 2 O/Л/сек или мбар/мл/сек Норма для здорового человека – 0,6-2,4 смH 2 O/Л/сек. Физический смысл данного показателя говорит, каким должен быть градиент давлений (нагнетающее давление) в данной системе, чтобы обеспечить поток 1 литр в секунду. Современному аппарату ИВЛ несложно рассчитать резистанс (airway resistance), у него есть датчики давления и потока – разделил давление на поток, и готов результат. Для расчета резистанс аппарат ИВЛ делит разность (градиент) максимального давления вдоха (PIP) и давления плато вдоха (Pplateau) на поток ().
Raw = (PIP–Pplateau)/.
Что и чему сопротивляется?

Респираторная механика рассматривает сопротивление дыхательных путей воздушному потоку. Сопротивление (airway resistance) зависит от длины, диаметра и проходимости дыхательных путей, эндотрахеальной трубки и дыхательного контура аппарата ИВЛ. Сопротивление потоку возрастает, в частности, если происходит накопление и задержка мокроты в дыхательных путях, на стенках эндотрахеальной трубки, скопление конденсата в шлангах дыхательного контура или деформация (перегиб) любой из трубок. Сопротивление дыхательных путей растёт при всех хронических и острых обструктивных заболеваниях лёгких, приводящих к уменьшению диаметра воздухоносных путей. В соответствии с законом Гагена-Пуазеля при уменьшении диаметра трубки вдвое для обеспечения того же потока градиент давлений, создающий этот поток (нагнетающее давление), должен быть увеличен в 16 раз.

Важно иметь в виду, что сопротивление всей системы определяется зоной максимального сопротивления (самым узким местом). Устранение этого препятствия (например, удаление инородного тела из дыхательных путей, устранение стеноза трахеи или интубация при остром отёке гортани) позволяет нормализовать условия вентиляции легких. Термин резистанс широко используется российскими реаниматологами как существительное мужского рода. Смысл термина соответствует мировым стандартам.

Важно помнить, что:

1. Аппарат ИВЛ может измерить резистанс только в условиях принудительной вентиляции у релаксированного пациента.

2. Когда мы говорим о резистанс (Raw или сопротивлении дыхательных путей) мы анализируем обструктивные проблемы преимущественно связанные с состоянием проходимости дыхательных путей.

3. Чем больше поток, тем выше резистанс.

2. Упругость (elastance) и податливость (compliance)

Прежде всего, следует знать, это строго противоположные понятия и elastance =1/сompliance. Смысл понятия «упругость» подразумевает способность физического тела при деформации сохранять прилагаемое усилие, а при восстановлении формы – возвращать это усилие. Наиболее наглядно это свойство проявляется у стальных пружин или резиновых изделий. Специалисты по ИВЛ при настройке и тестировании аппаратов в качестве модели легких используют резиновый мешок. Упругость дыхательной системы обозначается символом E. Размерность упругости мбар/мл, это означает: на сколько миллибар следует поднять давление в системе, чтобы объём увеличился на 1 мл. Данный термин широко используется в работах по физиологии дыхания, а специалисты по ИВЛ пользуются понятием обратным «упругости» – это «растяжимость» (compliance) (иногда говорят «податливость»).

– Почему? – Самое простое объяснение:

– На мониторах аппаратов ИВЛ выводится compliance, вот мы им и пользуемся.

Термин комплайнс (compliance) используется как существительное мужского рода российскими реаниматологами так же часто, как и резистанс (всегда когда монитор аппарата ИВЛ показывает эти параметры).

Размерность комплайнса – мл/мбар показывает, на сколько миллилитров увеличивается объём при повышении давления на 1 миллибар. В реальной клинической ситуации у пациента на ИВЛ измеряют комплайнс респираторной системы – то есть легких и грудной клетки вместе. Для обозначения комплайнс используют символы: Crs (compliance respiratory system) – комплайнс дыхательной системы и Cst (compliance static) – комплайнс статический, это синонимы. Для того, чтобы рассчитать статический комплайнс, аппарат ИВЛ делит дыхательный объём на давление в момент инспираторной паузы (нет потока – нет резистанс).

Cst = V T /(Pplateau –PEEP)

Норма Cst (комплайнса статического) – 60-100мл/мбар

Приводимая ниже схема показывает, как на основе двухкомпонентной модели рассчитывается сопротивление потоку (Raw), статический комплайнс (Cst) и упругость (elastance) дыхательной системы.


Измерения выполняются у релаксированного пациента в условиях ИВЛ, управляемой по объёму с переключением на выдох по времени. Это значит, что после того, как объём доставлен, на высоте вдоха клапаны вдоха и выдоха закрыты. В этот момент измеряется давление плато.

Важно помнить, что:

1. Аппарат ИВЛ может измерить Cst (комплайнс статический) только в условиях принудительной вентиляции у релаксированного пациента во время инспираторной паузы.

2. Когда мы говорим о статическом комплайнсе (Cst, Crs или растяжимости респираторной системы), мы анализируем рестриктивные проблемы преимущественно связанные с состоянием легочной паренхимы.

Философское резюме можно выразить двусмысленным утверждением: Поток создаёт давление.

Обе трактовки соответствуют действительности, то есть: во-первых, поток создаётся градиентом давлений, а во-вторых, когда поток наталкивается на препятствие (сопротивление дыхательных путей), давление увеличивается. Кажущаяся речевая небрежность, когда вместо «градиент давлений» мы говорим «давление», рождается из клинической реальности: все датчики давления расположены со стороны дыхательного контура аппарата ИВЛ. Для того, чтобы измерить давление в трахее и рассчитать градиент, необходимо остановить поток и дождаться выравнивания давления с обоих концов эндотрахеальной трубки. Поэтому в практике обычно мы пользуемся показателями давления в дыхательном контуре аппарата ИВЛ.

По эту сторону эндотрахеальной трубки для обеспечения вдоха объёмом Хмл за время Yсек мы можем повышать давление вдоха (и соответственно градиент) на сколько у нас хватит здравого смысла и клинического опыта, поскольку возможности аппарата ИВЛ огромны.

По ту сторону эндотрахеальной трубки у нас находится пациент, и у него для обеспечения выдоха объёмом Хмл за время Yсек есть только сила упругости легких и грудной клетки и сила его дыхательной мускулатуры (если он не релаксирован). Возможности пациента создавать поток выдоха ограничены. Как мы уже предупреждали, «поток – это скорость изменения объёма», поэтому для обеспечения эффективного выдоха нужно предоставить пациенту время.

Постоянная времени (τ )

Так в отечественных руководствах по физиологии дыхания называется Time constant. Это произведение комплайнс на резистанс. τ = Cst х Raw вот такая формула. Размерность постоянной времени, естественно секунды. Действительно, ведь мы умножаем мл/мбар на мбар/мл/сек. Постоянная времени отражает одновременно эластические свойства дыхательной системы и сопротивление дыхательных путей. У разных людей τ разная. Понять физический смысл данной константы легче, начав с выдоха. Представим себе, завершён вдох, – начат выдох. Под действием эластических сил дыхательной системы воздух выталкивается из лёгких, преодолевая сопротивление дыхательных путей. Сколько времени займёт пассивный выдох? – Постоянную времени умножить на пять (τ х 5). Так устроены легкие человека. Если аппарат ИВЛ обеспечивает вдох, создавая постоянное давление в дыхательных путях, то у релаксированного пациента максимальный для данного давления дыхательный объём будет доставлен за то же время (τ х 5).

Данный график показывает зависимость процентной величины дыхательного объёма от времени при постоянном давлении вдоха или пассивном выдохе.


При выдохе по истечении времени τ пациент успевает выдохнуть 63% дыхательного объёма, за время 2τ – 87%, а за время 3τ – 95% дыхательного объёма. При вдохе с постоянным давлением аналогичная картина.

Практическое значение постоянной времени:

Если время, предоставляемое пациенту для выдоха <5τ , то после каждого вдоха часть дыхательного объёма будет задерживаться в легких пациента.

Максимальный дыхательный объём при вдохе с постоянным давлением поступит за время 5τ .

При математическом анализе графика кривой объёма выдоха расчет постоянной времени позволяет судить о комплайнс и резистанс.

Данный график показывает, как современный аппарат ИВЛ рассчитывает постоянную времени.


Бывает, что статический комплайнс рассчитать невозможно, т. к. для этого должна отсутствовать спонтанная дыхательная активность и необходимо измерить давление плато. Если разделить дыхательный объём на максимальное давление, получим еще один расчётный показатель, отражающий комплайнс и резистанс.

CD = Dynamic Characteristic = Dynamic effective compliance = Dynamic compliance.

CD = VT /(PIP – PEEP)

Больше всего сбивает с толку название – «динамический комплайнс», поскольку измерение происходит при неостановленном потоке и, следовательно, данный показатель включает и комплайнс, и резистанс. Нам больше нравится название «динамическая характеристика». Когда этот показатель снижается, это значит, что либо понизился комплайнс, либо возрос резистанс, либо и то и другое. (Или нарушается проходимость дыхательных путей, или снижается податливость легких.) Однако если одновременно с динамической характеристикой мы оцениваем по кривой выдоха постоянную времени, мы знаем ответ.

Если постоянная времени растёт, это обструктивный процесс, а если уменьшается, значит лёгкие стали менее податливы. (пневмония?, интерстициальный отек?...)


08.05.2011 44341

Как-то на одном из профессиональных медицинских форумов поднялся вопрос о режимах ИВЛ. Возникла мысль написать об этом "просто и доступно", т.е. так, чтобы не запутывать читателя в обилии аббревиатур режимов и названий способов вентиляции.

Тем более, они все очень похожи друг на друга по своей сути и являются ни чем иным, как коммерческим ходом производителей дыхательной аппаратуры.

Модернизация оснащения машин СМП привела к появлению в них современных респираторов (например, аппарат фирмы Дрегер “Карина”), которые позволяют осуществлять ИВЛ на высоком уровне, с использованием самых разнообразных режимов. Однако ориентация работников СМП в этих режимах часто затруднена и поспособствовать решению этой проблемы в какой-то степени призвана эта статья.

Я не буду останавливаться на устаревших режимах, напишу лишь о том, что актуально на сегодняшний день, для того, чтобы после прочтения у вас осталась основа, на которую уже будут накладываться дальнейшие познания в этой области.

Итак, что такое режим ИВЛ? Если по-простому, то режим ИВЛ - это алгоритм управления потоком в дыхательном контуре. Поток может управляться при помощи механики - мех (старые аппараты ИВЛ, типа РО-6) или при помощи т.н. активного клапана (в современных респираторах). Активный клапан требует наличия постоянного потока, что обеспечивается либо компрессором респиратора, либо подводкой сжатого газа.

Теперь рассмотрим основные принципы формирования искусственного вдоха. Их два (если отбросить устаревшие):
1) с контролем по объему;
2) с контролем по давлению.

Формирование вдоха с контролем по объему : респиратор подает поток в легкие пациента и переключается на выдох при достижении заданного врачом объема вдоха (дыхательного объема).

Формирование вдоха с контролем по давлению : респиратор подает поток в легкие пациента и переключается на выдох при достижении заданного врачом давления (инспираторного давления).

Графически это выглядит так:

А теперь основная классификация режимов ИВЛ, от которой мы будем отталкиваться:

  1. принудительные
  2. принудительно-вспомогательные
  3. вспомогательные

Принудительные режимы вентиляции

Суть одна - в дыхательные пути пациента подается заданный врачом МОД (который суммируется из заданных дыхательного объема либо инспираторного давления и частоты вентиляции), любая активность пациента исключается и игнорируется респиратором.

Различают два основных режима принудительной вентиляции:

  1. вентиляция с контролем по объему
  2. вентиляция с контролем по давлению

В современных респираторах предусматриваются еще и дополнительные режимы (вентиляция по давлению с гарантированным дыхательным объемом), но мы их в целях упрощения опустим.

Вентиляция с контролем по объему - Volume Control Ventilation (CMV, VC-CMV, IPPV, VCV и т.д.)
Врачом задаются: дыхательный объем (в мл), частота вентиляции в минуту, соотношение вдоха и выдоха. Респиратор подает заданный дыхательный объем в легкие пациента и переключается на выдох при его достижении. Выдох происходит пассивно.

В некоторых вентиляторах (например, дрегеровских Эвитах) при принудительной вентиляции по объему используется переключение на выдох по времени. При этом имеет место следующее. При подаче объема в легкие пациента давление в ДП повышается до тех пор, пока респиратор не даст установленный объем. Появляется пиковое давление (Ppeak или PIP). После этого поток прекращается - возникает давление плато (пологая часть кривой давления). После окончания времени вдоха (Tinsp) начинается выдох.

Вентиляция с контролем по давлению - Pressure Control Ventilation (PCV, PC-CMV)
Врачом задаются: инспираторное давление (давление на вдохе) в см вод. ст. или в mbar, частота вентиляции в минуту, соотношение вдоха и выдоха. Респиратор подает поток в легкие пациента до достижения инспираторного давления и переключается на выдох. Выдох происходит пассивно.

Несколько слов о преимуществах и недостатках различных принципов формирования искусственного вдоха.

Вентиляция с контролем по объему
Преимущества:

  1. гарантирован дыхательный объем и, соответственно, минутная вентиляция

Недостатки:

  1. опасность баротравмы
  2. неравномерность вентиляции различных отделов легких
  3. невозможность адекватной вентиляции при негерметичных ДП

Вентиляция с контролем по давлению
Преимущества:

  1. гораздо меньшая опасность баротравмы (при правильно установленных параметрах)
  2. более равномерная вентиляция легких
  3. может использоваться при негерметичности ДП (вентиляция с безманжеточными трубками у детей, например)

Недостатки:

  1. нет гарантированного дыхательного объема
  2. необходим полный мониторинг вентиляции (SpO2, ETCO2, МОД, КЩС).

Переходим к следующей группе режимов ИВЛ.

Принудительно-вспомогательные режимы

По сути дела, эта группа режимов ИВЛ представлена одним режимом - SIMV (Synchronized Intermittent Mandatory Ventilation - синхронизированная перемежающаяся принудительная вентиляция) и его вариантами. Принцип режима состоит в следующем - врач задает необходимое число принудительных вдохов и параметры для них, но пациенту позволяется при этом дышать самостоятельно, причем число самостоятельных вдохов будет включено в число заданных. Кроме того, слово "синхронизированная" означает, что принудительные вдохи будут включаться в ответ на дыхательную попытку пациента. Если же пациент не будет дышать совсем, то респиратор будет исправно давать ему заданные принудительные вдохи. В тех случаях, когда синхронизация с вдохами пациента отсутствует, режим носит название "IMV" (Intermittent Mandatory Ventilation).

Как правило, для поддержки самостоятельных вдохов пациента используется режим поддержки давлением (чаще) - PSV (Pressure support ventilation), или объемом (реже) - VSV (Volume support ventilation), но о них мы поговорим ниже.

Если для формирования аппаратных вдохов пациенту задается принцип вентиляции по объему, то режим называется просто "SIMV" или "VC-SIMV", а если используется принцип вентиляции по давлению, то режим носит название "P-SIMV" или "PC-SIMV".

В связи с тем, что мы начали говорить о режимах, которые откликаются на дыхательные попытки пациента, следует сказать несколько слов о триггере. Триггер в аппарате ИВЛ - это пусковая схема, включающая вдох в ответ на дыхательную попытку пациента. В современных аппаратах ИВЛ используются следующие виды триггеров:

  1. Триггер по объему (Volume trigger) - он срабатывает на прохождение заданного объема в дыхательные пути пациента
  2. Триггер по давлению (Pressure trigger) - срабатывает на падение давления в дыхательном контуре аппарата
  3. Триггер по потоку (Flow trigger) - реагирует на изменение потока, наиболее распространен в современных респираторах.

Синхронизированная перемежающаяся принудительная вентиляция с контролем по объему (SIMV, VC-SIMV)
Врач задает дыхательный объем, частоту принудительных вдохов, соотношение вдоха и выдоха, параметры триггера, при необходимости устанавливает давление или объем поддержки (режим в этом случае будет иметь аббревиатуру "SIMV+PS" или "SIMV+VS"). Пациент получает заданное число вдохов с контролем по объему и при этом может дышать самостоятельно с поддержкой или без нее. При этом на попытку вдоха пациента (изменение потока) сработает триггер и респиратор позволит ему осуществить собственный вдох.

Синхронизированная перемежающаяся принудительная вентиляция с контролем по давлению (P-SIMV, PC-SIMV)
Врач задает инспираторное давление, частоту принудительных вдохов, соотношение вдоха и выдоха, параметры триггера, при необходимости устанавливает давление или объем поддержки (режим в этом случае будет иметь аббревиатуру "P-SIMV+PS" или "P-SIMV+VS"). Пациент получает заданное число вдохов с контролем по давлению и при этом может дышать самостоятельно с поддержкой или без нее по тому же принципу, что и описано ранее.

Я думаю, уже стало понятным, что в отсутствие самостоятельных вдохов пациента, режимы SIMV и P-SIMV превращаются соответственно в принудительную вентиляцию с контролем по объему и принудительную вентиляцию с контролем по давлению, что и делает этот режим универсальным.

Переходим к рассмотрению вспомогательных режимов вентиляции.

Вспомогательные режимы

Как понятно из названия, это группа режимов, задача которых состоит в той или иной поддержке спонтанного дыхания пациента. Строго говоря, это уже не ИВЛ, а ВИВЛ. Следует помнить, что все эти режимы могут применяться только у стабильных пациентов, а никак не у критических больных с нестабильной гемодинамикой, нарушениями КЩС и т.д. Я не буду останавливаться на сложных, т.н. "интеллектуальных" режимах вспомогательной вентиляции, т.к. у каждого уважающего себя производителя дыхательной аппаратуры здесь есть своя "фишка", а мы разберем самые основные режимы ВИВЛ. Если будет желание поговорить о каком-либо конкретном "интеллектуальном" режиме, мы обсудим это все отдельно. Единственное, я отдельно напишу про режим BIPAP, так как он является по сути дела универсальным и требует совершенно отдельного рассмотрения.

Итак, к вспомогательным режимам относятся:

  1. Поддержка давлением
  2. Поддержка объемом
  3. Постоянное положительное давление в дыхательных путях
  4. Компенсация сопротивления эндотрахеальной/трахеостомической трубки

При использовании вспомогательных режимов очень полезна опция "Вентиляция апноэ" (Apnoe Ventilation) которая заключается в том, что при отсутствии дыхательной активности ациента в течение заданного времени, респиратор автоматически переключается на принудительную ИВЛ.

Поддержка давлением - Pressure support ventilation (PSV)
Суть режима понятна из названия - респиратор осуществляет поддержку спонтанных вдохов пациента положительным давлением на вдохе. Врачом устанавливаются величина давления поддержки (в см Н2О или mbar), параметры триггера. На дыхательную попытку пациента реагирует триггер и респиратор дает заданное давление на вдохе, а затем переключается на выдох. Это режим с успехом может использоваться совместно с SIMV или P-SIMV, о чем я писал ранее, в этом случае спонтанные вдохи пациента будут поддерживаться давлением. Режим PSV широко используется при отлучении от респиратора путем постепенного снижения давления поддержки.

Поддержка объемом - Volume Support (VS)
Этот режим реализует т.н. поддержку объемом, т.е. респиратор автоматически устанавливает уровень давления поддержки исходя из заданного врачом дыхательного объема. Режим этот присутствует в некоторых вентиляторах (Servo, Siemens, Inspiration). Врачом задается дыхательный объем поддержки, параметры триггера, передельные параметры вдоха. На инспираторную попытку респиратор дает пациенту заданный дыхательный объем и переключается на выдох.

Постоянное положительное давление в дыхательных путях - Continuous Positive Airway Pressure (СРАР)
Это режим спонтанной вентиляции, при котором респиратор поддерживает постоянное положительное давление в дыхательных путях. Собственно, опция поддержания постоянного положительного давления в дыхательных путях очень распространена и может быть использована при любом принудительном, принудительно-вспомогательном или вспомогательном режиме. Ее самый распространенный синоним - положительное давление в конце выдоха - Positive end-expiratory pressure (PEEP) . Если же пациент дышит полностью сам, то с помощью СРАР компенсируется сопротивление шлангов респиратора, пациенту подается согретый и увлажненный воздух с повышенным содержанием кислорода, а также поддерживаются альвеолы в расправленном состоянии; таким образом, этот режим широко используется при отлучении от респиратора. В настройках режима врачом задается уровень положительного давления (в см Н2О или mbar).

Компенсация сопротивления эндотрахеальной/трахеостомической трубки - Automatic Tube Compensation (АТС) или Tube Resistance Compensation (TRC)
Этот режим присутствует в некоторых респираторах и призван компенсировать дискомфорт пациента от дыхания через ЭТТ или ТТ. У больного с эндотрахеальной (трахеостомической) трубкой просвет верхних дыхательных путей ограничен ее внутренним диаметром, который значительно меньше, чем диаметр гортани и трахеи. По закону Пуазейля, с уменьшением радиуса просвета трубки резко увеличивается сопротивление. Поэтому во время вспомогательной вентиляции у больных с сохраняющимися самостоятельным дыханием возникает проблема преодоления этого сопротивления, особенно в начале вдоха. Кто не верит, попробуйте подышать некоторое время через взятую в рот "семерку". При использовании этого режима врачом задаются следующие параметры: диаметр трубки, ее характеристики и процент компенсации сопротивления (до 100%). Режим может использоваться в сочетании с другими режимами ВИВЛ.

Ну и в заключение поговорим о режиме BIPAP (BiPAP), который, как мне кажется, стоит рассмотреть отдельно.

Вентиляция с двумя фазами положительного давления в дыхательных путях - Biphasic positive airway pressure (BIPAP, BiPAP)

Название режима и его аббревиатура в свое время были запатентованы фирмой Дрегер. Поэтому, имея в виду BIPAP, мы подразумеваем вентиляцию с двумя фазами положительного давления в дыхательных путях, реализованную в респираторах фирмы Дрегер, а говоря о BiPAP подразумеваем то же самое, но в респираторах других производителей.

Мы здесь разберем двухфазную вентиляцию так, как она реализована в классическом варианте - в респираторах фирмы Дрегер, поэтому будем пользоваться аббревиатурой "BIPAP".

Итак, суть вентиляции с двумя фазами положительного давления в дыхательных путях состоит в том, что задается два уровня положительного давления: верхний - CPAP high и нижний - CPAP low, а также два временных интервала time high и time low, соответствующих этим давлениям.

Во время каждой фазы, при спонтанном дыхании, может состояться несколько дыхательных циклов, это видно на графике. Чтобы вам была понятна суть BIPAP, вспомните, что я писал ранее о СРАР: пациент дышит самостоятельно при определенном уровне постоянного положительного давления в дыхательных путях. А теперь представьте, что респиратор автоматически повышает уровень давления, а затем снова возвращается к исходному и делает это с определенной периодичностью. Вот это и есть BIPAP.

В зависимости от клинической ситуации длительность, соотношения фаз и уровни давлений могут изменяться.

Теперь переходим к самому интересному. К универсальности режима BIPAP.

Ситуация первая. Представьте себе, что у пациента полностью отсутствует дыхательная активность. В этом случае повышение давления в дыхательных путях во вторую фазу будет приводить к принудительной вентиляции по давлению, что графически будет неотличимо от PCV (вспоминайте аббревиатуру).

Ситуация вторая. Если пациент способен сохранять спонтанное дыхание на нижнем уровне давления (CPAP low), то при повышении его до верхнего будет происходить принудительная вентиляция по давлению, то есть режим будет неотличим от P-SIMV+CPAP.

Ситуация третья. Пациент способен сохранять спонтанное дыхание как на нижнем, так и на верхнем уровне давления. BIPAP в этих ситуациях работает как истинный BIPAP, показывая все свои преимущества.

Ситуация четвертая. Если мы установим при спонтанном дыхании пациента одинаковое значение верхнего и нижнего давлений, то BIPAP превратится во что? Правильно, в CPAP.

Таким образом, режим вентиляции с двумя фазами положительного давления в дыхательных путях является универсальным по своей сути и в зависимости от настроек может работать как принудительный, принудительно-вспомогательный или чисто вспомогательный режим.

Вот мы и рассмотрели все основные режимы ИВЛ, создав таким образом, основу для дальнейшего накопления знаний по этому вопросу. Сразу хочу заметить, что постичь все это можно только при непосредственной работе с пациентом и респиратором. Кроме того, производителями дыхательной аппаратуры выпускается множество программ-симуляторов, которые позволяют ознакомиться и поработать с каким-либо режимом, не отходя от компьютера.

Швец А.А. (Граф)

Основным побочным эффектом ИВЛ является ее отрицательное воздействие на кровообращение, которое можно отнести к числу почти неизбежных недостатков метода. Иной источник движущей силы и связанные с этим изменения механики процесса вентиляции служат причиной извращения сдвигов внутригрудного давления если в условиях спонтанной вентиляции как альвеолярное, так и внутриплевральное давление во время вдоха наименьшее, а во время выдоха наибольшее, то ИВЛ характеризуется обратным соотношением. Более того, увеличение давления во время вдоха намного превышает величину, которая имеет место при спонтанном дыхании во время выдоха. В результате при ИВЛ значительно повышается среднее внутригрудное давление. Именно это обстоятельство создает предпосылки для появления побочных вредных эффектов ИВЛ.

Мы уже отмечали, что в обычных условиях дыхательные движения и соответствующие колебания давления в грудной клетке служат дополнительным важным механизмом, способствующим притоку крови к сердцу и обеспечивающим достаючный сердечный выброс. Речь идет о присасывающем эффекте грудной клетки, развивающемся во время вдоха вследствие чего увеличивается перепад (градиент) давления между периферическими и большими грудными венами и облегчается приток крови к сердцу. Повышение давления во время вдоха при ИВЛ мешает присасыванию крови в большие вены. Более того, увеличение внутригрудного давления теперь уже препятствует венозному возврату со всеми вытекающими из этого последствиями.

Прежде всего, повышается ЦВД. Градиент давления между периферическими и большими венами уменьшается, венозный возврат, а вслед за ним сердечный выброс и артериальное давление снижаются. Этому способствует эффект мышечных релаксантов, выключающих скелетную мускулатуру, сокращения которой в обычных условиях служат "периферическим сердцем". Отмеченные сдвиги быстро компенсируются рефлекторным повышением тонуса периферических вен (а возможно, и мелких артерий, так как периферическое сопротивление возрастает), градиент венозного давления увеличивается, что содействует восстановлению нормальной величины сердечного выброса и артериального давления.

В описанном процессе компенсации существенное значение приобретают нормальный объем циркулирующей крови (ОЦК), сохранение способности сердечно-сосудистой системы к приспособительным реакциям и т.д. Например, выраженная гиповолемия сама по себе вызывает интенсивную вазоконстрикцию, и дальнейшая компенсация уже невозможна. Гиповолемия особенно опасна при применении ПДКВ, опасное воздействие которого на кровообращение еще более выражено. Столь же очевидна возможность осложнений на фоне тяжелой сердечно-сосудистой недостаточности.

Повышение внутригрудного давления непосредственно влияет также на сердце, которое в определенной степени сдавливается раздуваемыми легкими. Последнее обстоятельство позволяет даже говорить о "функциональной тампонаде сердца" в условиях ИВЛ. При этом снижается наполнение сердца, а следовательно, и сердечный выброс.

Легочный кровоток -- третий объект воздействия повышенного внутригрудного давления. Давление в легочных капиллярах в норме достигает 1,3 кПа (13 см вод. ст.). При выраженном повышении альвеолярного давления легочные капилляры частично или полностью сдавливаются, в результате чего: 1) это уменьшает количество крови в легких, перемещая ее на периферию, и является одним из механизмов повышения венозного давления; 2) создается чрезмерная нагрузка на правый желудочек, что в условиях сердечной патологии способно вызвать правожелудочковую недостаточность.

Рассмотренные пути нарушения кровообращения под влиянием ИВЛ играют большую роль при интактной грудной клетке. Положение меняется в условиях торакотомии. Когда грудная клетка открыта, повышение давления более не влияет на венозный возврат. Тампонада сердца также невозможна. Сохраняется только влияние на легочный кровоток, нежелательные последствия которого все же имеют определенное значение.

Таким образом, отличия механики ИВЛ от спонтанного дыхания не проходят бесследно для больного. Вместе с тем большинство больных способны компенсировать эти изменения, и клинически у них не обнаруживают никаких патологических сдвигов. Только у больных с предшествующими расстройствами кровообращения той или иной этиологии, когда приспособительные возможности понижены, ИВЛ может быть причиной осложнений.

Поскольку ухудшение условий кровообращения является неотъемлемой чертой ИВЛ, необходимо искать пути ослабления этого влияния. Разработанные в настоящее время правила позволяют в значительной степени ослабить интенсивность патологических сдвигов. Принципиальную основу этих правил составляет понимание того факта, что главной причиной расстройства кровообращения служит повышение внутригрудного давления.

Основные правила сводятся к следующему:

1) положительное давление на вдохе не следует поддерживать дольше, чем необходимо для эффективного газообмена;

2) вдох должен быть короче выдоха, а при ручной ИВЛ -- выдоха и паузы после него (оптимальное соотношение 1:2);

3) легкие следует раздувать, создавая быстрый газоток, для чего надо сжимать мешок достаточно энергично и одновременно по возможности более плавно;

4) сопротивление дыханию должно быть низким, что обеспечивается обрывистым падением давления во время выдоха, при ручной вентиляции -- поддерживанием мешка в полураздутом состоянии, а также туалетом дыхательных путей, применением бронходилататоров;

5) "мертвое пространство" должно быть сведено к минимуму.

Другие нежелательные эффекты ИВЛ. Тот факт, что выбор параметров ИВЛ имеет ориентировочный характер и не основывается на обратной связи с потребностями организма, предполагает возможность некоторых нарушений (к сожалению, серийное производство созданных в нашей стране аппаратов РОА-1 и РОА-2, автоматически устанавливавших необходимый для поддержания нормокапнии объем вентиляции, не было начато). Неверно заданный объем вентиляции неизбежно приводит к сдвигам газообмена, в основе которых лежит гипо- или гипервентиляция.

Не может вызвать возражений утверждение, что любая степень гиповентиляции вредна для больного. Даже при условии обогащения вдыхаемой смеси кислородом, что предупреждает гипоксию, гиповентиляция приводит к гиперкапнии и дыхательному ацидозу со всеми вытекающими из этого последствиями.

Каковы клиническое значение и вредные последствия гипервентиляции, в результате которой возникает гипокапния? Во время бурных дискуссий защитников и противников гипервентиляции каждая сторона выдвигала убедительные аргументы, самым неопровержимым из которых является утверждение, что манипуляции анестезиолога должны быть направлены на нормализацию функций, а не на заведомое их нарушение (особенно если оно сопровождается такими явлениями, как сдвиг влево кривой диссоциации оксигемоглобина и сужение сосудов головного мозга). Этот тезис действительно неоспорим: оптимальными условиями газообмена являются нормовентиляция и как ее следствие нормокапния. Однако в повседневной практике точная нормовентиляция является желаемым, но трудно достижимым идеалом как при ручной, так и при аппаратной ИВЛ. Если признать реальность этого факта, то неизбежен вывод, что из двух зол выбирают наименьшее, чем является легкая гипервентиляция, при которой pc о, артериальной крови поддерживается около 4 кПа (30 мм рг. ст.). Рассмотренные нами правила выбора объема вентиляции обеспечивают такую возможность, а возникающая при этом небольшая гипокапния практически безвредна для больного.

В качестве одного из путей оптимизации ИВЛ и предупреждения нежелательного влияния ее на кровообращение была предложена вентиляция с ВППОД. Фаза отрицательного давления, снижая среднее давление в грудной клетке, действительно может улучшить условия гемодинамики. Однако это положение теряет значение при операциях на открытой грудной клетке. Кроме того, ВППОД, кроме преимуществ, обладает существенными недостатками.

У больных эмфиземой или бронхиальной астмой выдох затруднен. Казаюсь бы, имеются прямые показания к использованию фазы отрицательного явления у больных этой группы. Однако у них в результате патологического процесса стенки мелких бронхов могут быть истончены. Отрицательная фаза увеличивает перепад давления между альвеолами и ртом. При превышении определенного уровня разницы давлений включается механизм, получивший название "клапан-отсекатель" (chack-valve в англоязычной литературе): истонченные стенки бронхов спадаются и задерживают часть выдыхаемого в альвеолах (воздушная ловушка). Тот же механизм имеет место у эмфизематозных больных во время форсированного выдоха Эта особенность ставит под сомнение пользу применения ВППОД у лиц, страдающих хроническими легочными заболеваниями. Если к этому добавить, что отрицательное давление способно приводить к экспираторному закрытию дыхательных путей даже у здоровых лиц, то следует признать, что без особых показаний применение ВППОД нецелесообразно.

К числу нежелательных эффектов ИВЛ следует отнести также баротравму, возможность которой возрастает при применении ПДКВ, особенно в отсутствие должного контроля за величиной избыточного давления.

Наконец, можно упомянуть снижение мочеотделения, обусловленное ИВЛ. Этот эффект длительной ИВЛ опосредуется через антидиуретический гормон. Однако нет четко документированных данных, которые свидетельствовали бы о подобном значении относительно кратковременного (несколько часов) периода ИВЛ во время анестезии. Невозможно также отличить антидиуретический эффект ИВЛ от задержки мочеотделения, вызванной другими причинами, во время и в ближайшие часы после операции.

Богданов А.А.
врач анестезиолог, Wexham Park and Heatherwood Hospitals, Berkshire, UK,
e - mail

Данная работа написана в попытке познакомить врачей анестезиологов-реаниматологов с некоторыми новыми (а возможно и не очень) режимами вентиляции при СОПЛ. Зачастую эти режимы упоминаются в различных работах в виде аббревиатур и многие врачи просто-напросто не знакомы с самой идеей таких методик. В надежде заполнить этот пробел и была написана эта статья. Она ни в коей мере не является руководством по применению того или иного метода вентиляции при вышеупомянутом состоянии, так как по каждому методу не только возможна дискуссия, но для полного освещения необходима отдельная лекция. Однако если возникнет интерес к тем или иным вопросам автор будет рад обсудить их так сказать в развернутом порядке.

Многократно упоминавшаяся Согласительная Конференция Европейского Общества Интенсивной Терапии и Американского Колледжа Специалистов Пульмонологов совместно с Американским Обществом Интенсивной терапии приняли документ, который во многом оnределяет отношение к ИВЛ.

Прежде всего следует упомянуть принципиальные установки при проведении ИВЛ.

  • Патофизиология основного заболевания варьирует во времени, поэтому режим, интенсивность и параметры ИВЛ необходимо пересматривать регулярно.
  • Необходимо применять меры для уменьшения риска потенциальных осложнений от самой ИВЛ.
  • В целях уменьшения таких осложнений физиологичекие параметры моrут откпоняться от нормальных и не следует стремиться к достижению абсолютной нормы.
  • Перерастяжение альвеол является наиболее вероятным фактором в возникновении ИВЛ-зависимых повреждений легких; давление плато к настоящему времени служит наиболее точным фактором, отражающим перерастяжение альвеол. Где можно, необходимо не превышать уровень давления в 35 мм Н2О.
  • Динамическое перераздувание часто проходит незамеченным. Его необходимо измерять, оценивать и ограничивать.

Физиологические:

  • Поддержка газообмена или манипуляция им.
  • Увеличение обьема легких.
  • Уменьшение или манипуляция работы дыхания.

Клинические:

  • Реверсирование гипоксемии.
  • Реверсирование угрожающих жизни нарушений КЩС.
  • Респираторный дистресс.
  • Предотвращение или расправление ателектаза.
  • Усталость дыхательных мышц.
  • При необходимости седации и нервно-мышечного блока.
  • Снижение системного или кардио потребления кислорода.
  • Снижение ВЧД.
  • Стабилизация грудной клетки.

Баротравма

Классически баротравма определяется как наличие экстраальвеолярного воздуха, что клинически проявляется интерстициальной эмфиземой, пневмотораксом, пневмоперитонеумом, пневмоперикардом, подкожной эмфиземой, системным газовым эмболизмом. Все эти проявления как полагают вызваны высоким давлением или обьемом при проведении ИВЛ. В дополнение к этому в настоящее время (правда, основываясь на экспериментальных данных) официально признано существование так называемого вентилятор-зависимого повреждения легких (ventilator induced lung іnјurу - VILI), что клинически проявляется в виде повреждения легких, которое трудно отличить от СОПЛ как такового. То есть ИВЛ может не только не улучшить течение заболевания, но и ухудшить его. Факторами, вовлеченными в развитие этого состояния, называют высокий дыхательный объем, высокое пиковое давление в дыхательных путях, высокий остаточный объем в конце выдоха, газоток, среднее давление в дыхательных путях, концентрация вдыхаемого кислорода - и все со словом «высокое». Первоначально основное внимание уделялось высоким цифрам пикового давления в дыхательных путях (баротравма), однако в последнее время стали считать, что высокое давление само по себе не так страшно. Внимание сконцентрировано в большей мере на высоких значениях ДО (волютравма). В эксперименте было показано, что необходимо всего 60 минут ИВЛ с до 20 мл/кг для развития VILI. Следует оговориться, что развитие VILI y человека проследить весьма сложно, так как развитие этого состояния перекрещивается с основным показанием для ИВЛ. Присутствие значительного количества внеальвеолярного воздуха редко проходит незамеченным, однако менее драматические проявления (интерстициальная эмфизема) моrут оставаться недиагностированньіми.

На основании данных компьютерной томографии удалось показать, что СОПЛ характеризуется негомогенным характером поражения легких, когда участки инфильтратов чередуются с ателектазами, нормальной легочной тканью. При этом было отмечено, что как правило nораженные участки легкого располагаются более дорсально, в то время как более здоровые отделы легкого - более вентрально. Таким образом более здоровые участки легкого будут подвергаться значительно большей аэрации и получать большую часто ДО по сравнению в пораженными отделами. В такой ситуации минимализировать риск развития VILI достаточно трудно. Принимая это во внимание в настоящее время рекомендуют при проведении ИВЛ придерживаться баланса между умеренными значениями ДО и перераздуванием альвеол.

Пермиссивная гиперкапния

Такое внимание к VILI привело к тому, что ряд авторов преложили концепцию, согласно которой необходимость поддержания нормальных физиологических параметров (в особенности РаСО2) у некоторых больных может быть нецелесообразной. Чисто логически такое утверждение имеет смысл, если nринять во внимание тот факт, что больные с хроническими обструктивными заболеваниями легких в норме имеют высокие значения РаСО2. Таким бразом коцепция пермиссивной гиперкапнии утверждает, что имеет смысл снизить ДО для предохранения неповрежденной части легкого за счет повышения РаСО2. Предсказать нормативные показатели для такого типа ИВЛ трудно, рекомендуют мониторировать давление плато для диагностирования того момента, когда дальнейшее увеличение ДО сопровождается значительным повышением давления (то есть легкое становится перераздутым).

Хорошо известно, что респираторный ацидоз сопровождается неблагоприятным исходом, однако считают (не без основания), что контролируемый и умеренный ацидоз, вызываемый пермиссивной гиперкапнией, не должен вызывать никаких серьезных последствий. При этом следует иметь ввиду, что гиперкапния вызывает стимуляцию симпатической НС, что сопровождается повышением выброса катехоламинов, легочной вазоконстрикцией, увеличением церебрального кровотока. Соответственно, пермиссивная гиперкапния не показана при ЧМТ, ИБС, кардиомиоnатиях.

Следует также отметить, что до настоящего времени контролированных рандомизированных исследований, указывающих на улучшение выживаемости больных, не было опубликовано.

Аналогичные рассуждения nривели к появлению пермиссивной гипоксии, когда в случаях трудной вентиляции приносится в жертву достижение нормальных значений Ра02, и снижение ДО сопровождается значениями Ра02 порядка 8 и выше кРа.

Вентиляция по давлению

Вентиляция по давлению активно использовалась для лечения в неонаталогии, но только в nоследние 10 лет эта методика стала nрименяться во взрослой интенсивной терапии. В настоящее время полагают, что вентиляция по давлению является следующим шагом, когда вентиляция по объему не оказывает должного эффекта, когда респираторный дистресс значительно выражен или имеются nроблемы, связанные с обструкцией дыхательных путей или синхронизации больного с вентилятором, а также при трудностях снятия с вентилятора.

Очень часто вентиляцию по объему комбинируют с ОСВВ, и многие специалисты считают эти две методики практически синонимами.

Вентиляция по давлению состоит в том, что во время вдоха вентилятор доставляет газоток (какой бы ни потребовался) до заранее установленного значения давления в дыхательных nутях в течение так же заранее заданного времени.

Объемные вентиляторы требуют установки дыхательного объема и частоты дыханий (минутного объема), а также соотношения вдох-выдох. Изменения импеданса системы легкие-вентилятор (как например увеличение сопротивления дыхательных путей или снижение легочного комплайенса) nриводят к изменению давления вдоха для достижения дставки преустановленного дыхательного обьема. В случае вентиляции по давлению необходима установка желаемого давления в дыхательных путях и времени вдоха.

Многие модели современных вентиляторов имеют встроенные модули вентиляции по давлению, включающих различные режимы такой вентиляции: поддержка давлением (pressure support ventilation), вентиляция с контролируемым давлением (pressure control ventilation), вентиляция по давлению с обратным соотношением вдох-выдох, вентиляция сбросом давления в дыхательных путях (airway pressure release ventilation). Все эти режимы используют предопределенное значение давления в дыхательных nутях как неизменяемый параметр, в то время как ДО и газоток являются изменяемыми величинами. При этих режимах вентиляции начальный газоток достаточно высок, а затем снижается довольно быстро, частота дыхания определяется временем, так что дыхательный цикл не зависит от усилий пациента (за исключением поддержки давлением, где весь дыхательный цикл основан на триггеринге больным).

Потенциальными преимуществами вентиляции по давлению по сравнению с обычными обьемными методами вентиляции называют следующие факторы:

  1. Более быстрый газоток на вдохе обеспечивает лучшую синхронизацию с аппаратом снижая тем самым работу дыхания.
  2. Раннее максимальное радувание альвеол обеспечивает лучший газообмен, так как по крайней мере теоретически обеспечивается лучшее диффундирование газа между различными типами (быстрые и медленные) апьвеол, а также между различными участками легкого.
  3. Улучшается альвеолярный рекруитмент (вовлечение в вентиляцию ранее ателектазированных альвеол).
  4. Ограничение значений давления позволяет избежать баро-волю травмы при ИВЛ.

Отрицательными сторонами такого режима вениляции является потеря гарантированного ДО, неисследованные пока возможности потенциальной VILI. Так или иначе, несмотря на широкое распространение вентиляции по давлению и некоторые положительные отзывы, убедительных доказательств преимуществ вентиляции по давлению пока нет, что означает только тот факт, что нет убедительных исследований, посвященных этой теме.

Одной из разновидностей вентиляции по давлению, или скорее попыткой сочетать положительные стороны разных методик вентилляции, является режим вентиляции, когда используется вдох, лимитированный по давлению, но цикличность вдохов сохраняется такой же, как и при обьемной вентиляции (pressure regulated volume controI). При данном режиме давление и газоток постоянно варьируют, что по крайней мере теоретически обеспечивает наилучшие условия вентиляции от вдоха к вдоху.

Вентиляция с обратным соотношением вдох-выдох (ОСВВ)

Легкие больных с СОПЛ представляют собой довольно разнородную картину, где наряду со здоровыми альвеолами соседствуют поврежденные, ателектатические и заполненные жидкостью. Комплайенс здоровой части легкого ниже (то есть лучше) чем у поврежденной части, поэтому здоровые альвеолы при вентиляции получают большую часть дыхательного объема. При использовании обычных дыхательных объемов (10 - 12 мл/кг) значительная часть ДО вдувается в относительно небольшую неповрежденную часть легкого, что сопровождается развитием значительных сил растяжения между альвеолами с повреждением их эпителия, а также альвеолярных капилляров, что само по себе вызывает появление воспалительного каскада в альвеолах со всеми вытекающими отсюда последствиями. Такое явление называют волютравмой, соотнося его со значительными дыхательными объемами, применяемыми при лечении СОПЛ. Таким образом сам метод лечения (ИВЛ) может вызывать повреждение легких, и многие авторы связывают значительную летальность при СОПЛ именно с волютравмой.

Для улучшения результатов лечения многие исследователи предлагают использовать обратное соотношение вдох-выдох. Обычно при ИВЛ мы используем соотношение 1:2 с целью создания благоприятных условий для нормализации венозного возврата. Однако при СОПЛ, когда в современных отделениях интенсивной терапии есть возможность мониторировать венозный возврат (ЦВД, давление заклинивания, эзофагеальный Допплер), а также при использовании инотропной поддержки такое соотношение вдох-выдох по крайней мере становится второстепенным.

Предложенная методика реверсии соотношения до 1:1 или вплоть до 4:1 позволяет удлинить фазу вдоха, что сопровождается улучшением оксигенации у больных с СОПЛ и широко используется повсеместно, так как появляется возможность поддерживать или улучшать оксигенацию при меньшем давлении в дыхательных путях, а соответственно - со снижением риска волютравмы.

Предполагаемые механизмы действия ОСВВ заключают в себе снижение артериовенозного шунтирования, улучшение соотношения вентиляции и перфузии, снижение мертвого пространства.

Многие исследования указывают на улучшение оксигенации и снижение шунтирования при применении этой методики. Однако при снижении времени выдоха возникает опасность увеличения авто-ПДКВ, что также было убедительно показано в достаточном количество работ. Более того, полагают, что снижение шунта идет параллельно развитию авто-ПДКВ. Значительное число авторов рекомендуют не использовать крание значения ОСВВ (типа 4:1), а ограничиваться умеренным 1:1 или 1,5:1.

Что касается улучшения соотношения вентиляции-перфузии, то чисто с физиологической точки зрения такое маловероятно и прямых доказательств этому в настоящее время нет.

Снижение мертвого пространства было доказано при применении ОСВВ, однако клиническое значение этого факта не совсем ясно.

Исследования на тему положительных эффектов такого типа вентиляции противоречивы. Ряд исследователей сообщают положительные результаты, в то время как другие не согласны с этим. Нет никаких сомнений, что более длительный вдох и возможное ауто-ПДКВ оказывает влияние на работу сердца, снижая сердечный выброс. С другой стороны, эти же условия (повышенное внутригрудное давление) могут сопровождаться улучшением производительности сердца в результате снижения венозного возврата и снижения нагрузки на левый желудочек.

Существуют еще несколько сторон ОСВВ, которые недостаточно освещены в литературе.

Более медленый газоток во время вдоха как уже упоминалось может снижать частоту возникновения волютравмы. Этот эффект независим от других положительных сторон ОСВВ.

Кроме того, некоторые исследователи полагают, что альвеолярный рекрутмент (то есть возвращение затопленных альвеол к нормальному состоянию под влиянием ИВЛ) при использовании ОСВВ может происходить медленно, при этом затрачивается больше времени, чем при использовании ПДКВ, однако одинаковый уровень оксигенации с более низкими значениями внутрилегочного давления, чем при использовании обычной методики ИВЛ с ПДКВ.

Как и в случае ПДКВ результат варьирует и зависит от легочного комплайенса и степени волемии каждого отдельного больного.

Одним из негативных моментов является необходимость седировать и парализовать больного для проведения такого режима ветиляции, так как дискомфорт при удлинении вдоха сопровождается плохой синхронизацией больного с вентилятором. Кроме того существуют разногласия среди специалистов на тему использовать ли небольшие значения ауто-ПДКВ, или применять искуственное (наружное) ПДКВ.

Как уже упоминалось, вентиляция сбросом давления в дыхательных путях близко

напоминает предыдущий метод вентиляции. При этой методике предопределенное значение давления применяется для достижения вдоха, сброс давления в контуре сопровождается пассивным выдохом. Разница закпючается в том, что больной может делать nроизвольные вдохи. Преимущества и недостатки этой методики еще предстоит оценить.

Жидкостная вентиляция

Эта методика существовала в лабораториях по крайней мере 20 лет, но только недавно была введена в клинику. При этой методике вентиляции используются nерфторуглеводороды, которые обладают высокой растворимостью для кислорода и углекислого газа, что позволяет осуществлять газообмен. Преимуществом данного метода является устранения интерфейса газ-жидкость, что позволяет снизить поверхностное натяжение, позволяя раздутие легких с меньшим давлением, а также улучшить вентиляционно-перфузионное соотношение. Недостатками являются необходимость сложной аппаратуры и специально разработанных дыхательных систем. Это фактор в сочетании с nовышенной работой дыхания (жидкость вязкая по сравнению с воздухом) привели специалистов к выводу, что пока применение этой методики непрактично.

Для преодоления трудностей жидкостной вентиляции была предложена методика частичной жидкостной вентиляции, когда используются небольшие количества перфторуглеводородов для частичного или полного замещения функционального остаточного объема в сочетании с обычной вентиляцией. Такая система относительно несложна и первоначальные сообщения достаточно обнадеживающи.

Концепция открытого легкого

Концепция открытого легкого в узком смысле этого слова не является методикой вентиляции как таковой, скорее она представлет собой концепцию применения вентиляции по давлению при СОПЛ и сходных с ним состояниях. КОЛ использует характеристики здорового легкого для сохранения сурфактанта и предотвращения легкого от «затопления» и инфицирования. Эти цели достигаются при помощи открытия «затопленных» альвеол (рекруитмент) и предотвращения их закрытия во время всего вентиляторного цикла. Непосредственными результатами КОЛ являются улучшение легочного комплайенса, снижение отека альвеол и в конце концов - снижение риска развития полиорганной недостаточности. В концепцию данного обзора не входит задача оценки или критики тех или иных методик проведения КОЛ, поэтому здесь будет помещена только самая базисная методика.

Идея КОЛ появилась в результате того факта, что при обычных режимах вентиляции вентилируются неповрежденные альвеолы, а что касается поврежденных - то они лучшем случае раздуваются (рекруитмент) во время вдоха и в последующем спадаются во время выдоха. Такой процесс раздувания - коллапса сопровождается вытеснением сурфактанта из альвеол в бронхиолы, где он подвергается разрушению. Соответственно появилась идея, что наряду с обычными задачами - поддержание газообмена - при ИВЛ желательно поддерживать объм газа в конце выдоха выше остаточного объема для предотвращения истощения сурфактанта и негативных эффектов ИВЛ на обмен жидкости в легких. Именно это задачи достигаются «открытием» легкого и поддержанием его в «открытом» состоянии.

Основной принцип проиллюстрирован на рис.1.

Рис. 1. Давление Ро необходимо для раскрытия альвеол, но по достижении этого давления (то есть по открытии легкого) продолжение вентиляции происходит с меньшими значениями давления (область между D и С). Однако если давление в альвеолах снизится ниже Рс - снова возникнет их коллапс.

Вопросы практики:

КОЛ не нуждается в специальном оборудовании или мониторниге. Необходимый минимум состоит из вентилятора, способного доставлять вентиляцию по давлению, монитора КЩС, пульсоксиметра. Ряд авторов рекомендуют постоянный мониторинг КЩС в сочетании с постоянным мониторингом сатурации. Это довольно сложные приборы, котрые доступны далеко не всем. Описаны методики применения КОЛ с более-менее приемлимым набором оборудования.

Итак, как это все осуществить - методка открытого легкого?

Сразу оговорюсь - описание достаточно базисное, без особых деталей и подробностей, но мне кажется, что это именно то, что необходимо для практического врача.

Нахождение точки открытия: прежде всего, ПДКВ перед выполнением всего маневра необходимо установить на уровне между 15 и 25 см Н2О до тех пор, пока не будет достигнуто пиковое давление порядка 45 - 60 см Н2О в виде статического давления в дыхательных путях или комбинации с авто-ПДКВ. Этот уровень давления достаточен для открытия альвеол, которые в данный момент будут подвергаться рекруитмент под влиянием высокого давления (то есть открываться при вдохе). При соотношении вдох-выдох достаточном для гарантии нулевого газотока в конце выдоха, пиковое давление увеличивают постепенно на 3 - 5 см Н2О до достижения вышеуказанного его уровня. Во время процесса открытия альвеол РаО2 (парциальное давление кислорода) является указателем успешного раскрытия альвеол (это единственный параметр, коррелирующий с физическим количеством легочной ткани, участвующей в газообмене). При наличии выраженного легочного процесса необходимо частое измерение КЩС во время процесса титрации давления.

Рис.2 Стадии процесса при использовании методики открытого легкого.

Ряд авторов даже рекомендует постоянное измерение РаО2 при помощи специальных методик, однако на мой взгляд отсутствие такого специализированного оборудования не должно служить отпугивающим фактором для применения данной методики.

По нахождении максимального значения РаО2, которое не увеличивается далее по мере увеличения давления в дыхательных путях - первая стадия процесса завершена - найдены значения давления открытия альвеол.

Затем давление начинают постепенно снижать, продолжая мониторинг РаО2 до тех пор, пока не будет найдено давления, при котором это значение начинает (но только начинает) снижаться - что означает нахождение давления, при котором часть альвеол начинает коллабировать (закрываться), что соответствует давлению Рс на рис.1. При снижении РаО2 давление снова на короткое время (10 - 30 сек) устанавливают на уровень давления открытия, а затем осторожно снижают до уровня чуть выше давления закрытия, стремясь к получению максимально низкого давления. Таким образом получают значение давления для вентиляции, которое позволяет открыть альвеолы и во время фазы вдоха удерживает их в открытом состоянии.

Поддержание легкого в открытом состоянии: необходимо убедиться, что уровень ПДКВ установлен чуть выше Рс (Рис.1), после чего повторяют вышеописанную процедуру, но для ПДКВ, находя наиболее низкое значение ПДКВ, при котором достигается максимальное значение РаО2. Этот уровень ПДКВ является «нижним» давлением, позволяющим поддерживать альвеолы в открытом состоянии в течение выдоха. Процесс открытия легких схематически изображен на рис.2.

Считается, что процесс открытия альвеол практически всегда выполним в первые 48 часов ИВЛ. Даже если не удается открыть все легочные поля, применение такой стратегии вентиляции позволяет минимализировать повреждения легочной ткани при ИВЛ, что в конце концов позволяет улучшить результаты лечения.

В заключение можно суммировать все вышесказанное следующим образом:

  • Открытие легкого производится при помощи высокого давления на вдохе.
  • Поддержание легкого в открытом состоянии осуществляется при помощи поддержания уровня ПДКВ выше уровня закрытия альвеол.
  • Оптимизация газообмена достигается при помощи минимализации вышеуказанных давлений.

Вентиляция лицом вниз или в положении на животе(ВЛВ)

Как уже указывалось, поражение легкого при СОПЛ негомогенно и наиболее пораженные участки как правило локализованы дорсально, с преимущественным расположением непораженных участков вентрально. В результате здоровые участки легкого получают преимущественное количество ДО, что сопровождается nерераздуванием альвеол и nриводит к вышеупомянутым поражением легких в результате самой ИВЛ. Примерно 10 лет назад появились первые сообщения о том, что переворот больного на живот и продолжение вентиляции в этом положении сопровождалось значительным улучшением оксигенации. Это достигалось без каких-либо изменений в режиме вентиляции за исключением снижения FіО2 в результате улучшения оксигенации. Это сообщение привело к появлению значительного интереса к данной методике, причем первоначально были опубликованы только предположительные механизмы действия такой вентиляции. В последнее время появился ряд работ, которые позволяют более-менее суммировать факторы, приводящие к улучшению оксигенации в положении на животе.

  1. Вздутие живота (часто встречающееся у больных на ИВЛ) в положении лицом вниз сопровождается значительно более низким внутрижелудочным давлением, а соответственно сопрождается меньшим ограничением подвижности диафрагмы.
  2. Было показано, что распространение легочной перфузии в положении лицом вниз было гораздо более равномерным, особенно при использовании ПДКВ. А это в свою очередь сопровождается гораздо более равномерным и близким к нормальному соотношением вентиляции-перфузии.
  3. Эти положительные изменения преимущественно происходят в дорсальных (то есть наиболее пораженных) отделах легкого.
  4. Увеличение функционального остаточного обьема.
  5. Улучшение трахео-бронхеального дренажа.

У меня есть личный небольшой опыт использования ВЛВ при СОПЛ. Обычно применение такой вентиляции происходит у больных, которых трудно вентилировать обычными методиками. Как правило, они уже вентилируются по давлению с высокими значениями давления плато, с ОСВВ и Fі02 приближающимся к 100%. При этом РаО2 как nравило с большим трудом удается удерживать на значениях, близких или ниже 10 кРа. Переворот больного на живот сопровождается улучшением оксигенации в течение часа (иногда быстрее). Как nравило, сеанс вентиляции на животе продолжается 6 - 12 часов, и повторяется при необходимости. В дальнейшем длительность сеансов сокращается (больному просто не нужно столько времени для улучшения оксигенации) и проводятся они гораздо реже. Это конечно не панацея, но на собственной практике я убедился, что методика работает. Интересно, что в опубликованной в последние несколько дней статье Gattinioni указывается, что оксигенация больного под влиянием такой методики вентиляции действительно улучшается. Однако клинический результат лечения не отличается от контрольной группы, то есть - летальность не снижается.

Заключение

В последние годы отмечается смещение философии ИВЛ при СОПЛ с отходом от первоначальной концепции достижения нормальных физиологических параметров любой ценой и перемещением взглядов к минимализации повреждения легкого, вызванного самой вентиляцией.

Первоначально предлагалось ограничить ДО с целью не превышать давление nлато (это давление, измеряемое в дыхательных путях к концу вдоха) более 30-35 см. Н2О. Такое ограничение ДО сопровождается снижением элиминации С02 и потерей легочных обьемов. Накопилось достаточно доказательств, чтобы утверждать, что больные переносят такие изменения без проблем. Однако со временем стало ясно, что ограничение ДО или давления на вдохе сопровождалось отрицательными результатами. Как полагают, это является следствием снижения (или вообще прекращения) альвеолярного рекруитмента во время каждого вдоха с последующим ухудшением газообмена. Результаты ранних исследований указывают, что увеличение рекруитмента позволяет преодолеть негативные стороны снижения давления или обьема.

Существует по крайней мере две таких методики. Одна заключается в использовании умеренно высокого давления на вдохе в течение относительно длительного времени (порядка 40 секунд) для увеличения рекруитмента. Затем вентиляция продолжается в прежнем режиме.

Вторая (и на мой взгляд более обещающая) стратегия - это стратегия открытого легкого, которая оnисана выше.

Последним направлением в предупреждении ИВЛ-зависимого повреждения легких является рациональное исnользование ПДКВ, подробное описание метода приведено в методике открытого легкого. Однако следует указать, что рекомендуемые уровни ПДКВ серьезно превышают рутинно исnользуемые значения.

Литература

  1. 1 . Carl Shanholtz, Roy Brower "Should inverse ratio ventilation be used in Adult Respiratory Distress Syndrome?" Am J Respir Crit Care Med vol 149. pp 1354-1358, 1994
  2. "Mechanical ventiiation: a shifting philosophy" Т.Е. Stewart, А.Ѕ. Slutsky Current Opinion in Critical Саге 1995, 1:49-56
  3. J. ViIIar, A. Ѕlutѕkу “Is the outcome from acute respiratory distress syndrome improving?” Current Opinion in CriticaI Care 1996, 2:79-87
  4. M.Mure, Ѕ. Lindahl “Prone position improves gas exchange - but how?” Acta Anaesthesiol Scand 2001, 45: 50-159
  5. W. Lamm, M. Graham, R. AIbert "Mechanism by which the Prone Position improves Oxygenation in Acute Lung injury" Ам J Respir Crit Cre Med, 1994, voI 150, 184-193
  6. H. Zang, V. Ranieri, A. Ѕlutѕkу “CelluIar effects of ventilator induced lung іnјurу” Current Opinion in CriticaI Care, 2000, 6:71-74
  7. M.O. Meade, G.H. Guyatt, T.E. Stewart "Lung protection during mechanical ventilation" іп Yearbook of Intensive Care Mеdісіnе,1999, рр 269-279.
  8. А.W. Kirpatrick, M.O. Meade, T.E. Stewart “Lung protective vепtіІаtоrу strategies in ARDS” in Yearbook of intensive Care Medicine, 1996, рр 398 - 409
  9. B. Lachmann "The concept of open lung management" The International Journal of Intensive Care, Winter 2000, 215 - 220
  10. S. H. Bohm et al "The open lung concept" in Yearbook of Intensive Care Medicine, pp 430 - 440
  11. J.Luce "Acute lung injury and acute respiratory distress syndrome" Crit Care Med 1998 vol 26, No 2369-76
  12. L. Bigatello et al "Ventilatory management of severe acute respiratory failure for Y2K" Anesthesiology 1999, V 91, No 6, 1567-70
Please enable JavaScript to view the
Поделиться: