Трансдукция. Виды. Механизм неспецифической трансдукции. Генетическая рекомбинация при трансформации. Трансдукция у бактерий. Общая и специфическая трансдукция. Использование трансформации и трансдукции для картирования генов Трансдукция осуществляется с

В другую бактериофагом . Общая трансдукция используется в генетике бактерий для картирования генома . К трансдукции способны как умеренные фаги, так и вирулентные , последние, однако, уничтожают популяцию бактерий, поэтому трансдукция с их помощью не имеет большого значения ни в природе, ни при проведении исследований.

Трансдукция была описана Нортоном Зиндером и Джошуа Ледербергом в 1952 году у Salmonella . Они наблюдали восстановление нормальных фенотипов у ауксотрофных штаммов , и доказали, что перенос генетического материала мог осуществлять только вирус .

Механизм

Общая схема трансдукции

Трансдукция - это опосредованная фагами передача ДНК между бактериальными клетками. Ключевой этап этого процесса - упаковка переносимой ДНК в головку фага во время литической фазы его жизненного цикла , то есть когда клетка погибает, высвобождая наружу вирусные частицы . Как правило, при сборке вирусных частиц в головку фага попадает его собственная ДНК, но изредка случаются ошибки, когда в головку фага попадают фрагменты бактериальной ДНК, которые могли образоваться, например, при вызванном фагом разрушении бактериальной хромосомы . Фаговые частицы, содержащие фрагменты бактериальной ДНК, называют трансдуцирующими частицами. Они могут заражать клетки как нормальные фаги, так как имеют все необходимые для этого гены . Когда после прикрепления к клетке фаг впрыскивает в неё свою геномную ДНК, он впрыскивает и бактериальную ДНК, содержащуюся в его головке. Любопытно, что трансдукция возможна и во время литического цикла.

К трансдукции способны не все фаги. К ней способны лишь те фаги, которые вызывают фрагментацию бактериальной геномной ДНК на фрагменты нужного размера, чтобы они поместились в капсид . Иногда в вирион попадает не геномная ДНК бактерии, а плазмида , которая после попадания в следующую заражённую клетку продолжит удваиваться. Фрагменты генома, переносимые фагами, напротив, к репликации неспособны ; их удвоение возможно лишь в том случае, если они смогут интегрироваться в хромосому бактерии-реципиента . Если фрагмент бактериального генома так и останется свободным, он в течение нескольких поколений будет попадать в одну из дочерних клеток при делении ; такую трансдукцию называют абортивной .

Видео по теме

Трансдукционное картирование

Трансдукцию применяли для картирования генов бактериальных хромосом. Метод основан на том, что фрагменты бактериальной ДНК, переносимые при трансдукции, достаточно велики и могут содержать целый ряд генов, поэтому близко расположенные гены могут при трансдукции переноситься одновременно (котрансдукция). Чем меньше гены


Трансдукция - это перенос генетического материала из одной бактериальной клетки в другую бактериофагом. Трансдукция была открыта в 1952 г. Н. Циндером и Е. Ледербергом на двух ауксотрофных мутантах Salmonella typhimurium. Опыт проводился в {/-образной трубке, разделенной стеклянным ультратонким пористым фильтром. В одну часть ее помещали гистидин - зависимый штамм 2А, в другую - триптофан - зависимый штамм 22А. Спустя некоторое время в культуре штамма 22А появлялись прототрофы, синтезирующие триптофан. Было установлено, что штамм 22А содержал фаг (Р22), способный лизировать клетки штамма 2А. Проникая через стеклянный фильтр, фаг Р22 лизировал клетки штамма 2А. При этом высвобождался неизвестный агент, названный фильтрующимся. Этот агент проходил через фильтр и сообщал некоторым клеткам штамма 22А способность к синтезу триптофана. Поэтому при высеве культуры 22А на среду, не содержащую триптофан, появлялся рост этой культуры.
Изучение величины (по размерам пор фильтра), скорости седиментации, чувствительности к нагреванию этого фильтрующегося агента показало, что он идентичен таковыми фага Р22. На основании этого было сделано заключение, что содержащийся в культуре 22А фаг проходил через фильтр, инфицировал чувствительные к нему клетки штамма 2А и в процессе репродукции в состав своего генома включал фрагмент хромосомы бактерий этого штамма. Высвободившись из лизированных клеток, фаг проходил обратно в колено трубки, где были клетки штамма 22А. При инфицировании этих клеток фаг передавал им унесенный фрагмент хромосомы клеток штамма 2А, которые были независимы по триптофану. В результате интеграции этого фрагмента в хромосому клеток штамма 22А образовывались прототрофные рекомбинанты. В культуре штамма 2А прототрофы не появлялись, так как клетки лизировались.
Фаг может переносить гены, ответственные за различные свойства клетки: устойчивость к антибиотикам, токсинообразова- ние, прототрофность. При трансдукции, как и при трансформации, переносятся только небольшие фрагменты ДНК - не более 1/100 длины бактериальной хромосомы.
Трансдуцирующими свойствами обладают только некоторые умеренные фаги, а именно: фаги, которые несут в составе своего генома фрагмент бактериальной хромосомы. Эти фаги дефектны: они не содержат полный набор собственных генов. Часть их генов остается в хромосоме бактерий (вместо взятых генов хромосомы).
Различают три типа трансдукции: общую, или неспецифическую, специфическую и абортивную.
Тип трансдукции определяется условиями формирования трансдуцирующих фагов.
Общая трансдукция осуществляется фагами, которые образуются в ходе литического цикла. При внутриклеточном размножении фага происходит разрушение бактериальной хромосомы и отдельные случайные фрагменты ее включаются в созревающие частицы фага. Размер включенного фрагмента определяется емкостью головки фага. Например, трансдуцирующий фаг Р1 включает 2,3 % хромосомы Е. coli, фаг Р22, геном которого в 2,3 раза меньше, чем у Р1 (следовательно, и емкость головки также меньше), включает 1 % хромосомы сальмонелл. У отдельных трансдуцирующих фагов вся их ДНК может быть заменена на бактериальную. Поэтому такие фаги могут переносить любые хромосомные гены и включаться в любой участок хромосомы реципиента. Фаги, обеспечивающие такую трансдукцию, могут переносить гены, контролирующие пищевые потребности бактерий, ферментативные свойства, устойчивость к лекарственным препаратам, серологические и вирулентные свойства, т. е. любые свойства донорной клетки.
Специфическая трансдукция осуществляется фагами, образовавшимися в результате индукции лизогенных бактерий (например, облучением их УФ), либо при спонтанном освобождении профага из хромосомы. В общих случаях формирующийся фаг при исключении из хромосомы может включать в свой геном только рядом расположенный сегмент хромосомы, оставив часть своего генома в хромосоме. В отличие от фагов, осуществляющих общую трансдукцию, в геноме которых преобладает бактериальная ДНК, у фагов специфической трансдукции основную часть генома составляет фаговая ДНК. При лизогенизации чувствительных бактерий геном фага специфической трансдукции соединяется только с определенными участками i хромосомы бактерий, т. е. фаг имеет определенную точку прикрепления на хромосоме. Поэтому при освобождении такой фаг захватывает только рядом расположенную строго определенную область хромосомы бактерий и передает ее реципиентной клетке. Эта способность к специфической трансдукции была установлена у фага X Е. coli, который при лизогенизации клеток всегда фиксируется на бактериальной хромосоме рядом с генами, контролирующими ферментацию галактозы (галактокиназы и галактозилтрансферазы), и трансдуцирует их в клетку реципиента gal-. При специфической трансдукции клетка- реципиент получает строго определенные гены.
Абортивная трансдукция происходит так же, как и неспецифическая, но фрагмент хромосомы донора, привнесенный фагом в реципиентную клетку, не включается в хромосому и не реплицируется, а располагается в цитоплазме клетки. Этот фрагмент при делении клетки передается только одной дочерней клетке, и только эта клетка несет новое свойство, контролируемое привнесенным геном донорной клетки.
Трансдукцию необходимо отличать от фаговой конверсии. При трансдукции любого типа изменения происходят лишь в тех инфицированных фагом клетках, в которые была внесена ДНК бактерий-доноров, т. е. которые были инфицированы трансдуци- рующими фагами. Это весьма небольшое количество бактериальной популяции. Изменения, вызванные трансдуцирующими фагами, очень стойкие, передаются потомству и сохраняются даже тогда, когда клетка теряет фаг.
Фаговая, гаи лизогенная, конверсия - это изменения фенотипа (свойства клетки), обусловленные заражением клетки умеренным фагом. Изменения здесь вызывают гены фага. Они могут непосредственно контролировать синтез отдельного фрагмента или, взаимодействуя с бактериальными, приводить к изменению фенотипа клетки. Чаще всего фаговая конверсия затрагивает синтез или активность ферментов, контролирующих образование клеточных компонентов, что сопровождается изменениями морфологии колоний. Так, лизогенизация шероховатых штаммов микобактерий приводит к образованию гладких колоний. Изменение испытывают все инфицированные фагом клетки (при трансдукции - одиночные). При фаговой конверсии изменения фенотипа бактерий сохраняются до тех пор, пока в клетке присутствует фаг.

Поведение фагов в бактериальной клетке

Фаги способны к реализации двух путей развития в бактериальной клетке:

  • Литический - после попадания в бактерию ДНК фага сразу же начинается его репликация, синтез белков и сборка готовых фаговых частиц, после чего происходит лизис клетки. Фаги, развивающиеся только по такому сценарию, называют вирулентными.
  • Лизогенный - попавшая в бактериальную клетку ДНК фага встраивается в её хромосому или существует в ней как плазмида , реплицируясь при каждом делении клетки. Такое состояние бактериофага носит название профаг . Система его репликации в этом случае подавлена синтезируемыми им самим репрессорами. При снижении концентрации репрессора профаг индуцируется и переходит к литическому пути развития. Реализующие подобную стратегию бактериофаги называются умеренными. Для некоторых из них стадия профага является обязательной, другие в некоторых случаях способные сразу развиваться по литическому пути.

Перенос фрагментов ДНК бактерии

Общая (неспецифическая) трансдукция

Осуществляется фагом P1, существующим в бактериальной клетке в виде плазмиды, фагами P22 и Mu, встраивающимися в любой участок бактериальной хромосомы. После индуцирования профага с вероятностью в 10 −5 на одну клетку возможна ошибочная упаковка фрагмента ДНК бактерии в капсид фага, ДНК самого фага в нём в этом случае нет. Длина этого фрагмента равна длине нормальной фаговой ДНК, его происхождение может быть любым: случайный участок хромосомы, плазмида, другие умеренные фаги.

Попадая в другую бактериальную клетку, фрагмент ДНК может включаться в её геном, обычно путём гомологичной рекомбинации. Перенесённые фагом плазмиды способны замыкаться в кольцо и реплицироваться уже в новой клетке. В ряде случае фрагмент ДНК не встраивается в хромосому реципиента, не реплицируется, но сохраняется в клетке и транскрибируется . Это явление носит название абортивной трансдукции.

Специфическая трансдукция

Наиболее хорошо изучена специфическая трансдукция на примере фага λ . Этот фаг встраивается только в один участок (att-сайт) хромосомы E. coli с определённой последовательностью нуклеотидов (гомологичной att-участку в ДНК фага). Во время индукции его исключение может пройти с ошибкой (вероятность 10 −3 -10 −5 на клетку): вырезается фрагмент тех же размеров что и ДНК фага, но с началом не в том месте. При этом часть генов фага теряется, а часть генов E. coli захватывается им. Вероятность переноса гена в этом случае падает при увеличении расстояния от него до att-сайта.

Для каждого специфически встраивающегося в хромосому умеренного фага характерен свой att-сайт и, соответственно, расположенные рядом с ним гены, которые он способен передавать. Ряд фагов может встраиваться в любое место на хромосоме и переносить любые гены по механизму специфической трансдукции. Кроме того, в хромосоме обычно есть последовательности, частично гомологичные att-участку ДНК фага. При повреждении полностью гомологичного att-сайта можно добиться включения фага в хромосому по этим последовательностям и передачу в ходе специфической трансдукции генов, соседних уже с ними.

Когда умеренный фаг, несущий бактериальные гены, встраивается в хромосому новой бактерии-хозяина, она содержит уже два одинаковых гена - собственный и принесённый извне. Поскольку фаг лишён части собственных генов, часто он не может индуцироваться и размножиться. Однако при заражении этой же клетки «вспомогательным» фагом того же вида, индуцирование дефектного фага становится возможным. Из хромосомы выходят и реплицируются как ДНК нормального «вспомогательного» фага, так и ДНК дефектного, вместе с переносимыми им бактериальными генами. Поэтому около 50% образующихся фаговых частиц несут бактериальную ДНК. Это явление носит название трансдукции с высокой частотой (HFT от англ. high frequency transduction ).

История изучения

Эстер Ледерберг была первой учёной, кому удалось выделить бактериофаг лямбда, ДНК вирус, из Escherichia coli K-12 в 1950 году.

Собственно открытие трансдукции связано с именем американского учёного Джошуа Ледерберга . В году он совместно с Нортоном Циндером обнаружил общую трансдукцию. В Ледербергом и др. было показано существование абортивной трансдукции, в - специфической.

См. также


Wikimedia Foundation . 2010 .

Смотреть что такое "Трансдукция (генетика)" в других словарях:

    Раздел общей генетики (См. Генетика), в котором объектом исследования служат бактерии, микроскопические грибы, актинофаги, вирусы животных и растений, бактериофаги и др. микроорганизмы. До 40 х гг. 20 в. считалось, что, поскольку у… …

    - [нэ], и; ж. [от греч. genētikos относящийся к рождению, происхождению]. Наука о законах наследственности и изменчивости организмов. Г. человека. Г. растений. Медицинская г. Космическая г. * * * генетика (от греч. génesis происхождение), наука о… … Энциклопедический словарь

    - (от лат. transductio перемещение) перенос генетического материала из одной клетки в другую с помощью вируса (См. Вирусы), что приводит к изменению наследственных свойств клеток реципиентов. Явление Т. было открыто американскими учёными Д … Большая советская энциклопедия

    Раздел генетики (См. Генетика) и молекулярной биологии (См. Молекулярная биология), ставящий целью познание материальных основ наследственности (См. Наследственность) и изменчивости (См. Изменчивость) живых существ путём исследования… … Большая советская энциклопедия

    абортивная трансдукция - Форма трансдукции, при которой фрагмент генома бактерии донора не включается в хромосому бактерии рецепиента и не реплицируется, а вместе с геномом вирусной частицы переносчика остается в цитоплазме в виде эписомы и может передаваться только в… …

    неспецифическая (общая, генерализованная) трансдукция - Перенос от бактерии к бактерии произвольного фрагмента бактериальной хромосомы путем его упаковки в капсид бактериофага вместо фагового генома (обычно такой фрагмент при Н.т. достаточно крупный до 2 % всех генов бактерии); к фагам, способным… … Справочник технического переводчика

    ограниченная (специфическая) трансдукция - Передача от бактериального донора бактериальному реципиенту с помощью бактериофага строго определенного фрагмента бактериальной ДНК, расположенного вблизи сайта интеграции бактериофага (как правило, нескольких генов); к бактериофагам,… … Справочник технического переводчика

    Соматических клеток генетика - * саматычных клетак генетыка * somatic cell genetics изучение наследственности и наследственной изменчивости собственно соматических клеток (см.). Изучение генных мутаций у соматических клеток, открытие явления гибридизации соматических клеток и… … Генетика. Энциклопедический словарь

    У этого термина существуют и другие значения, см. Трансформация. Трансформация процесс поглощения клеткой организма свободной молекулы ДНК из среды и встраивания её в геном, что приводит к появлению у такой клетки новых для неё наследуемых… … Википедия

    Эстер Мириам Циммер Ледерберг Эстер Ледерберг читает лекцию в медицинской школе им. Каназавы по приглашению доктора Акабори, 1962 г. Дата рождения: 18 декабря 1922 Место рождения: Бронкс, Нью Йорк Дата смерти: 11 ноября 2006 Место смерти … Википедия

При общей трансдукции фаговые частицы, содержащие сегменты ДНК клетки-хозяина, переносят относительно протяженные участки геномной ДНК от одной бактериальной клетки к другой. Трансдуцирующие фаговые частицы образуются в ходе определенных инфекционных процессов, когда ДНК клетки эффективно деградирует и фрагменты


клеточной ДНК, по размеру примерно соответствующие фаговому геному, случайно упаковываются в зрелые частицы бактериофага. В результате последующего инфицирования клеток бактерий популяцией фаговых частиц, содержащих в том числе и трандуцирующие фаги, с помощью последних происходит передача ДНК донорных клеток этим инфицируемым клеткам. Рекомбинация между введенными фрагментами донорной ДНК и ДНК клетки-реципиента приводит к изменению генотипа последней.

Каждая трансдуцирующая фаговая частица обычно содержит только один случайный фрагмент исходной донорной хромосомы. Вероятность включения в такую частицу любой части донорного генома примерно одинакова. Однако благодаря довольно большому размеру трансдуцируемых сегментов ДНК (для определенных бактериофагов он составляет около 100 т.п.н., или 2,5 процента всей хромосомы кишечной палочки) обычно реципиентная клетка приобретает за один акт трансдукции целую группу генов. В результате гены, тесно сцепленные друг с другом в хромосоме донора, с высокой частотой котрансдуцируются, тогда как гены, удаленные друг от друга, транс дуцируются независимо. Определение частоты котрансдукции генов помогает уточнить генетические карты, позволяя оценивать относительные расстояния между тесно сцепленными генами. 3 Специфическая (ограниченная) трансдукция

Трансдукция второго типа, специфическая, свойственна умеренным бактериофагам, инфекционный цикл которых прерывается в результате включения генома вируса в специфический хромосомный локус ДНК инфицированной клетки. Бактерии, содержащие такие интегрированные фаговые геномы, получили название лизогенных. Они несут вирусные геномы как наследственные элементы собственных хромосом. В лизогенной клетке вирусные и клеточные геномы реплицируются как единое целое и являются взаимно совместимыми. Интеграция фагового генома с геномом клетки-хозяина лишает фаг возможности вызывать гибель клетки и продуцировать инфекционное потомство. По этой причине бактериофаг,


способный лизогенезировать, в отличие от вирулентного фага, получил название умеренного.

При определенных условиях - индукции - лизогенное состояние прерывается и вирусный геном вырезается из хромосомы ютетки-хозяина. Он реплицируется, образуя множество вирусных частиц, и убивает клетку. Обычно вырезание вирусного генома происходит очень точно и образующийся фаг содержит вирусный геном, полностью соответствующий исходному.

Иногда фаговый геном вырезается неправильно и в дочерние фаговые частицы включаются хромосомные гены, прилегающие к интегрированному вирусному геному. Эти гены включаются вместо некоторых вирусных генов. Во время следующего цикла инфекции гены клетки-донора переходят вместе с фаговыми генами в реципиентные клетки. После включения ДНК трансдуцирующего фага в геном реципиента клетка приобретает наряду с фаговым геномом генетическую информацию предыдущего хозяина фага.

Таким образом, при специфической трансдукции фаг служит вектором для переноса генов от одной клетки в другую. С помощью этого механизма трансдуцируются только те хромосомные гены клетки-хозяина, которые тесно сцеплены с сайтом интеграции вирусного генома.

Поскольку различные умеренные фаги встраиваются в разные хромосомные сайты, при их неправильном вырезании образуются фаги, которые трансдуцируют разные хромосомные гены. Так фаги лямбда трансдуцируют гены, ответственные за метаболизм галактозы, или гены, контролирующие синтез биотина, а фаги ф80 - различное число генов, кодирующих ферменты биосинтеза триптофана.

Фаговый геном способен к специфической трансдукции при условии:

1 Он должен приобрести ковалентно сцепленный сегмент невирусной ДНК, который будет трансдуцироваться. Этот сегмент ДНК обычно имеет клеточное происхождение, но в принципе он может быть из любого источника. Он может включаться в любое место вирусного генома, если это


не влияет на репликацию вирусной ДНК в инфицированной клетке хозяина или на её способность упаковываться в зрелые фаговые частицы.

2 Фаговый геном должен быть способен реплицироваться после того, как произошло инфицирование реципиентной клетки, т.е. в вирусной ДНК должны сохраняться область начала репликации (оп) и гены, необходимые для осуществления репликации.

3 Фаговые гены, кодирующие структурные фаговые белки, должны быть функционально активными.

Специфическая трансдукция широко используется в молекулярной генетике. Рассмотрим один из примеров такого применения данного явления. Ген кишечной палочки, кодирующий синтез фермента бета-галактозидазы, содержит 3600 п.н. и составляет одну тысячную генома данного микроорганизма. Если фрагмент ДНК бактериальной клетки, кодирующий синтез бета-галактозидазы, встраивается в геном трансдуцирующего бакте­риофага лямбда, он занимает там одну пятнадцатую часть, то есть ДНК фага лямбда обогащена бета-галактозидазным геном в 100 раз больше, чем ДНК кишечной палочки.

Оглавление темы "Генетические элементы бактерий. Мутации у бактерий. Трансдукция.":
1. Мигрирующие генетические элементы бактерий. Транспозоны. Бактериофаги, как мигрирующие генетические элементы.
2. Мутация. Мутации у бактерий. Мутагены. Спонтанные мутации. Обратные мутации (реверсии).
3. Индуцированные мутации бактерий. Химический мутагенез. Радиационный мутагенез. Типы мутаций.
4. Репарация ДНК бактерий. Системы репарации днк. Компенсация функций нарушенных в результате мутаций. Интрагенная супрессия. Экстрагенная супрессия.
5. Перенос бактериальной ДНК. Конъюгация бактерий. F-фактор бактерии.
6. Трансформация бактерий. Стадии трансформации бактерии. Картирование хромосом бакетерий.

8. Свойства бактерий. Ненаследуемые изменения свойств бактерий. S - колонии. R - колонии. M - колонии. D - колонии бактерий.

Трансдукция - перенос бактериофагом в заражаемую клетку фрагментов генетического материала клетки, исходно содержавшей бактериофаг. Трансдуцирующий бактериофаг обычно переносит лишь небольшой фрагмент ДНК хозяина от одной клетки (донор) к другой (реципиент).

Выделено три типа трансдукции : неспецифическая (общая), специфическая и абортивная . В клетке, инфицированной бактериофагом, в ходе сборки дочерней популяции в головки некоторых фагов вместе с вирусной ДНК могут проникнуть фрагменты бактериальной ДНК или плазмиды. Вирусы ограничены в объёме генетического материала в соответствии с объёмом головки. Если ДНК бактериальной клетки расщепляется фагом в нетипичном месте, то чтобы освободить пространство для фрагмента хромосомной ДНК, некоторые участки вирусных ДНК «приносятся в жертву», что приводит к утере определённых их функций. При этом фаговая частица может стать дефектной. Количество аномальных фагов может достигать 0,3% всей дочерней популяции.

Образовавшийся фаг и есть частица, вызывающая неспецифическую (общую) трансдукцию . При такой форме трансдукции в клетки-реципиенты могут быть внесены практически любые гены.

При неспецифической трансдукции фагом может быть перенесён любой фрагмент ДНК хозяина, а при специфической лишь строго определённые фрагменты ДНК. Наиболее известным примером специфической трансдукции служит трансдукция, осуществляемая фагом. Поскольку этот фаг при переходе в состояние профага включается в хромосому бактерий между генами, кодирующими синтез галактозы и биотина, именно эти гены он может переносить при транедукции. При абортивной трансдукции внесённый фрагмент ДНК донора не встраивается в генофор реципиента, а остаётся в цитоплазме, где его ДНК транскрибируется, но не реплицируется. Это приводит к тому, что при клеточном делении он передаётся только одной из дочерних клеток (то есть наследуется однолинейно) и затем теряется в потомстве.

Свойства трансдуцирующих фаговых частиц следующие:

Частицы несут лишь часть ДНК фага , то есть не являются функциональными вирусами, а скорее ёмкостями, переносящими фрагменты бактериальной ДНК.

Подобно прочим дефектным вирусам , частицы не способны к репликации.

Трансдуцирующие фаги могут содержать какую-либо часть хромосомы хозяина с генами, дающими реципиентной бактерии некоторые преимущества (например, гены устойчивости к антибиотикам или гены, кодирующие способность к синтезу различных веществ). Подобное приобретение бактериями новых свойств получило название феномен лизогении .

Феномен трансдукции может быть использован для картирования бактериальной хромосомы, если следовать тем же принципам, что и при картировании с использованием феномена трансформации.

Поделиться: