Московий из центавра. Свинец и висмут – самые тяжелые стабильные элементы

Петер Армбрустер, Готфрид Мюнцерберг

Тонкие квантовомеханические эффекты стабилизируют ядра, которые намного тяжелее ядер, существующих в природе. Экспериментаторам пришлось пересматривать представления о том, как лучше синтезировать такие сверхтяжелые элементы

В течение последних 20 лет во многих странах мира внимание физиков привлекала проблема получения сверхтяжелых элементов. В Дармштадте в Институте исследований с тяжелыми ионами (ГСИ) нам удалось добиться определенных успехов, синтезировав ядра элементов 107, 108 и 109. Эти ядра находятся за «порогом» 106-го протона, который отмечает предел для существовавших ранее методов получения и идентификации тяжелых элементов.

Экспериментальные измерения масс ядер и теоретический анализ показывают, что стабильность этих новых элементов обусловлена прежде всего микроструктурой их протонных и нейтронных систем, а не макроскопическими свойствами, определяющими стабильность более легких ядер. Однако мы столкнулись с проблемами, которые до сих пор затрудняют достижение целей, поставленных в конце 60-хгодов, когда казалось, что элементы вплоть до 114-го находятся в пределах досягаемости. Преодолевая эти трудности, мы продвинулись В изучении ядерной структуры и динамики реакций слияния ядер.

Нуклеосинтез прошел долгий путь от раннего периода, когда элементы, которые не существуют в природе, получали в ядерных реакторах. Физики применяли все более тяжелые ускоренные ионы для бомбардировки атомов мишени. Последним этапом в этом развитии стал метод «холодного слияния» ядер, в котором массы частиц и энергия бомбардировки должны быть тщательно определены, чтобы возбуждение вновь образующихся ядер было минимальным.

В процессе нашей работы почти все первоначальные представления о синтезе сверхтяжелых элементов пришлось пересмотреть: ядра элементов, которые можно синтезировать, являются деформированными, анесферическими, как это постулировалось в 1966 г. Для слияния мы использовали стабильные, широко распространенные в природе, сферические ядра и ускоренные ионы средних масс вместо искусственных наиболее тяжелых радиоактивных ядер и соответственноподобранных легких ускоренных ионов, как предполагалось ранее. Слияние должно происходить при возможно более низкой энергии бомбардировки - как можно «мягче», без применения «грубой силы» в виде избыточной энергии взаимодействия, которая, как полагали ранее, способствует процессу слияния.

Идея синтеза трансурановых элементов (с атомным номером более 92) возникла в 30-х годах. В 1934 г. Энрико Ферми бомбардировал таллий медленными нейтронами, чтобы после бета-распада (распад нейтрона на протон и электрон) получить свинец. В результате захвата нейтронов и последующего бета-распада образовывались элементы с атомными номерами, на единицу превышавшими исходные.

В период между 1940 г. и серединой 50-х годов путем нейтронного облучения были получены элементы 93, 94, 99 и 100. Фермий, элемент 100, неслучайно оказался последним в серии элементов, которые можно было получить методом нейтронного захвата и бета-распада, предложенным Ферми: ни один из его изотопов не испытывает бета-распад. В течение того же периода при облучении альфа-частицами были получены элементы от 95 до 98 и 101-й. В этом процессе тяжелое ядро поглощает два протона и два нейтрона; при этом атомный номер увеличивается сразу на две единицы. Подобно всем тяжелым элементам, трансурановые элементы содержат больше нейтронов, чем протонов; например, плутоний (элемент 94) содержит 145 нейтронов при полной массе 239; наиболее долгоживущий изотоп фермия имеет 157 нейтронов при полной массе 257.

Естественным способом получения элементов выше 100-го считалось слияние ядер наиболее тяжелых элементов с ядрами легких элементов, содержащих больше протонов и нейтронов, чем гелий. Элементы вплоть до 99-го доступны, поскольку их можно синтезировать в весовых макроскопических количествах. В Беркли (США)и Дубне (СССР) были построены ускорители для получения тяжелых ионов с энергией, достаточной для преодоления препятствующих слиянию ядер электростатических сил. В период между 1958 и 1974 гг. эти ускорители тяжелых ионов позволили синтезировать элементы от 102 до 106. Приоритет открытия этих элементов и, следовательно, право их наименования остаются до сих пор предметом дискуссий.

Методы, столь успешно применявшиеся в Беркли и Дубне, оказались неэффективными для получения элементов тяжелее 100-го. Чтобы понять, почему так трудно синтезировать сверхтяжелые элементы и почему некоторые из них могут быть особенно стабильны, необходимо выяснить, как ядра сохраняются как единое целое или же разваливаются и как баланс различных сил. определяющий их стабильность, изменяется с увеличением массы. Эффекты, которыми для более легких ядер можно пренебречь, определяют различие между полной нестабильностью и относительно большими временами жизни сверхтяжелых ядер.

Особенно важным для всех ядер является взаимосвязь сильных ядерных сил, притягивающих как протоны, так и нейтроны, и электростатических сил, отталкивающих протоны. Чем тяжелее ядра, тем больше в них нейтронов, что в некоторой степени компенсирует влияние сил отталкивания между протонами. Тем не менее сила связи между нуклонами достигает максимума у железа (26 протонов и 30 нейтронов), что соответствует менее четверти пути по периодической таблице, а затем она уменьшается.

Расщепление любого ядра тяжелее железа должно сопровождаться выделением энергии, однако энергия, необходимая для расщепления менее массивных ядер, чем свинец, так велика, что такую реакцию можно осуществлять только в особых условиях. Поскольку ядра тяжелее свинца, могут переходить в более устойчивое состояние, испуская даже небольшую часть своих нуклонов, они нестабильны. Существующие в природе изотопы тория и урана распадаются в основном путем испускания альфа-частиц. Только у урана и более тяжелых элементов невозбужденные ядра могут испытывать спонтанное деление.

В основном с ростом атомного номера (число протонов в ядре) нестабильность атомных ядер увеличивается: периоды их полураспада уменьшаются от нескольких тысяч лет до миллионных долей секунды. Однако из теории строения ядра следует, что элементы, лишь немного тяжелее полученных к настоящему времени, будут не менее, а более стабильны.

Ядра с определенными комбинациями нейтронов и протонов имеют особенно большую энергию связи; гелий-4, кислород-16, кальций-40, кальций-48 и свинец-208 очень стабильны по сравнению с соседними элементами. Эти большие значения обусловлены оболочечной структурой - ядерным эквивалентом оболочек, на которых находятся электроны вокруг ядра. Конфигурации нуклонов, образующие полностью заполненные (замкнутые) оболочки, особенно стабильны. Для свинца оболочечная структура способствует увеличению энергии связи ядра на 11 млн. электронвольт (МэВ) по сравнению с гипотетической ядерной каплей, лишенной структуры и имеющей то же число нейтронов и протонов. Для большинства ядер с энергиями связи до 2 млрд. эВ такое увеличение сравнительно несущественно. Однако для наиболее тяжелых элементов, находящихся на границе стабильности, «оболочечная стабилизация» может приводить к различию между мгновенным распадом и относительно длительным существованием ядер.

Ядра с замкнутыми нейтронными и протонными оболочками особенно стабильны; после свинца такие оболочки появляются при 114 протонах и 184 нейтронах. Успехи теории оболочек в предсказании энергий связи для легких ядер породили надежду, что ядра с массой, близкой к 298, могут быть настолько сильно стабилизированы, что, подобно урану и торию, могут образовать область относительно стабильных элементов. Такие оболочечно-стабилизированные сверхтяжелые элементы в отличие от элементов в области урана-тория должны быть нестабильны как однородные капли ядерного вещества.

Первый из оболочечно-стабилизированных сверхтяжелых элементов, 107-й,свойства которого, как предположил Ферми, должны соответствовать экарению, был идентифицирован в Дармштадте в 1981 г., спустя 47 лет после этого предсказания.

Затем нами были получены и идентифицированы элементы 108 и 109. Измерения их энергий связи показывают, что мы уже вступили в область сверхтяжелых элементов. В настоящее время мы исследуем ограничения, препятствующие получению еще более тяжелых элементов.

Синтез тяжелых элементов в реакциях слияния требует от экспериментатора умения «пройти по тонкой грани» между теми методами бомбардировки, в которых слияния не происходит, и теми методами, которые приводят к делению ядра-продукта, вместо того чтобы оставить его в относительно стабильном состоянии. Снижение нагрева вновь образовавшегося ядра представляет собой наиболее важную причину перехода от бомбардировки тяжелых мишеней сравнительно легкими ионами к бомбардировке менее массивных мишеней относительно более тяжелыми ионами (перехода, начатого Ю.Ц. Оганесяном и его сотрудниками из Объединенного института ядерных исследований в Дубне).

Например, при слиянии свинца-208 или висмута-209 с хромом-54 или железом-58 энергия возбуждения нового ядра составляет около 20 МэВ. В то же время слияние тяжелых актиноидных мишеней (калифорния-249, берклия-249 или кюрия-248) с углеродом-12, азотом-15 или кислородом-18 приводит к энергии возбуждения около 45 МэВ.

Ядро, образованное с использованием легких ионов и мишеней изактиноидов, остывает, испуская четыре нейтрона. В отличие от этого ядро, образованное из свинца или висмута и более тяжелых ионов, остывает, испуская только один нейтрон. Поскольку вероятность того, что ядро охладится, испустив нейтрон, составляет всего несколько процентов вероятности его деления, конечный выход сверхтяжелых ядер значительно снижается на каждой ступени каскада эмиссии нейтронов. Механизм однонейтронной релаксации намного более пригоден для сохранения вновь образованного ядра.

К сожалению, холодное слияние имеет также и недостаток: в данном случае электростатические силы отталкивания между двумя ядрами в большей степени препятствуют их слиянию. Когда два ядра сближаются, часть их кинетической энергии превращается в энергию возбуждения промежуточной системы сталкивающихся ядер и, следовательно, не может быть использована для преодоления барьера слияния, что в свою очередь снижает вероятность слияния. В случае холодного слияния с использованием более тяжелых ионов в процессе сближения и прохождения барьера слияния преобразуется больше кинетической энергии и вероятность преодоления этого барьера снижается по сравнению с реакциями между легкими ионами и наиболее тяжелыми мишенями.

Если для компенсации этих потерь увеличивать начальную энергию, энергия возбуждения возрастет и число образующихся ядер уменьшится. В результате только за 106-м элементом проявляются преимущества метода холодного слияния.

Нами было показано, что максимальные сечения реакций образования тяжелых элементов находятся в узком энергетическом диапазоне - примерно на 5 МэБ выше барьера слияния.

В то время как теория получения сверхтяжелых ядер может быть весьма интересна сама по себе, на практике это гораздо более сложная задача. Теоретические расчеты должны сочетаться с конструированием ускорителя и мишени, а также с разработкой системы детекторов, которая сможет зарегистрировать существование сверхтяжелого ядра сразу же, как оно будет синтезировано. Когда в конце 60-х годов идея получения сверхтяжелых элементов завладела воображением физиков и химиков, никто в ФРГ не имел опыта проведения нуклеосинтеза. Для начинающих в этой области было открыто много «дверей». Можно было многому научиться на основе экспериментов, проведенных ранее в Беркли и Дубне, однако было ясно, что дальнейшего прогресса нельзя достигнуть путем копирования этих исследований. Были необходимы ускоритель тяжелых ионов, экспрессные методы разделения для выделения новых элементов и соответствующая техника их идентификации. Не было ответа и на вопрос о том, какие именно реакции должны привести к успеху.

В 1969 г. правительство ФРГ совместно с правительством земли Гессен решило финансировать создание нового института для исследований с тяжелыми ионами (Общество исследований с тяжелыми ионами, геи) в Дармштадте. Универсальный линейный ускоритель (УНИЛАК), на котором ведутся эксперименты в геи, начал работать в 1975 г.

УНИЛАК может ускорять все ионы до урана включительно до энергий, превышающих кулоновский барьер. С самого начала эта установка предназначалась для получения возможно более интенсивных ионных пучков. Особые усилия были направлены на то, чтобы можно было плавно изменять энергию ионов и устанавливать ее на заданном уровне с достаточно хорошей воспроизводимостью. Первоначально проект ускорителя разрабатывался К. Шмельцером и его сотрудниками в Гейдельберге. При этом учитывался уже накопленный опыт других научных групп: ионные источники представляли собой модификацию источников, использовавшихся в Дубне для получения высокозарядных ионов, а разработанная в Беркли система Альвареца была использована в высокочастотной системе линейного ускорителя.

Когда УНИЛАК был построен, перед многими учеными был поставлен вопрос: как лучше всего использовать ускоритель? Какие реакции и какие экспериментальные методы должны применяться? В начальный период своего существования УНИЛАК использовался для проверки самых разнообразных идей, однако успешной оказалась единственная стратегия - холодное слияние в сочетании с транспортировкой ядер отдачи (продуктов слияния).

Со времени открытия в 1941 г. плутония было синтезировано около 400 т этого элемента, что соответствует 10 30 атомов. С другой стороны, было получено и идентифицировaно всего несколько атомов 109-го элемента. Почему наиболее тяжелые элементы получают в таких исчезающе малых количествах? Ответ заключается в следующем: для производства плутония тонны нейтронов бомбардируют блоки урана-238 толщиной несколько сантиметров или более, а на УНИЛАКе ускоряется всего 100 мкг железа-58 для бомбардировки мишени из свинца-208 толщиной несколько сотен нанометров. Кроме того, поперечное сечение реакции нейтронного захвата, в которой образуется плутоний-239, приблизительно в 10 триллионов раз больше поперечного сечения реакции слияния, в которой образуется 109-й элемент.

Трудности при получении более тяжелых элементов составляют только часть проблемы. Будучи синтезированными, такие элементы, как 109-й, распадаются столь быстро, что синтез «не поспевает» за распадом. Наиболее тяжелые элементы настолько короткоживущи, что к концу облучения все образовавшиеся атомы уже распадаются. Поэтому эти атомы следует детектировать и идентифицировать в процессе их получения.

Методы получения и регистрации элементов вплоть до 106-го основывались главным образом на механических средствах транспортировки образующихся атомов из зоны реакции к детекторам. Время транспортировки между образованием и детектированием продуктов реакций определялось скоростями их переноса в потоке газа, временем их диффузии из твердых поверхностей или скоростью вращающихся мишеней. Эти методы, однако, были недостаточно хороши для регистрации элементов тяжелее 106-го, вынуждая идти на неприемлемый выбор, между скоростью и точностью детектирования, так что, используя более быстрые методы, оказалось невозможно надежно идентифицировать новые изотопы.

Для транспортировки образующихся ядер к детекторам мы выбрали методику, основанную на использовании скорости отдачи, которую продукты реакции приобретают от тяжелых ионов. Когда тяжелый ион сталкивается с атомом мишени и сливается с ним, образовавшееся ядро движется по направлению первоначального движения иона со скоростью, составляющей около нескольких процентов скорости света. В результате можно детектировать ядра с периодами полураспада до 100 нс.

Хотя методика транспортировки ядер отдачи позволяет детектировать и идентифицировать очень короткоживущие ядра, техника детектирования становится при этом более сложной. Из зоны реакции с высокой скоростью выходят не только отдельные ядра, образовавшиеся в реакции слияния, но и триллионы тяжелых ионов, а также тысячи атомов, выбитых из мишени. Чтобы отделить сверхтяжелые ядра от остаточного пучка, мы построили специальный фильтр скоростей - сепаратор продуктов реакций с тяжелыми ионами SHIP (Separator for Heavy-Ion Reaction Products), разработанный совместно со специалистами Второго физического института Университета в Гиссене. На основе кинематики столкновения и слияния ядер скорость отдачи продуктов слияния можно рассчитать заранее. Следовательно, их можно выделить относительно прямым способом.

Фильтр скоростей состоит из двух ступеней, каждая из которых включает как электрическое, так и магнитное поля. Эти два поля отклоняют заряженные частицы в противоположных направлениях; только для ядра, имеющего определенную скорость, влияние полей взаимно исключается, и оно продолжает движение в медианной плоскости установки. Такой фильтр-тандем уменьшает число ускоренных ионов, попадающих в область детектирования в 100 млрд. раз а число выбитых ядер мишенн - в 1000 раз. Исключая из пучка почти полностью все нежелательные частицы, спектрометр SHIP пропускает более 40070 продуктов слияния. Детекторы, расположенные за спектрометром, регистрируют цепочки распада частиц, прошедших через спектрометр, что позволяет однозначно идентифицировать продукты слияния.

Первым элементом детектирующей системы является время-пролетное устройство, которое позволяет измерить скорость частицы в третий раз (первые два измерения заложены в принципе действия фильтра скоростей). После прохождения этого устройства частица имплантируется в позиционно-чувствительные кремниевые поверхностно-барьерные детекторы, которые регистрируют ее энергию и место попадания. Поскольку комбинация времени пролета и энергии дает возможность приблизительно определить массу частицы, можно отличать продукты слияния от рассеянных ионов и выбитых ядер мишени.

Для надежной идентификации ядра необходимо тем не менее установить корреляцию его распада с распадом его радиоактивных дочерних продуктов. Акты распада, обусловленные одним и тем же ядром, должны иметь одинаковые пространственные координаты, а тип, энергия и период полураспада дочерних ядер известны из предшествующих измерений.

Устанавливая такие коррелированные акты распада, можно однозначно идентифицировать каждое ядро-продукт слияния. Хотя случайное ядро, попавшее в одно и то же место с исследуемым продуктом слияния, может испытывать распад и вызвать пространственно коррелированный сигнал, весьма маловероятно, чтобы его энергия распада, период полураспада и тип распада совпали с ожидаемыми для продукта слияния. Мы наблюдали такие цепочки распада вплоть до четвертого поколения; вероятность того, что подобные серии коррелированных событий случайны, составляет от 10 –15 до 10 –18 . Если коррелированные события, обусловленные исследуемым изотопом, наблюдаются раз в сутки, то случайного появления событий, имитирующих четыре поколения актов распада, можно ждать в течение времени, в 100 раз превышающего возраст Земли. В результате даже одиночное событие может однозначно указывать на существование данного сверхтяжелого изотопа.

В период между 1981 и 1986 гг. совместно с нашими коллегами П. Хессбергером, З. Хофманом, М. Лейно, В. Райсдорфом и К.-Х. Шмидтом мы использовали УНИЛАК, SHIP и его систему детектирования для синтеза и идентификации элементов 107 109. В этих экспериментах было синтезировано 14 изотопов элементов 104 109 (пять из которых были известны ранее), а также еще два изотопа 107-го и 108-го элементов с массовыми числами 261 и 264 соответственно.

В 1981 г. нами был получен изотоп 107-го элемента с массовым числом 262 путем бомбардировки висмута 209 ионами хрома-54. Для нечетно-нечетного изотопа 107-го элемента (имеющего нечетное число и протонов, и нейтронов) мы установили пять значений энергии альфа-частиц, что дает представление об энергетических ядерных уровнях; мы можем сообщить также, что этот изотоп имеет изомер (долгоживущее возбужденное состояние).

109-й элемент был идентифицирован на основе наблюдения единственной цепочки распада, зарегистрированной в 16 ч 10 мин 29 августа 1982 г. в реакции между железом-58 и висмутом-209. Ядро 266 109 существовало 5 мс, прежде чем испустить альфачастицу с энергией 11,1 МэВ; образовавшееся при этом ядро 107-го элемента распалось на 105-й элемент через 22 мс; 105-й элемент распался на 104-й элемент с последовавшим через 12,9 с спонтанным делением его ядра. Из этого единственного события можно было, хотя и с ограниченной точностью, определить энергию распада, период полураспада и поперечное сечение реакции. Еще две цепочки распада наблюдались в начале 1988 г. - через шесть лет после идентификации 100-го элемента. Они подтвердили интерпретацию события, зарегистрированного в 1982 г.

В 1984г. мы идентифицировали три цепочки распада изотопа 265 108 в реакции между железом-58 и свинцом-208. Два идентифицированных изотопа 107-го и 109-го элементов являются нечетно-нечетными и вероятность их деления сильно снижена, однако изотоп 108-го элемента имеет четное число протонов и нечетное число нейтронов. Хотя у четно-нечетных изотопов вероятность деления значительно выше, изотоп 265 108 также испытывает альфа-распад.

Особенно интересно, что ни один из изотопов элементов 107–109 не делится спонтанно, а все четно-четные изотопы 265 104, 260 106 и 264 108 имеют примерно одинаковую стабильность относительно спонтанного деления.

Приблизительно постоянный уровень стабильности показывает, как стабилизирующие обол очечные эффекты конкурируют с общим падением стабильности при увеличении массы ядер.

За 104-м и 105-м элементами находится небольшой «остров» ядер, которые при испускании альфа-частиц распадаются с образованием известных изотопов более легких элементов. Такие акты альфа-распада позволяют определить энергию связи этих сверхтяжелых элементов. Если энергия связи дочернего ядра известна, то на каждой стадии по энергии альфа-распада можно рассчитать энергию связи материнского ядра. Если известна энергия связи конечного продукта, то по цепочке актов альфа-распада можно прийти в энергии-связи начального ядра цепочки. Поскольку был зарегистрирован распад 108-го и 100-го элементов (по одному событию в каждом случае) и 106-го элемента (по нескольким событиям), можно реконструировать цепочку 264 108 260 106 256 104 252 102. Энергии связи этих ядер составляют 120, 106 и 94 МэВ соответственно.

Оболочечная поправка к энергии связи постепенно растет у всех изотопов от урана-232 до 264 108, которые связаны процессом альфа-распада; соответствующие значения увеличиваются от 1-2 до 6-7 МэВ. Фактически все элементы от урана до 108-го элемента имеют одинаково высокие барьеры деления - около 6 МэВ. В отличие от урана, еще стабильного, как ядерная капля, стабильность 100-го и 108-го элементов полностью обусловлена квантовомеханической структурой их многочастичных фермионных систем. В последних теоретических работах предсказываются барьеры деления, которые согласуются с нашими измерениями.

Время жизни элемента относительно деления определяется в основном высотой и шириной барьера деления. Оболочечные поправки увеличивают времена жизни 106-го и 108-го элементов на 15 порядков величины. На логарифмической шкале наблюдаемые времена жизни находятся в середине диапазона между собственным ядерным временем (примерно 10 –21 с для распада несвязанной нуклонной системы) и возрастом Вселенной (10 18 с). Новые элементы нестабильны только по сравнению с продолжительностью человеческой жизни (2·10 9 с). Чтобы соответствовать стабильности по этой шкале, времена жизни должны возрасти на 12 порядков величины. Однако ядерная физика не базируется на человеческом масштабе времени.

Обнаруженный нами «остров» альфа-радиоактивных изотопов является прямым следствием их стабилизации благодаря оболочечным эффектам. Таким образом, предсказанная в конце 60-х годов стабилизация сферических сверхтяжелых ядер вблизи 114-го элемента начинается намного раньше, чем ожидалось, и постепенно нарастает. В узкой области нестабильности за свинцом, между элементами 83 и 90, оболочечные эффекты ослабляются. Однако в интервале между 92-м и 114-м элементами величина оболочечной поправки медленно и монотонно возрастает.

Даже в окрестностях «острова» сверхтяжелых ядер происходит стабилизация вследствие квантовомеханической структуры фермионных систем, в то время как на «материке» стабилизация ядер обусловлена макроскопическими жидкокапельными свойствами. Ядра элементов 107 109 находятся на «дамбе» между «островом» и «материком», поэтому новые изотопы можно отнести и к «острову», и к «материку». В любом случае - подобно сверхтяжелым элементам - их удалось наблюдать только благодаря оболочечной стабилизации их основных состояний.

Из последних теоретических предсказаний для оболочечных поправок к энергиям связи следует, что между элементами 106 и 126 должна быть область примерно из 400 сверхтяжелых ядер, имеющих барьеры деления свыше 4 МэВ. Все эти изотопы должны иметь периоды полураспада более 1 мкс; если их удастся синтезировать, то детектировать их можно будет существующими методами. Особенно стабильные области предполагаются вблизи изотопов 273 109 и 291 115.При числе нейтронов около 166 деформация основного состояния изменяется. Изотопы с меньшим числом нейтронов деформированы, в то время как более тяжелые изотопы имеют сферическую форму.

В течение последних 20 лет все попытки получить изотопы вблизи ожидаемого центра стабильности - ядра 298 114 - оказались безуспешными. Зарегистрировать эти сверхтяжелые изотопы не удалось ни в реакциях слияния, ни в любых других реакциях с участием тяжелых ионов. Тем не менее основная идея о возможности существования оболочечно-стабилизированных нуклонных систем, кроме стабильных ядерных капель, подтверждена экспериментами, описанными выше. Теоретически же сохраняются все основания верить в экстраполяцию к еще более тяжелым элементам.

Теперь возникает интересный вопрос: что в конечном счете препятствует созданию этих «хрупких» объектов? Некоторые важные разъяснения удалось получить в наших интенсивных исследованиях реакций слияния. Оболочечно-стабилизированное ядро, сферическое в основном состоянии, может быть разрушено даже при столь малой энергии возбуждения, как 15 МэВ, это было экспериментально продемонстрировано К.-Х. Шмидтом еще в 1979 г., в то время как деформированные ядра могут сохраняться при энергии возбуждения до 40 МэВ. Даже в реакции между кальцием-48 и кюрием-248 (наиболее подходящей из доступных реакций) энергия возбуждения составляет около 30 МэВ. Отсюда следует, что можно получить сверхтяжелые элементы только с деформированными ядрами. Однако до настоящего времени такие попытки были успешными лишь для элементов с атомными номерами меньше 110.

Как отмечалось ранее, слияние двух ядер, приводящее к образованию сверхтяжелого ядра, с самого начала осложняется необходимостью преодолеть барьер слияния. Для данного ядра-продукта этот барьер минимален, когда наиболее тяжелые мишени бомбардируются по возможности более легкими ионами. Несмотря на это преимущество, такая наиболее асимметричная комбинация имеет недостаток, заключающийся в максимальном нагреве ядра-продукта, что приводит к большим потерям вследствие деления в процессе девозбуждения. Чем менее асимметрична комбинация, тем меньше потери на стадии охлаждения. Наилучший компромисс между малыми потерями на конечной стадии и большой вероятностью образования на начальной представляют собой более симметричные комбинации с ядрами мишени вблизи свинца.

Применение свинца и висмута в качестве мишеней дает двойную пользу от обол очечного эффекта в этих ядрах: сильная связь в этих ядрах с их дважды замкнутыми оболочками приводит к уменьшению более чем на 10 МэВ энергии, передаваемой ядрупродукту, и соответствующему уменьшению потерь из-за деления. Кроме того, вероятность преодолеть барьер слияния увеличивается, если в реакции используются сферические, сильно связанные и относительно жесткие ядра. Здесь снова проявляются сильные оболочечные эффекты у свинца, однако на этот раз в динамике процесса.

Теперь мы начинаем понимать, почему будет очень трудно получить еще более тяжелые элементы. Только сочетание оболочечных поправок у партнеров реакции слияния, имеющих замкнутые оболочки, оболочечных эффектов в динамике и повышенной устойчивости возбужденных деформированных сверхтяжелых ядер позволило нам синтезировать несколько изотопов наиболее легких из сверхтяжелых элементов. Мы должны были распространить первоначальный вопрос о существовании оболочечно-стабилизированных ядер на эффект оболочечных поправок на всех стадиях реакции. Особенно важно при создании этих сложных и «хрупких» объектов ввести уже существующий порядок в процесс слияния, избежав ненужного беспорядка.

Как получить следующие сверхтяжелые элементы? Для 110-го и 111-го элементов можно будет применить разработанные нами методы в реакциях между никелем-62 и свинцом-208 или висмутом-209. Если только эти элементы образуются, для их детектирования потребуются не столько принципиально новые знания, сколько обеспечение потребностей в обогащенном изотопе и терпение для того, чтобы научиться владеть нашей аппаратурой и проводить эксперименты в течение нескольких месяцев.

You can comment here or .

ЧИКАГО, 17 февраля. Впервые удалось измерить массу элемента тяжелее урана – новый метод открывает путь к давно предсказанному «острову стабильности» устойчивых сверхтяжелых элементов, лежащему за пределами привычной Таблицы Менделеева.

Ядро урана включает 92 протона, это – самый тяжелый из известных нам элементов, встречающихся в природе. В искусственных условиях, конечно, синтезированы и более тяжелые, вплоть до 118-ти протонов. Все эти «тяжеловесы» крайне короткоживущи, они распадаются за считанные миллисекунды.

Но еще в середине ХХ века была теоретически предсказана возможность существования сверхтяжелых элементов, содержащих определенное соотношение протонов и нейтронов и имеющих срок жизни куда более долгий – десятилетия, а то и больше. С тех пор путь к этому «острову стабильности» стал одним из важнейших направлений ядерной физики. И вовсе не из чисто академического интереса. Сверхтяжелые стабильные элементы могли бы послужить отличным топливом для ядерных двигателей будущих космических миссий. Они должны, по расчетам, проявлять также необычные и полезные химические и физические свойства.

Однако до сих пор никто в точности не знает, где же мы должны наткнуться на этот остров. Одни расчеты показывают, что где-то в области с центром в 114 протонов на ядро, другие – между 120-ю и 126-ю протонами. Вычисления затрудняются тем, что ученые не имеют точного представления о том, как действуют сильные и слабые силы в «перенаселенных» ядрах таких элементов, удерживая их протоны и нейтроны вместе. Краткость существования полученных в лаборатории сверхтяжелых элементов не позволяет собрать достаточно экспериментальных данных.

Новый прорыв в этой области обещает недавняя работа команды немецких ученых во главе с Майклом Блоком, которым удалось найти способ прямого измерения массы частиц тяжелее урана. А поскольку масса и энергия связаны знаменитой эйнштейновской формулой E = mc2, определение массы атома позволяет (учтя дополнительные факторы) вычислить и силы, с которыми частицы в его ядре связаны друг с другом.

Для измерения массы атома ученые воспользовались устройством, которое называется ловушкой Пеннинга, где, упрощенно говоря, ионы удерживаются электромагнитным полем. Объектом измерений послужил нобелий, ядро которого включает 102 протона – на 10 больше, чем у урана. Как и прочие «искусственные» элементы, он получается столкновением несколько более легких элементов и является крайне короткоживущим (максимум 58 минут). Главной задачей, которую удалось решить немецким физикам, было найти способ замедлить атомы перед тем, как они попадут в ловушку, для чего ученые решили пропускать их предварительно через камеру, заполненную гелием.

Теперь, обладая методом, позволяющим «взвешивать» сверхтяжелые короткоживущие атомы, экспериментаторы могут точнее установить их параметры. А теоретики на базе этих данных – выбрать между конкурирующими моделями, предсказывающими положение «острова стабильности».

Метод позволяет двинуться существенно дальше по Периодической таблице, хотя на практике воспользоваться им для наиболее тяжелых из полученных элементов может быть не очень просто. Хотя бы потому, что синтез подобных великанов – уже сам по себе крайне непростой процесс. Если тот же нобелий можно с помощью подготовленного эксперимента получать с частотой, в среднем, 1 атом в секунду, то с более тяжелыми элементами, ядра которых содержат более 104 протонов, все гораздо дольше. Получение 1 атома может занять, к примеру, неделю.

Но если все пойдет хорошо, рано или поздно этот метод позволит заметить и обитателей «острова стабильности». Поскольку такие сверхтяжелые элементы обычно обнаруживаются по продуктам распада, а стабильные имеют слишком долгий период жизни, традиционные методы работы с атомами-тяжеловесами для этого не годятся

К концу 60-х годов усилиями многих теоретиков - О. Бором и Б. Мотельсоном (Дания), С. Нильсоном (Швеция), В.М. Струтинским и В.В. Пашкевичем (СССР), Х. Майерсом и В. Святецким (США), А. Собичевским и др. (Польша), В. Грайнером и др. (Германия), Р. Никсом и П. Мёллером (США), Ж. Берже (Франция) и многими другими была создана микроскопическая теория атомных ядер. Новая теория привела все вышеуказанные противоречие в стройную систему физических закономерностей.
Как любая теория, она обладала определённой предсказательной силой, в частности, в предсказании свойств очень тяжёлых, ещё неизвестных ядер. Оказалось что стабилизирующий эффект ядерных оболочек будет работать и за пределами обозначенными капельной моделью ядра (т.е. в области Z > 106) образуя т.н. «острова стабильности» вокруг магических чисел Z=108, N=162 и Z=114, N=184. Как видно на рис.2 время жизни сверхтяжёлых ядер расположенных в этих «островах стабильности» может существенно возрастать. Особенно это относится к наиболее тяжёлым, сверхтяжёлым элементам, где эффект замкнутых оболочек Z=114 (возможно 120) и N=184 повышает периоды полураспада до десятков, сотен тысяч и, быть может, миллионов лет, т.е. - на 32-35 порядков больше чем в случае отсутствия эффекта ядерных оболочек. Так возникла интригующая гипотеза о возможном существовании сверхтяжёлых элементов значительно расширяющая границы материального мира. Прямой проверкой теоретических предсказаний явился бы синтез сверхтяжёлых нуклидов и определение их свойств распада. Поэтому нам придется кратко рассмотреть ключевые вопросы, связанные с искусственным синтезом элементов.

2. Реакции синтеза тяжёлых элементов

Многие рукотворные элементы тяжелее урана были синтезированы в реакциях последовательного захвата нейтронов ядрами изотопа урана - 235 U в длительных облучениях на мощных ядерных реакторах. Большие периоды полураспада новых нуклидов позволяли отделять их от других побочных продуктов реакции радиохимическими методами с последующим измерением их свойств радиоактивного распада. Эти пионерские работы проф. Г. Сиборга и его коллег, проведенные в 1940 - 1953 гг. в Радиационной национальной лаборатории (Беркли, США) привели к открытию восьми искусственных элементов с Z = 93 -100, наиболее тяжёлый изотоп 257 Fm (Т 1/2 ~ 100 дней.). Дальнейшее продвижение в область более тяжёлых ядер было практически невозможно из-за исключительно короткого периода полураспада следующего изотопа - 258 Fm (T SF = 0.3 миллисекунды). Попытки обойти это ограничение в импульсных потоках нейтронов большой мощности возникающих при ядерном взрыве не дали желаемых результатов: по-прежнему наиболее тяжёлым ядром, был 257 Fm.

Элементы тяжелее Рт (Z=100) были синтезированы в реакциях с ускоренными тяжёлыми ионами, когда в ядро-мишень вносится комплекс протонов и нейтронов. Но этот тип реакции отличается от предыдущего случая. При захвате нейтрона, не обладающего электрическим зарядом, энергия возбуждения нового ядра составляет всего 6 - 8 МэВ. В отличие от этого, при слиянии ядер мишени даже с лёгкими ионами, такими как гелий (4 Не) или углерод (12 С), тяжёлые ядра будут нагреты до энергии Е х = 20 - 40 МэВ. С дальнейшим увеличением атомного номера ядра-снаряда ему необходимо будет сообщать всё большую энергию для преодоления электрических сил расталкивания положительно заряженных ядер (кулоновского барьера реакции). Это обстоятельство приводит к росту энергии возбуждения (нагреву) компаунд ядра образующегося после слияния двух ядер - снаряда и мишени. Его охлаждение (переход в основное состояние Е х =0) будет происходить посредством испускания нейтронов и гамма-лучей. И здесь возникает первое препятствие.

Нагретое тяжёлое ядро лишь в 1/100 доле случаев сможет испустить нейтрон, в основном оно будет делиться на два осколка т. к. энергия ядра существенно выше высоты его барьера деления. Легко понять, что увеличение энергии возбуждения компаунд ядра губительно для него. Вероятность выживания нагретого ядра резко падает с увеличением температуры (или энергии Е х) из-за увеличения числа испаряемых нейтронов, с которыми сильно конкурирует деление. Для того чтобы охладить ядро, нагретое до энергии около 40 МэВ, необходимо испарить 4 или 5 нейтронов. Каждый раз с испусканием нейтрона будет конкурировать деление, вследствие чего вероятность выживания будет всего (1/100) 4-5 =10 -8 —10 -10 . Ситуация осложняется тем, что с ростом температуры ядра уменьшается стабилизирующий эффект оболочек, следовательно уменьшается высота барьера деления и делимость ядра резко возрастает. Оба эти фактора приводят к исключительно малой вероятности образования сверхтяжёлых нуклидов.

Продвижение в область элементов тяжелее 106 стало возможным после открытия в 1974 г. т.н. реакций «холодного слияния». В этих реакциях в качестве мишенного материала используются "магические" ядра стабильных изотопов - 208 РЬ (Z=82, N=126) или 209 Bi (Z=83, N=126), которые бомбардируются ионами тяжелее аргона (Ю.Ц. Оганесян, А.Г. Дёмин и др.). В процессе слияния высокая энергия связи нуклонов в "магическом" ядре-мишени приводит к поглощению энергии при перестройке двух взаимодействующих ядер
в тяжёлое ядро суммарной массы. Эта разница в энергиях "упаковки" нуклонов во взаимодействующих ядрах и в конечном ядре компенсирует в значительной степени энергию необходимую для преодоления высокого кулоновского барьера реакции. В результате, тяжёлое ядро имеет энергию возбуждения всего 12-20 МэВ. В какой-то степени подобная реакция подобна процессу «обратного деления». Действительно, если деление ядра урана на два осколка происходит с выделением энергии, (она используется в атомных электростанциях), то в обратной реакции, при слиянии осколков, образующееся ядро урана будет почти холодным. Поэтому при синтезе элементов в реакциях холодного слияния тяжёлому ядру достаточно испустить всего один или два нейтрона, чтобы перейти в основное состояние.
Реакции холодного слияния массивных ядер были успешно использованы для синтеза 6 новых элементов, от 107 до 112-го (П. Армбрустер, З. Хофман, Г. Мюнценберг и др.) в Национальном ядерно-физическом центре GSI в Дармштадте (Германия). Недавно К. Морита и др. в Национальном центре RIKEN (Токио) повторили опыты GSI по синтезу 110-112 элементов. Обе группы намерены двигаться дальше, к элементу 113 и 114, используя более тяжёлые снаряды. Однако попытки синтеза всё более тяжёлых элементов в реакциях холодного слияния связаны с большими трудностями. С увеличением атомного заряда ионов вероятность их слияния с ядрами мишени 208 РЬ или 209 Bi сильно уменьшается из-за возрастания кулоновских сил отталкивания пропорциональных, как известно, произведению зарядов ядер. От элемента 104, который может быть получен в реакции 208 РЬ + 50 Тi (Z 1 × Z 2 = 1804) к элементу 112 в реакции 208 РЬ + 70 Zn (Z 1 × Z 2 = 2460), вероятность слияния уменьшается более чем в 10 4 раз.

Рисунок 3 Карта тяжёлых нуклидов. Периоды полураспада ядер представлены различным цветом (правая шкала). Чёрные квадраты - изотопы стабильных элементов обнаруженных в земной коре (Т 1/2 10 9 лет). Темно-синий цвет - «море нестабильности», где ядра живут менее 10 -6 секунды. Жёлтые линии соответствуют замкнутым оболочкам с указанием магических чисел протонов и нейтронов. «Острова стабильности» следующие за «полуостровом» тория, урана и трансурановых элементов -предсказания микроскопической теории ядра. Два ядра с Z = 112 и 116, полученные в различных ядерных реакциях и их последовательный распад, показывают насколько близко можно подойти к «островам стабильности» при искусственном синтезе сверхтяжёлых элементов.

Есть и другое ограничение. Компаунд ядра, полученные в реакциях холодного слияния, имеют относительно малое число нейтронов. В рассматриваемом выше случае образования 112-го элемента конечное ядро с Z = 112 имеет только 165 нейтронов, в то время как подъём стабильности ожидается для числа нейтронов N > 170 (см рис.3 ).

Ядра с большим избытком нейтронов могут быть в принципе получены, если в качестве мишеней использовать искусственные элементы: плутоний (Z=94), америций (Z=95) или кюрий (Z=96) нарабатываемые в ядерных реакторах, а в качестве снаряда - редкий изотоп кальция - 48 Са. (см. далее).

Ядро атома 48 Са содержит 20 протонов и 28 нейтронов - оба значения соответствуют замкнутым оболочкам. В реакциях слияния с ядрами 48 Са будет также работать их "магическая" структура (эту роль в реакциях холодного слияния играли магические ядра мишени - 208 РЬ), в результате чего энергия возбуждения сверхтяжёлых ядер будет около 30 - 35 МэВ. Их переход в основное состояние будет сопровождаться эмиссией трёх нейтронов и гамма лучей. Можно было ожидать что при этой энергии возбуждения эффект ядерных оболочек ещё присутствует в нагретых сверхтяжёлых ядрах, это повысит их выживаемость и позволит нам их синтезировать в наших экспериментах. Отметим также, что асимметрия масс взаимодействующих ядер (Z 1 × Z 2 2000) уменьшает их кулоновское отталкивание и тем самым увеличивает вероятность слияния.

Несмотря на эти, казалось бы, очевидные преимущества, все предыдущие попытки синтеза сверхтяжёлых элементов в реакциях с ионами 48 Са, предпринятые в различных лабораториях в 1977 - 1985 гг. оказались не результативными. Однако развитие экспериментальной техники в последние годы и, прежде всего, получение в нашей лаборатории интенсивных пучков ионов 48 Са на ускорителях нового поколения, позволили увеличить чувствительность эксперимента почти в 1000 раз. Эти достижения были использованы в новой попытке синтеза сверхтяжёлых элементов.

3 Ожидаемые свойства

Что мы ожидаем увидеть в эксперименте в случае успешного синтеза? Если теоретическая гипотеза справедлива, то сверхтяжёлые ядра будут стабильны относительно спонтанного деления. Тогда они будут испытывать другой тип распада: альфа - распад (эмиссия ядра гелия состоящего из 2 протонов и 2 нейтронов). В результате этого процесса образуется дочернее ядро на 2 протона и 2 нейтрона легче материнского. Если у дочернего ядра вероятность спонтанного деления также мала, то после второго альфа - распада внучатое ядро теперь будет уже на 4 протона и 4 нейтрона легче начального ядра. Альфа - распады будут продолжаться до тех пор, пока не наступит спонтанное деление (рис.4 ).

Т. о. мы ожидаем увидеть не один распад, а «радиоактивное семейство», цепочку последовательных альфа - распадов, достаточно длительных по времени (в ядерном масштабе), которые конкурируют но, в конечном итоге, прерываются спонтанным делением. В принципе такой сценарий распада уже свидетельствует об образовании сверхтяжёлого ядра.

Чтобы увидеть ожидаемый подъём стабильности в полной мере необходимо подойти как можно ближе к замкнутым оболочкам Z = 114 и N = 184. Синтезировать в ядерных реакциях столь нейтронно-избыточные ядра чрезвычайно трудно т. к. при слиянии ядер стабильных элементов, в которых уже имеется определённое соотношение протонов и нейтронов, невозможно добраться до дважды магического ядра 298 114. Поэтому нам необходимо попытаться использовать в реакции ядра, которые изначально содержат максимально возможное число нейтронов. Этим, в значительной степени, был также обусловлен выбор в качестве снаряда ускоренных ионов 48 Са. Кальция, как известно, в природе много. Он состоит на 97% из изотопа 40 Са, ядро которого содержит 20 протонов и 20 нейтронов. Но в нём содержится в количестве 0.187% тяжёлый изотоп - 48 Са (20 протонов и 28 нейтронов) который имеет 8 избыточных нейтронов. Технология его получения очень трудоёмкая и дорогостоящая; стоимость одного грамма обогащённого 48 Са -около $200,000. Поэтому пришлось изменить существенным образом конструкцию и режимы работы нашего ускорителя с тем, чтобы найти компромиссное решение - получить максимальную интенсивность пучка ионов при минимальном расходе этого экзотического материала.

Рисунок 4
Теоретические предсказания о типах распада (показаны разным цветом на рисунке) и периодах полураспада изотопов сверхтяжёлых элементов с различным числом протонов и нейтронов. В качестве примера показано, что для изотопа 116-го элемента с массой 293, образующегося в реакции слияния ядер 248 Ст и 48 Са, ожидаются три последовательных альфа - распада которые завершаются спонтанным делением правнучатого ядра 110-го элемента с массой 281. Как видно на Рис.8 именно такой сценарий распада, в виде цепочки α - α - α
- SF, наблюдён для этого ядра в эксперименте. Распад более лёгкого ядра - изотопа 110-го элемента с массой 271 полученный в реакции «холодного слияния» ядер 208 Pb + 64 Ni .Его период полураспада в 10 4 раз меньше чем у изотопа 281 110.

Сегодня мы достигли рекордной интенсивности пучка - 8× 10 12 /с, при весьма низком расходе изотопа 48 Са - около 0.5 миллиграмма/час. В качестве мишенного материала мы используем долгоживущие обогащенные изотопы искусственных элементов: Pu, Am, Cm и Cf (Z = 94-96 и 98) также с максимальным содержанием нейтронов. Они производятся в мощных ядерных реакторах (в г. Ок-Ридже, США и в г. Димитровграде, Россия) и затем обогащаются на специальных установках, масс-сепараторах во Всероссийском научно-исследовательском институте экспериментальной физики (г. Саров). Реакции слияния ядер 48 Са с ядрами этих изотопов были выбраны для синтеза элементов с Z = 114 - 118 .

Здесь я хотел бы сделать некоторое отступление.

Далеко не каждая лаборатория, даже ведущих ядерных центров мира, обладает столь уникальными материалами, и в таком количестве, которые мы используем в нашей работе. Но технологии их получения были разработаны в нашей стране и они нарабатываются нашей промышленностью. Министр атомной энергии России предложил нам разработать программу работ по синтезу новых элементов на 5 лет и выделил специальный грант на проведение этих исследований. С другой стороны, работая в Объединённом институте ядерных исследований, мы широко сотрудничаем (и конкурируем) с ведущими лабораториями мира. В исследованиях по синтезу сверхтяжёлых элементов мы плотно сотрудничаем на протяжении многих лет с Ливерморской национальной лабораторией (США). Это сотрудничество не только объединяет наши усилия, но и создаёт условия, при которых экспериментальные результаты обрабатываются и анализируются двумя группами независимым образом на всех этапах эксперимента.
За 5 лет работы, в течение длительных облучений, была набрана доза около 2× 10 20 ионов (около 16 миллиграмм 48 Са, ускоренного до ~ 1/10 скорости света, прошло через слои мишеней). В этих экспериментах наблюдалось образование изотопов 112÷118 элементов (за исключением 117-го элемента) и были получены первые результаты о свойствах распада новых сверхтяжёлых нуклидов. Представление всех результатов заняло бы слишком много места и, чтобы не утомлять читателя, мы ограничимся описанием лишь последнего эксперимента по синтезу 113 и 115 элементов - все остальные реакции были исследованы подобным образом. Но прежде чем приступить к этой задаче, целесообразно было бы кратко изложить постановку эксперимента и объяснить основные принципы работы нашей установки.


4. Постановка эксперимента

Составное ядро, образующееся при слиянии ядер мишени и частицы, после испарения нейтронов, будет двигаться по направлению пучка ионов. Слой мишени выбирается достаточно тонким, для того чтобы тяжёлый атом отдачи мог вылететь из него и продолжить свое движение к детектору, удаленному от мишени на расстояние около 4 м. Между мишенью и детектором расположен газонаполненный сепаратор, предназначенный для подавления частиц пучка и побочных продуктов реакции.
Принцип работы сепаратора (рис.5 ) основан на том, что атомы в газовой среде - в нашем случае в водороде, при давлении всего 10 -3 атм. - будут иметь различный ионный заряд в зависимости от их скорости. Это позволяет разделить их в магнитном поле «на лету» за время 10 -6 с. и направить в детектор. Атомы, прошедшие сепаратор имплантируются в чувствительный слой полупроводникового детектора, вырабатывая сигналы о времени прихода атома отдачи, его энергии и места имплантации (т.е. координат: х и у на рабочей поверхности детектора). Для этих целей детектор общей площадью около 50 см 2 выполнен в виде 12 "стрипов"- полос, напоминающих клавиша пианино - каждая из которых обладает продольной чувствительностью. Если ядро имплантированного атома будет испытывать альфа - распад, то вылетевшая альфа -частица (с ожидаемой энергией около 10 МэВ) зарегистрируется детектором с указанием всех ранее перечисленных параметров: времени, энергии и координат. Если после первого распада последует второй, то подобная информация будет получена и для второй альфа - частицы и т.д. пока не произойдёт спонтанное деление. Последний распад будет зарегистрирован в виде двух совпадающих по времени сигналов с большой амплитудой (Е 1 +Е 2 ~ 200 MeV). Для того чтобы повысить эффективность регистрации альфа - частиц и парных осколков деления фронтальный детектор окружён боковыми детекторами образуя «коробку» с открытой со стороны сепаратора стенкой. Перед детекторной сборкой расположены два тонких времяпролетных детектора измеряющие скорость ядер отдачи (т.н. TOF-детекторы, аббревиатура английских слов - time of flight ). Поэтому первый сигнал, возникающий от ядра отдачи, приходит с признаком TOF. Последующие сигналы от распада ядер не имеют этого признака.
Конечно, распады могут быть различной длительности, характеризуемые эмиссией одной или нескольких альфа - частиц с различными энергиями. Но если они принадлежат одному и тому же ядру и образуют радиоактивное семейство (материнское ядро - дочернее - внучатое и т.д.), то координаты всех сигналов - от ядра отдачи, альфа - частиц и осколков деления - должны совпадать по координате с точностью позиционного разрешения детектора. Наши детекторы, изготовленные фирмой Canberra Electronics, измеряют энергию альфа - частиц с точностью ~ 0.5% и имеют для каждого стрипа позиционное разрешение около 0.8 мм.

Рисунок 5
Схематический вид установки для сепарации ядер отдачи в экспериментах по синтезу тяжёлых элементов

Мысленно всю поверхность детектора можно представить в виде около 500 ячеек (пикселей), в которых детектируются распады. Вероятность того, что два сигнала попадут случайным образом в одно и тоже место составляет 1/500, три сигнала - 1/250000 и т.д. Это позволяет выбрать, с большой надежностью, из громадного количества радиоактивных продуктов очень редкие события генетически связанных последовательных распадов сверхтяжёлых ядер, даже если они образуются в исключительно малом количестве (~1 атом/месяц).

5. Экспериментальные результаты


(физический опыт)

Для того чтобы показать установку «в действии» опишем в качестве примера более подробно эксперименты по синтезу 115 элемента образующегося в реакции слияния ядер 243 Am(Z=95) + 48 Са(Z=20) → 291 115.
Синтез Z-нечётного ядра привлекателен тем, что наличие нечётного протона или нейтрона существенно понижает вероятность спонтанного деления и число последовательных альфа -переходов будет больше (длинные цепочки), чем в случае распада чётно-чётных ядер. Для преодоления кулоновского барьера ионы 48 Са должны иметь энергию Е > 236 MeV. С другой стороны, выполняя это условие, если ограничить энергию пучка величиной Е=248 MeV, то тепловая энергия компаунд ядра 291 115 будет около 39 MeV; его охлаждение произойдет посредством эмиссии 3-х нейтронов и гамма-лучей. Тогда продуктом реакции будет изотоп 115 элемента с числом нейтронов N=173. Вылетев из мишенного слоя, атом нового элемента, пройдёт через сепаратор настроенный на его пропускание и попадёт в детектор. Далее события развиваются так, как показано на рис.6 . Через 80 микросекунд после остановки ядра отдачи во фронтальном детекторе, в систему сбора данных поступают сигналы о его времени прихода, энергии и координатах (номер стрипа и позиция в нём). Отметим, что эта информация имеет признак "TOF" (пришел из сепаратора). Если в течение 10 секунд из того же места на поверхности детектора последует второй сигнал с энергией более 9.8 MeV, без признака "TOF" (т.е. от распада имплантированного атома) пучок отключается и весь дальнейший распад регистрируется в условиях практически полного отсутствия фона. Как видно на верхнем графике рис 6 , за первыми двумя сигналами - от ядра отдачи и первой альфа-частицы - за время около 20 с. после отключения пучка, последовало ещё 4 других сигнала, позиции которых, с точностью ± 0.5 мм, совпадает с предыдущими сигналами. В течение последующих 2.5 часов детектор молчал. Спонтанное деление в том же стрипе и в той же позиции было зарегистрировано лишь на следующий день, спустя 28.7 часов в виде двух сигналов от осколков деления с суммарной энергией 206 MeV.
Такие цепочки были зарегистрированы три раза. Они все имеют одинаковый вид (6 поколений ядер в радиоактивном семействе) и согласуются друг с другом как по энергии альфа - частиц так и по времени их появления, с учётом экспоненциального закона распада ядер. Если наблюдаемый эффект относится, как ожидалось, к распаду изотопа 115-го элемента с массой 288, образующегося после испарения компаунд ядром 3-х нейтронов, то при увеличении энергии пучка ионов 48 Са всего на 5 MeV он должен уменьшится в 5-6 раз. Действительно, при Е = 253 МэВ эффект отсутствовал. Но здесь была наблюдена другая, более короткая, цепочка распадов, состоящая из четырёх альфа - частиц (мы полагаем, что их тоже было 5, но последняя альфа частица вылетела в открытое окно) продолжительностью всего 0.4 с. Новая цепочка распадов закончилась через — 1.5 часа спонтанным делением. Очевидно, что это распад другого ядра, с большой вероятностью соседнего изотопа 115-го элемента с массой 287, образующегося в реакции слияния с испусканием 4-х нейтронов. Цепочка последовательных распадов нечётно-нечётного изотопа Z=115, N=173 представлена на нижнем графике рис.6 , где приведены в виде контурной карты расчётные периоды полураспада сверхтяжёлых нуклидов с различным числом протонов и нейтронов. Здесь показан также распад другого, более лёгкого нечётно-нечётного изотопа 111-го элемента с числом нейтронов N=161 синтезированного в реакции 209 Bi+ 64 Ni в немецкой Лаборатории - GSI (г. Дармштадт) и затем и в японской - RIKEN(Токио).

Рисунок 6
Эксперимент по синтезу 115 элемента в реакции 48 Са + 243 Ат.
На верхнем рисунке приведены времена появления сигналов после имплантации в детектор ядра отдачи (R). Красным цветом отмечены сигналы от регистрации альфа - частиц, зелёным - от спонтанного деления. В качестве примера, для одного из трёх событий приведены позиционные координаты (в мм) всех 7 сигналов от цепочки распада R →
α 1 → α 2 → α 3 → α 4 →α 5 → SF зарегистрированной в стрипе № 4. На нижнем рисунке показаны цепочки распадов ядер с Z=111, N=161 и Z=115, N=173. Контурные линии, очерчивающие области ядер с различными периодами полураспада (разная степень затемнения) - предсказания микроскопической теории.

Прежде всего, следует отметить, что периоды полураспада ядер в обоих случаях хорошо согласуются с теоретическими предсказаниями. Несмотря на то, что изотоп 288 115 удалён от нейтронной оболочки N=184 на 11 нейтронов, изотопы 115 и 113 элементов обладают относительно большим временем жизни (Т 1/2 ~ 0.1 с и 0.5 с соответственно).
После пяти альфа - распадов образуется изотоп 105 элемента - дубния (Db) с N=163, стабильность которого определяется уже другой замкнутой оболочкой N=162. Силу действия этой оболочки демонстрирует огромная разница в периодах полураспада двух изотопов Db отличающихся друг от друга всего на 8 нейтронов. Отметим, ещё раз, что в отсутствии структуры (ядерных оболочек) все изотопы 105÷115 элементов должны были бы испытывать спонтанное деление за время ~ 10 -19 с.


(химический опыт)

В описанном выше примере свойства долгоживущего изотопа 268 Db замыкающего цепочку распада 115-го элемента представляют самостоятельный интерес.
Согласно Периодическому закону 105-ый элемент находится в V ряду. Он является, как видно на рис.7 , химическим гомологом ниобия (Nb) и тантала (Та) и отличается по химическим свойствам от всех, более лёгких элементов - актиноидов (Z = 90÷103) представляющих отдельную группу в Таблице Д.И. Менделеева. Благодаря большому периоду полураспада, данный изотоп 105-ого элемента может быть отделен от всех продуктов реакции радиохимическим методом с последующим измерением его распада - спонтанного деления. Этот эксперимент даёт независимую идентификацию атомного номера конечного ядра (Z = 105) и всех нуклидов образующихся в последовательных альфа - распадах 115-го элемента.
В химическом эксперименте нет необходимости в использовании сепаратора ядер отдачи. Разделение продуктов реакции по их атомным номерам осуществляется методами, основанными на различии их химических свойств. Поэтому здесь использовалась более упрощенная методика. Продукты реакции, вылетающие из мишени, вбивались в медный сборник, расположенный на пути их движения, на глубину 3-4 микрон. После 20-30 часового облучения сборник растворялся. Из раствора выделялась фракция трансактиноидов - элементов Z > 104 - а из этой фракции, затем элементы 5-ого ряда - Db в сопровождении своих химических гомологов Nb и Та. Последние добавлялись в качестве "отметчиков" в раствор перед химическим разделением. Капелька раствора, содержащая Db, наносилась на тонкую подложку, высушивалась и помещалась затем между двумя полупроводниковыми детекторами, регистрирующими оба осколка спонтанного деления. Вся сборка помещалась в свою очередь в нейтронный детектор, определяющий число нейтронов испущенных осколками при делении ядер Db.
В июне 2004 г. было проведено 12 идентичных опытов (С. Н. Дмитриев и др.), в которых было зарегистрировано 15 событий спонтанного деления Db. Осколки спонтанного деления Db имеют кинетическую энергию около 235 МэВ, на каждый акт деления испускается в среднем около 4 нейтронов. Такие характеристики присущи спонтанному делению достаточно тяжёлого ядра. Напомним, что для 238 U эти величины составляют соответственно около 170 МэВ и 2 нейтрона.
Химический опыт подтверждает результаты физического эксперимента: образующиеся в реакции 243 Am + 48 Са ядра 115-го элемента в результате последовательных пяти альфа распадов: Z = 115 → 113 → 111 → 109 → 107 → 105 действительно приводят к образованию долгоживущего спонтанно-делящегося ядра с атомным номером 105. В этих экспериментах, как дочерний продукт альфа - распада 115-го элемента, был синтезирован также ещё один, ранее неизвестный элемент с атомным номером 113.

Рисунок 7
Физический и химический опыты по изучению радиоактивных свойств 115-го элемента.
В реакции 48 Са + 243 Ат, с помощью физической установки было показано, что пять последовательных
альфа - распадов изотопа 288 115 приводят к долгоживущему изотопу 105-го элемента - 268 Db, который
делится спонтанно на два осколка. В химическом эксперименте определено, что спонтанное деление испытывает ядро с атомным номером 105.

6. Общая картина и будущее

Полученные в реакции 243 Am+ 48 Са результаты не являются частным случаем. При синтезе Z-чётных нуклидов - изотопов 112, 114 и 116 элементов - мы наблюдали также длинные цепочки распадов, оканчивающиеся спонтанным делением ядер с Z =104-110, время жизни которых составляло от секунд до часов в зависимости от атомного номера и нейтронного состава ядра. К настоящему времени получены данные о свойствах распада 29 новых ядер с Z =104-118; они представлены на карте нуклидов (рис.8 ). Свойства тяжелейших ядер расположенных в области трансактиноидов, их тип распада, энергии и времена распадов находятся в хорошем согласии с предсказаниями современной теории. Гипотеза о существовании островов стабильности сверхтяжёлых ядер, значительно расширяющих мир элементов, кажется, впервые нашла экспериментальное подтверждение.

Перспективы

Теперь задача состоит в более детальном изучении ядерной и атомной структуры новых элементов, что весьма проблематично, прежде всего, из-за малого выхода искомых продуктов реакции. Для того чтобы увеличить число атомов сверхтяжёлых элементов необходимо увеличить интенсивность пучка ионов 48 Са и повысить эффективность физических методик. Модернизация ускорителя тяжёлых ионов, намеченная на ближайшие годы, с использованием всех последних достижений ускорительной техники, позволит нам увеличить интенсивность пучка ионов примерно в 5 раз. Решение второй части требует кардинального изменения постановки опытов; оно может быть найдено в создании новой экспериментальной методики, исходя из свойств сверхтяжёлых элементов.

Рисунок 8
Карта нуклидов тяжелых и сверхтяжёлых элементов.
Для ядер внутри овалов, соответствующих различным реакциям синтеза (показаны на рисунке), приведены периоды полураспада и энергии испускаемых альфа-частиц (жёлтые квадраты). Данные представлены на контурной карте разделяющей области по вкладу эффекта ядерных оболочек в энергию связи ядра. В отсутствие ядерной структуры всё поле было бы белого цвета. По мере потемнения эффект оболочек растёт. Две соседние зоны отличаются на величину всего 1 МэВ. Этого, однако, достаточно для значительного увеличения стабильности ядер относительно спонтанного деления, в результате чего нуклиды расположенные вблизи «магических» чисел протонов и нейтронов испытывают преимущественно альфа - распад. С другой стороны, в изотопах 110-го и 112-го элементов увеличение числа нейтронов на 8 атомных единиц приводит к возрастанию периодов альфа - распада ядер более чем в 10 5 раз.

Принцип работы действующей установки - кинематического сепаратора ядер отдачи (рис.5 ) основан на отличии кинематических характеристик различного типа реакций. Интересующие нас продукты реакции слияния ядер мишени и 48 Са вылетают из мишени в переднем направлении, в узком угловом конусе ± 3 0 с кинетической энергией около 40 МэВ. Ограничивая траектории движения ядер отдачи с учётом этих параметров, мы практически полностью отстраиваемся от пучка ионов, подавляем фон побочных продуктов реакции в 10 4 ÷10 6 раз, и с эффективностью примерно 40% доставляем атомы новых элементов к детектору за время 1 микросекунду. Иными словами, сепарация продуктов реакции происходит «налету».

Рисунок 8 Установка MASHA
На верхнем рисунке приведена схема сепаратора и принцип его действия. Ядра отдачи, вылетающие из мишенного слоя, останавливаются в графитовом сборнике на глубине несколько микрометром. Вследствие высокой температуры сборника они диффундируют в камеру ионного источника, вытягиваются из плазмы, ускоряются электрическим полем и анализируются по массе магнитными полями по ходу движения к детектору. В данной конструкции масса атома может быть определена с точность 1/3000. На нижнем рисунке показан общий вид установки.

Но для того чтобы получить высокую селективность установки важно сохранить, «не размазать» кинематические параметры - углы вылета и энергии ядер отдачи. Из-за этого необходимо использовать мишенные слои толщиной не более 0.3 микрометра - примерно втрое меньшей, чем нужно для получения эффективного выхода сверхтяжёлого ядра с данной массой или в 5÷6 раз меньшей, если речь идёт о синтезе двух соседних по массе изотопов данного элемента. Кроме того, чтобы получить данные о массовых числах изотопов сверхтяжёлогоэлемента, необходимо проводить длительную и трудоёмкую серию опытов - повторять измерения при различных энергиях пучка ионов 48 Са.
Вместе с тем, как следует из наших опытов, синтезированные атомы сверхтяжёлых элементов имеют периоды полураспада, значительно превышающие быстродействие кинематического сепаратора. Поэтому, во многих случаях, нет необходимости в сепарации продуктов реакции за столь короткое время. Тогда можно изменить принцип действия установки и провести разделение продуктов реакции в несколько этапов.
Схема новой установки представлена на рис.9 . После имплантации ядер отдачи в нагретый до температуры 2000 0 С сборник атомы диффундируют в плазму ионного источника, ионизуются в плазме до заряда q = 1 + , вытягиваются из источника электрическим полем, сепарируются по массе в магнитных полях специального профиля и, наконец, регистрируются (по типу распада) детекторами, расположенными в фокальной плоскости. Вся процедура может занимать, по оценкам, время от десятых долей секунды до нескольких секунд в зависимости от температурных режимов и физико-химических свойств сепарируемых атомов. Уступая в быстродействии кинематическому сепаратору, новая установка - MASHA (аббревиатура от полного названия Маss Analyzer of Super Heavy Atoms ) - повысит эффективность работы примерно в 10 раз и даст, наряду со свойствами распада, прямое измерение массы сверхтяжёлых ядер.
Благодаря гранту, выделенному губернатором Московской области Б.В. Громовым для создания этой установки, она была спроектирована и изготовлена в короткий срок - за 2 года, прошла испытания и готова к работе. После реконструкции ускорителя, с установкой МАSНА. мы существенно расширим наши исследования свойств новых нуклидов и попытаемся пройти дальше, в область более тяжёлых элементов.


(поиск сверхтяжёлых элементов в природе)

Другая сторона проблемы сверхтяжёлых элементов связана с получением более долгоживущих нуклидов. В описанных выше экспериментах мы подошли лишь к краю «острова», обнаружили крутой подъём вверх, но далеки ещё от его вершины, где ядра могут жить тысячи и, быть может, даже миллионы лет. Нам не хватает нейтронов в синтезируемых ядрах, для того чтобы приблизится к оболочке N=184. Сегодня это недостижимо - нет таких реакций, которые позволили бы получать столь нейтронно-избыточные нуклиды. Возможно, в отдалённом будущем, физики смогут использовать интенсивные пучки радиоактивных ионов, с числом нейтронов большим, чем у ядер 48 Са. Такие проекты сейчас широко обсуждаются, пока не касаясь затрат необходимых для создания подобных ускорительных гигантов.

Однако можно попытаться подойти к этой задаче с другой стороны.

Если предположить, что наиболее долгоживущие сверхтяжёлые ядра имеет период полураспада 10 5 ÷ 10 6 лет (не сильно расходится с предсказаниями теории, которая свои оценки делает также с определённой точностью), то не исключено, что они могут быть обнаружены в космических лучах - свидетелях образования элементов на других, более молодых планетах Вселенной. Если сделать ещё более сильное предположение о том, что период полураспада «долгожителей» может составлять десятки миллионов лет или более, то они могли бы присутствовать в Земле, сохранившись в очень малых количествах от момента образования элементов в Солнечной системе до наших дней.
Среди возможных кандидатов мы отдаём предпочтение изотопам 108-го элемента (Нs)ядра которых содержат около 180 нейтронов. Химические опыты, проведенные с короткоживущим изотопом 269 Нs (Т 1/2 ~ 9 с) показали, что 108 элемент, как и ожидалось, согласно Периодическому закону, является химическим гомологом 76-го элемента - осмия (Оs).

Рисунок 10
Установка для регистрации вспышки нейтронов от спонтанного деления ядер при распаде 108 элемента. (Подземная лаборатория в г. Модан, Франция)

Тогда образец металлического осмия, может содержать в очень малых количествах 108 элемент Ека(Оs). Присутствие Ека(Оs) в осмии можно определить по его радиоактивному распаду. Возможно, сверхтяжёлый долгожитель будет испытывать спонтанное деление, либо спонтанное деление наступит после предшествующих альфа или бета - распадов (вид радиоактивного превращения, при котором один из нейтронов ядра превращается в протон) более легкого и более короткоживущего дочернего или внучатого ядра. Поэтому, на первом этапе, можно поставить эксперимент по регистрации редких событий спонтанного деления осмиевого образца. Такой эксперимент подготавливается. Измерения начнутся в конце этого года, и будут продолжаться 1-1.5 лет. Распад сверхтяжёлого ядра будет регистрироваться по нейтронной вспышке сопровождающей спонтанное деление. Для того чтобы защитить установку от фона нейтронов, возникающего под действием космических лучей, измерения будут проводиться в подземной лаборатории расположенной под Альпами в середине тоннеля соединяющего Францию с Италией на глубине соответствующей 4000-метровому слою водного эквивалента.
Если в течение года измерений будет наблюдено хотя бы одно событие спонтанного деления сверхтяжёлого ядра, то это будет соответствовать концентрации 108 элемента в Оs-образце около 5× 10 -15 г/гр., в предположении, что его период полураспада равен 10 9 лет. Столь малая величина составляет всего 10 -16 часть от концентрации урана в земной коре.
Несмотря на сверхвысокую чувствительность эксперимента, шансы обнаружить реликтовые, сверхтяжёлые нуклиды малы. Но любой научный поиск всегда имеет малый шанс... Отсутствия эффекта даст верхнюю границу периода полураспада долгожителя на уровне Т 1/2 3× 10 7 лет. Не столь впечатлительно, но важно для понимания свойств ядер в новой области стабильности сверхтяжёлых элементов.

Ограничения на существование атомных ядер есть и со стороны сверхтяжелых элементов. Элементы с Z > 92 в естественных условиях не обнаружены. Расчеты по жидкокапельной модели предсказывают исчезновение барьера деления для ядер с Z2/A ≈ 46 (примерно 112 элемент). В проблеме синтеза сверхтяжелых ядер следует выделить два круга вопросов.

  1. Какими свойствами должны обладать сверхтяжелые ядра? Будут ли существовать магические числа в этой области Z и N. Каковы основные каналы распада и периоды полураспада сверхтяжелых ядер?
  2. Какие реакции следует использовать для синтеза сверхтяжелых ядер, типы бомбардирующих ядер, ожидаемые величины сечений, ожидаемые энергии возбуждения компаунд-ядра и каналы снятия возбуждения?

Так как образование сверхтяжелых ядер происходит в результате полного слияния ядра мишени и налетающей частицы необходимо создание теоретических моделей, описывающих динамику процесса слияния двух сталкивающихся ядер в компаунд-ядро.
Проблема синтеза сверхтяжелых элементов тесно связана с тем фактом, что ядра с Z,N = 8, 20, 28, 50, 82, N = 126 (магические числа) обладают повышенной стабильностью по отношению к различным модам радиоактивного распада. Это явление объясняется в рамках оболочечной модели − магические числа соответствуют заполненным оболочкам. Естественно возникает вопрос о существовании следующих магических чисел по Z и N. В случае, если они существуют в области N-Z-диаграммы атомных ядер N > 150, Z > 101, должны наблюдаться сверхтяжелые ядра, имеющие повышенные периоды полураспада, т.е. должен существовать Остров Стабильности. В работе на основе расчетов, выполненных с использованием потенциала Вудса-Саксона с учетом спин-орбитального взаимодействия, было показано, что повышение стабильности ядер следует ожидать для ядра с Z = 114, то есть следующая заполненная протонная оболочка соответствует Z = 114, заполненная нейтронная оболочка соответствует числу N ~ 184. Замкнутые оболочки могут существенно увеличить высоту барьера деления и соответственно увеличить время жизни ядра. Таким образом в этой области ядер (Z = 114, N ~ 184) следует искать Остров Стабильности. Этот же результат был независимо получен в работе .
Ядра с Z = 101–109 были открыты до 1986 года и получили названия: 101 - Md (Menelevium), 102 - No (Nobelium), 103 - Lr (Lawrencium), 104 - Rf (Rutherfordium, 106 - Sg (Seaborgium), 107 - Ns (Nielsborium), 108 - Hs (Hassium), 109 - Mt (Meitnerium). Учитывая заслуги исследователей из Дубны в открытии большого числа изотопов тяжелых элементов (102-105), в 1997 году решением Генеральной Ассамблеи чистой и прикладной химии элементу с Z = 105 было присвоено имя Dubnium (Db). Этот элемент ранее назывался Ha (Hannium).


Рис. 12.3. Цепочки распадов изотопов Ds (Z = 110), Rg (Z = 111), Cn (Z = 112).

Новый этап в исследовании сверхтяжелых ядер начался в 1994 году, когда была существенно повышена эффективность регистрации и усовершенствована методика наблюдения сверхтяжелых ядер. Как результат были обнаружены изотопы Ds (Z = 110), Rg (Z = 111) и Cn (Z = 112) .
Для получения сверхтяжелых ядер использовались ускоренные пучки 50 Ti, 51 V, 58 Fe, 62 Ni, 64 Ni, 70 Zn и 82 Se. В качестве мишеней применялись изотопы 208 Pb и 209 Bi. Различные изотопы 110 элемента были синтезированы в Лаборатории ядерных реакций им. Г.Н. Флерова с помощью реакции 244 Pu(34 S,5n) 272 110 и в GSI (Дармштадт) в реакции 208 Pb(62 Ni,n) 269 110. Изотопы 269 Ds, 271 Ds, 272 Rg и 277 Cn регистрировались по их цепочкам распада (рис. 12.3).
Большую роль в получении сверхтяжелых элементов играют теоретические модели, с помощью которых рассчитываются ожидаемые характеристики химических элементов, реакции, в которых они могут образовываться.
На основе различных теоретических моделей были рассчитаны распадные характеристики сверхтяжелых ядер. Результаты одного из таких расчетов показаны на рис. 12.4. Приведены периоды полураспада четно-четных сверхтяжелых ядер относительно спонтанного деления (а), α-распада (б), β-распада (в) и для всех возможных процессов распада (г). Наиболее устойчивым ядром по отношению к спонтанному делению (рис. 12.4а) является ядро с Z = 114 и N = 184. Для него период полураспада по отношению к спонтанному делению ~10 16 лет. Для изотопов 114-го элемента, отличающихся от наиболее устойчивого на 6-8 нейтронов, периоды полураспада уменьшаются на
10-15 порядков. Периоды полураспада по отношению к α-распаду приведены на рис. 12.5б. Наиболее устойчивое ядро расположено в области Z = 114 и N = 184 (T 1/2 = 10 15 лет).
Стабильные по отношению к β-распаду ядра показаны на рис. 12.4в темными точками. На рис. 12.4г приведены полные периоды полураспада, которые для четно-четных ядер, расположенных внутри центрального контура, составляют ~10 5 лет. Таким образом, после учета всех типов распада оказывается, что ядра в окрестности Z = 110 и N = 184 образуют «остров стабильности». Ядро 294 110 имеет период полураспада около 10 9 лет. Отличие величины Z от предсказываемого оболочечной моделью магического числа 114 связано с конкуренцией между делением (относительно которого ядро с Z = 114 наиболее стабильно) и α-распадом (относительно которого устойчивы ядра с меньшими Z). У нечетно-четных и четно-нечетных ядер периоды полураспада по отношению к
α-распаду и спонтанному делению увеличиваются, а по отношению к β-распаду уменьшаются. Следует отметить, что приведенные оценки сильно зависят от параметров, использованных в расчетах, и могут рассматриваться лишь как указания на возможность существования сверхтяжелых ядер, имеющих времена жизни достаточно большие для их экспериментального обнаружения.


Рис. 12.4. Периоды полураспада, вычисленные для четно-четных сверхтяжелых ядер (числа обозначают периоды полураспада в годах):
а − относительно спонтанного деления, б − α-распада, в − е-захвата и β-распада, г − для всех процессов распада

Результаты еще одного расчета равновесной формы сверхтяжелых ядер и их периодов полураспада показаны на рис. 12.5, 12.6 . На рис. 12.5 показана зависимость энергии равновесной деформации от количества нейтронов и протонов для ядер с Z = 104-120. Энергия деформации определяется как разность энергий ядер в равновесной и сферической форме. Из этих данных видно, что в области Z = 114 и N = 184 должны располагаться ядра, имеющие в основном состоянии сферическую форму. Все обнаруженные на сегодня сверхтяжелые ядра (они показаны на рис. 12.5 темными ромбами) деформированы. Светлыми ромбами показаны ядра стабильные по отношению к β-распаду. Эти ядра должны распадаться в результате α-распада или деления. Основным каналом распада должен быть α-распад.

Периоды полураспада для четно-четных β-стабильных изотопов показаны на рис. 12.6. Согласно этим предсказаниям для большинства ядер ожидаются периоды полураспада гораздо большие, чем наблюдались для уже обнаруженных сверхтяжелых ядер (0.1–1 мс). Так например, для ядра 292 Ds предсказывается время жизни ~ 51 год.
Таким образом, согласно современным микроскопическим расчетам, стабильность сверхтяжелых ядер резко возрастает по мере приближения к магическому числу по нейтронам N = 184. До недавнего времени единственным изотопом элемента Z = 112 Cn (коперниций) был изотоп 277 Cn, имеющий период полураспада 0.24 мс. Более тяжелый изотоп 283 Cn был синтезирован в реакции холодного слияния 48 Ca + 238 U. Время облучения 25 дней. Полное число ионов 48 Ca на мишени − 3.5·10 18 . Зарегистрированы два случая, которые были интерпретированы как спонтанное деление образовавшегося изотопа 283 Cn. Для периода полураспада этого нового изотопа получена оценка T 1/2 = 81 c. Таким образом, видно, что увеличение числа нейтронов в изотопе 283 Cn по сравнению с изотопом 277 Cn на 6 единиц увеличивает время жизни на 5 порядков.
На рис. 12.7 взятом из работы экспериментально измеренные периоды α-распада сравниваются с результатами теоретических расчетов на основе модели жидкой капли без учета оболочечной структуры ядер. Видно, что для всех тяжелых ядер, за исключением лёгких изотопов урана, оболочечные эффекты увеличивают период полураспада на 2–5 порядков для большинства ядер. Ещё более сильное влияние оболочечная структура ядра оказывает на периоды полураспада относительно спонтанного деления. Увеличение периода полураспада для изотопов Pu составляет несколько порядков и увеличивается для изотопа 260 Sg.

Рис. 12.7. Экспериментально измеренные (● exp) и теоретически рассчитанные (○ Y) периоды полураспада трансурановых элементов на основе модели жидкой капли без учета оболочечной структуры ядра. Верхний рисунок − периоды полураспада для α-распада, нижний рисунок − периоды полураспада для спонтанного деления.

На рис. 12.8 показано измеренное время жизни изотопов сиборгия Sg (Z = 106) в сравнении с предсказаниями различных теоретических моделей . Обращает на себя внимание уменьшение почти на порядок времени жизни изотопа с N = 164 по сравнению с временем жизни изотопа с N = 162.
Наибольшего приближения к острову стабильности можно достичь в реакции 76 Ge + 208 Pb. Сверхтяжелое почти сферическое ядро может образоваться в реакции слияния с последующим испусканием γ-квантов или одного нейтрона. Согласно оценкам образующееся ядро 284 114 должно распадаться с испусканием α-частиц с периодом полураспада ~ 1 мс. Дополнительную информацию о заполненности оболочки в районе N = 162 можно получить, изучая α-распады ядер 271 Hs и 267 Sg. Для этих ядер предсказываются периоды полураспада 1 мин. и 1 час. Для ядер 263 Sg, 262 Bh, 205 Hs, 271,273 Ds ожидается проявление изомерии, причиной которой является заполнение подоболочек с j = 1/2 и j = 13/2 в районе N = 162 для ядер деформированных в основном состоянии.

На рис. 12.9 показаны экспериментально измеренные функции возбуждения реакции образования элементов Rf (Z = 104) и Hs (Z = 108)для реакций слияния налетающих ионов 50 Ti и 56 Fe с ядром-мишенью 208 Pb.
Образовавшееся компаунд-ядро охлаждается испусканием одного или двух нейтронов. Информация о функциях возбуждения реакций слияния тяжелых ионов особенно важны для получения сверхтяжелых ядер. В реакции слияния тяжелых ионов необходимо точно сбалансировать действие кулоновских сил и сил поверхностного натяжения. Если энергия налетающего иона недостаточно большая, то расстояние минимального сближения будет недостаточно для слияния двойной ядерной системы. Если энергия налетающей частицы будет слишком большой, то образовавшаяся в результате система будет иметь большую энергию возбуждения и с большой вероятностью произойдет развал ее на фрагменты. Эффективно слияние происходит в довольно узком диапазоне энергий сталкивающих частиц.


Рис.12.10. Схема потенциалов при слиянии 64 Ni и 208 Pb.

Реакции слияния с испусканием минимального числа нейтронов (1–2) представляют особый интерес, т.к. в синтезируемых сверхтяжелых ядрах желательно иметь максимально большое отношение N/Z. На рис. 12.10 показан потенциал слияния для ядер в реакции 64 Ni + 208 Pb → 272 Ds. Простейшие оценки показывают, что вероятность туннельного эффекта для слияния ядер составляет ~ 10 –21 , что существенно ниже наблюдаемой величины сечения. Это можно объяснить следующим образом. На расстоянии 14 Фм между центрами ядер первоначальная кинетическая энергия 236.2 МэВ полностью компенсируется кулоновским потенциалом. На этом расстоянии находятся в контакте только нуклоны, расположенные на поверхности ядра. Энергия этих нуклонов мала. Следовательно существует высокая вероятность того, что нуклоны или пары нуклонов покинут орбитали в одном ядре и переместятся на свободные состояния ядра-партнера. Передача нуклонов от налетающего ядра ядру-мишени особенно привлекательна в случае, когда в качестве мишени используется дважды магический изотоп свинца 208 Pb. В 208 Pb заполнены протонная подоболочка h 11/2 и нейтронные подоболочки h 9/2 и i 13/2 . Вначале передача протонов стимулируется силами притяжения протон-протон, а после заполнения подоболочки h 9/2 - силами притяжения протон-нейтрон. Аналогично нейтроны перемещаются в свободную подоболочку i 11/2 , притягиваясь нейтронами из уже заполненной подоболочки i 13/2 . Из-за энергии спаривания и больших орбитальных моментов передача пары нуклонов более вероятна, чем передача одного нуклона. После передачи двух протонов от 64 Ni 208 Pb кулоновский барьер уменьшается на 14 МэВ, что способствует более тесному контакту взаимодействующих ионов и продолжению процесса передачи нуклонов.
В работах [В.В. Волков. Ядерные реакции глубоконеупругих передач. М. Энергоиздат, 1982; В.В. Волков. Изв. АН СССР серия физич., 1986 т. 50 с. 1879] был детально исследован механизм реакции слияния. Показано, что уже на стадии захвата формируется двойная ядерная система после полной диссипации кинетической энергии налетающей частицы и нуклоны одного из ядер постепенно оболочка за оболочкой передаются другому ядру. То есть оболочечная структура ядер играет существенную роль в образовании компаунд-ядра. На основе этой модели удалось достаточно хорошо описать энергию возбуждения составных ядер и сечение образования элементов Z = 102–112 в реакциях холодного синтеза.
Таким образом, прогресс в синтезе трансурановых элементов Z = 107–112 был связан с «открытием» реакций холодного синтеза, в которых магические изотопы 208 Pb и 209 Bi облучались ионами с Z = 22–30. Образующееся в реакции холодного синтеза ядро нагрето слабо и охлаждается в результате испускания одного нейтрона. Так впервые были получены изотопы химических элементов с Z = 107–112. Эти химические элементы были получены в период 1978–1998 гг. в Германии на специально построенном ускорителе исследовательского центра GSI в Дармштадте. Однако, дальнейшее продвижение − к более тяжелым ядрам − таким методом оказывается затруднительным из-за роста величины потенциаль­ного барьера между сталкивающимися ядрами. Поэтому в Дубне был реали­зован другой метод получения сверхтяжелых ядер. В качестве мишеней использовались наиболее тяжелые изотопы искусственно полученных химических элементов плутония Pu (Z = 94), америция Am (Z = 95), кюрия Cm (Z = 96), берклия Bk (Z = 97) и калифорния Cf (Z = 98). В качестве ускоренных ионов был выбран изотоп кальция 48 Ca (Z = 20). Схематический вид сепаратора и детектора ядер отдачи показан на рис. 12.11.


Рис. 12.11. Схематический вид сепаратора ядер отдачи, на котором проводятся эксперименты по синтезу сверхтяжелых элементов в Дубне.

Магнитный сепаратор ядер отдачи уменьшает фон побочных продуктов реакции в 10 5 –10 7 раз. Регистрация продуктов реакции осуществлялась с помощью позиционно-чувствительного кремниевого детектора. Измерялись энергия, координаты и время пролета ядер отдачи. После остановки все последующие сигналы от регистрируемых частиц распада должны исходить из точки остановки имплантированного ядра. Созданная методика позволяла с высокой степенью надёжности (≈ 100%) установить связь между остановившимся в детекторе сверхтяжелым ядром и продуктами его распада. С помощью такой методики были надёжно идентифицированы сверхтяжелые элементы с
Z = 110–118 (табл. 12.2).
В таблице 12.2 приведены характеристики сверхтяжелых химических элементов с Z = 110–118: массовое число A, m − наличие изомерного состояния в изотопе с массовым числом A, спин-четность J P , энергия связи ядра E св, удельная энергия связи ε, энергии отделения нейтрона B n и протона B p , период полураспада T 1/2 и основные каналы распада.
Химические элементы Z > 112 пока не имеют названий и приводятся в принятых международных обозначениях.

Таблица 12.2

Характеристики сверхтяжелых химических элементов Z = 110–118

XX-A-m J P Масса
ядра,
MэВ
E св,
MэВ
ε,
MэВ
B n ,
MэВ
B p ,
MэВ
T 1/2 Моды распада
Z = 110 − дармштадтий
Ds-267 248787.19 1934.5 7.2 0.7 2.8 ас α ≈100%
Ds-268 0 + 249718.08 1943.2 7.3 8.7 1.3 100 ас α ≈
Ds-269 250650.86 1950.0 7.2 6.8 1.3 179 ас α 100%
Ds-270 0 + 251581.97 1958.4 7.3 8.5 0.10 мс α ≈100%, SF < 0.20%
Ds-270-m 251583.07 1957.3 7.2 6.0 мс α >70%, IT ≤ 30%
Ds-271 252514.72 1965.2 7.3 6.8 2.2 1.63 мс α ≈100%
Ds-271-m 252514.72 1965.2 7.3 69 мс IT?, α >0%
Ds-272 0 + 253446.46 1973.1 7.3 7.8 2.5 1 с SF
Ds-273 254380.32 1978.8 7.2 5.7 2.5 0.17 мс α ≈100%
Ds-274 0 + 255312.45 1986.2 7.2 7.4 3.0 2 с α?,
SF?
Ds-275 256246.44 1991.8 7.2 5.6 2.9 2 с α?
Ds-276 0 + 257178.73 1999.1 7.2 7.3 3.2 5 с SF?,
α?
Ds-277 258112.63 2004.7 7.2 5.7 3.1 5 с α?
Ds-278 0 + 259044.92 2012.0 7.2 7.3 10 с SF?,
α?
Ds-279 259978.62 2017.9 7.2 5.9 0.18 с SF ≈90%,
α ≈10%
Ds-281 261844.60 2031.0 7.2 9.6 с SF ≈100%
Z =111 − рентгений
Rg-272 253452.75 1965.5 7.2 0.2 3.8 мс α ≈100%
Rg-273 254384.34 1973.5 7.2 8.0 0.4 5 мс α?
Rg-274 255317.74 1979.6 7.2 6.2 0.9 6.4 мс α ≈100%
Rg-275 256249.53 1987.4 7.2 7.8 1.2 10 мс α?
Rg-276 257183.22 1993.3 7.2 5.9 1.5 100 мс SF?,
α?
Rg-277 258115.72 2000.4 7.2 7.1 1.3 1 с α?,
SF?
Rg-278 259049.11 2006.5 7.2 6.2 1.8 4.2 мс α ≈100%,
SF
Rg-279 259981.41 2013.8 7.2 7.3 1.8 0.17 с α ≈100%
Rg-280 260914.80 2020.0 7.2 6.2 2.1 3.6 с α ≈100%
Rg-281 261847.09 2027.2 7.2 7.3 1 м α?, SF?
Rg-282 262780.59 2033.3 7.2 6.1 2.3 4 м SF?, α?
Rg-283 263712.98 2040.5 7.2 7.2 10 м SF?, α?
Z = 112 − коперниций
Cn-277 258119.32 1995.5 7.2 2.2 0.69 мс α ≈100%
Cn-278 0 + 259051.20 2003.1 7.2 7.7 2.8 10 мс SF?, α?
Cn -279 259984.69 2009.2 7.2 6.1 2.7 0.1 с SF?, α?
Cn -280 0 + 260916.69 2016.8 7.2 7.6 3.0 1 с α?, SF?
Cn -282 0 + 262782.18 2030.4 7.2 3.2 0.50 мс SF ≈100%
Cn -283 263715.57 2036.6 7.2 6.2 3.3 4.0 с α ≥90%, SF ≤10%
Cn -284 0 + 264647.66 2044.1 7.2 7.5 3.6 101 мс SF ≈100%
Cn -285 265580.76 2050.5 7.2 6.5 34 с α ≈100%
Z = 113
Uut-278 0.24 мс α 100%
Uut-283 263719.46 2031.4 7.2 1.0 100 мс α 100%
Uut-284 264652.45 2038.0 7.2 6.6 1.4 0.48 с α ≈100%
Uut-285 265584.55 2045.5 7.2 7.5 1.4 2 м α?, SF?
Uut-286 266517.64 2051.9 7.2 6.5 1.4 5 м α?, SF?
Uut-287 267449.64 2059.5 7.2 7.6 20 м α?, SF?
Z = 114
Uuq-286 0 + 266520.33 2048.0 7.2 2.5 0.16 с SF ≈60%, α ≈40%
Uuq-287 267453.42 2054.4 7.2 6.5 2.5 0.51 с α ≈100%
Uuq-288 0 + 268385.02 2062.4 7.2 8.0 2.9 0.80 с α ≈100%
Uuq-289 269317.91 2069.1 7.2 6.7 2.7 с α ≈100%
Z = 115
Uup-287 267458.11 2048.4 7.1 0.5 32 мс α 100%
Uup-288 268390.81 2055.3 7.1 6.9 0.9 87 мс α 100%
Uup-289 269322.50 2063.2 7.1 7.9 0.8 10 с SF?, α?
Uup-290 270255.30 2070.0 7.1 6.8 0.9 10 с SF?, α?
Uup-291 271187.09 2077.7 7.1 7.8 1 м α?, SF?
Z = 116
Uuh-290 0 + 270258.98 2065.0 7.1 1.8 15 мс α ≈100%
Uuh-291 271191.78 2071.7 7.1 6.8 1.8 6.3 мс α 100%
Uuh-292 0 + 272123.07 2080.0 7.1 8.3 2.3 18 мс α ≈100%
Uuh-293 53 мс α ≈100%
Z = 117
Uus-291 271197.37 2064.9 7.1 -0.1 10 мс SF?, α?
Uus-292 272129.76 2072.0 7.1 7.2 0.3 50 мс SF?, α?
Z = 118
Uuo-294 0 + 1.8 мс α ≈100%

На рис. 12.12 показаны все известные наиболее тяжелые изотопы с Z = 110–118, полученные в реакциях синтеза с указанием экспериментально измеренного периода полураспада. Здесь же показано теоретически предсказанное положение острова стабильности (Z = 114, N = 184).


Рис. 12.12. N-Z-диаграмма элементов Z = 110–118.

Полученные результаты однозначно указывают на рост стабильности изотопов при приближении к дважды магическому ядру (Z = 114, N = 184). Добавление к ядрам с Z = 110 и 112 7–8 нейтронов увеличивает период полураспада от 2.8 ас (Ds-267) до ≈ 10 с (Ds-168, Ds 271). Период полураспада T 1/2 (272 Rg, 273 Rg) ≈ 4–5 мс увеличивается до T 1/2 (283 Rg) ≈ 10 мин. Наиболее тяжелые изотопы элементов Z = 110–112 содержат ≈ 170 нейтронов, что ещё далеко от магического числа N = 184. Все наиболее тяжелые изотопы с Z > 111 и N > 172 распадаются преимущественно в результате
α-распада, спонтанное деление – более редкий распад. Эти результаты находятся в хорошем согласии с теоретическими предсказаниями.
В Лаборатории ядерных реакций им. Г.Н. Флерова (Дубна) синтезирован элемент с Z = 114. Была использована реакция

Идентификация ядра 289 114 проводилась по цепочке α-распадов. Экспериментальная оценка периода полураспада изотопа 289 114 ~30 с. Полученный результат находится в хорошем согласии с ранее выполненными расчетами .
При синтезе 114 элемента в реакции 48 Cu + 244 Pu максимальный выход изотопов с Z = 114 наблюдался в канале с испарением трех нейтронов. При этом энергии возбуждения составного ядра 289 114 была 35 МэВ.
Теоретически предсказываемая последовательность распадов, происходящих с ядром 296 116, образующемся в реакции 248 Cm + 48 Ca → 296 116, приведена на рис.12.13


Рис. 12.13. Схема распада ядра 296 116.

Изотоп 296 116 охлаждается в результате испускания четырех нейтронов и превращается в изотоп 292 116, который далее с 5% -ой вероятностью в результате двух последовательных e-захватов превращается в изотоп 292 114. В результате α-распада (T 1/2 = 85 дней) изотоп 292 114 превращается в изотоп 288 112. Образование изотопа 288 112 происходит и по каналу

Конечное ядро 288 112, образующееся в результате обеих цепочек, имеет период полураспада около 1 часа и распадается в результате спонтанного деления. Примерно с 10%-ой вероятностью в результате α-распада изотопа 288 114 может образовываться изотоп 284 112. Приведенные выше периоды и каналы распада получены расчетным путем.
На рис. 12.14 приведена цепочка последовательных α-распадов изотопа 288 115, измеренная в экспериментах в Дубне. ER − энергия ядра отдачи, имплантированного в позиционно-чувствительный кремниевый детектор. Можно отметить хорошее совпадение в периодах полураспада и энергиях α-распадов в трёх экспериментах, что свидетельствует о надёжности метода идентификации сверхтяжелых элементов с помощью измерений спектров α-частиц.


Рис. 12.14. Цепочка последовательных α-распадов изотопа 288 115, измеренная в экспериментах в Дубне.

Самый тяжелый, полученный в лабораторных условиях элемент с Z = 118, был синтезирован в реакции

48 Ca + 249 Cf → 294 118 + 3n.

При энергии ионов вблизи кулоновского барьера наблюдалось три случая образования 118 элемента. Ядра 294 118 имплантировались в кремниевый детектор и наблюдалась цепочка последовательных α-распадов. Сечение образования 118 элемента составляло ~2 пикобарна. Период полураспада изотопа 293 118 равен 120 мс.
На рис. 12.15 показана теоретически рассчитанная цепочка последовательных α-распадов изотопа 293 118 и приведены периоды полураспада дочерних ядер, образующихся в результате α-распадов.


Рис. 12.15. Цепочка последовательных α-распадов изотопа 293 118.
Приведены средние времена жизни дочерних ядер, образующихся в результате α-распадов.

Анализируя различные возможности образования сверхтяжелых элементов в реакциях с тяжелыми ионами нужно учитывать следующие обстоятельства.

  1. Необходимо создать ядро с достаточно большим отношением числа нейтронов к числу протонов. Поэтому в качестве налетающей частицы надо выбирать тяжелые ионы, имеющие большое N/Z.
  2. Необходимо, чтобы образующееся компаунд-ядро имело малую энергию возбуждения и небольшую величину момента количества движения, так как в противном случае будет снижаться эффективная высота барьера деления.
  3. Необходимо, чтобы образующееся ядро имело форму близкую к сферической, так как даже небольшая деформация будет приводить к быстрому делению сверхтяжелого ядра.

Весьма перспективным методом получения сверхтяжелых ядер являются реакции типа 238 U + 238 U, 238 U + 248 Cm, 238 U + 249 Cf, 238 U + 254 Es. На рис. 12.16 приведены оценочные сечения образования трансурановых элементов при облучении ускоренными ионами 238 U мишеней из 248 Cm, 249 Cf и 254 Es. В этих реакциях уже получены первые результаты по сечениям образования элементов с Z > 100. Для увеличения выходов исследуемых реакций толщины мишеней выбирались таким образом, чтобы продукты реакции оставались в мишени. После облучения из мишени сепарировались отдельные химические элементы. В полученных образцах в течение нескольких месяцев регистрировались продукты α-распада и осколки деления. Данные, полученные с помощью ускоренных ионов урана, ясно указывают на увеличение выхода тяжелых трансурановых элементов по сравнению с более легкими бомбардирующими ионами. Этот факт чрезвычайно важен для решения проблемы синтеза сверхтяжелых ядер. Несмотря на трудности работы с соответствующими мишенями прогнозы продвижения к большим Z выглядят довольно оптимистично.


Рис. 12.16. Оценки сечений образования трансурановых элементов в реакциях 238 U с 248 Cm, 249 Cf и 254 Es

Продвижение в область сверхтяжелых ядер в последние годы оказалось ошеломляюще впечатляющим. Однако все попытки обнаружить Остров Стабильности пока не увенчались успехом. Поиск его интенсивно продолжается.
Оболочечная структура атомных ядер играет существенную роль в повышении стабильности сверхтяжелых ядер. Магические числа Z ≈ 114 и N ≈ 184, если они действительно существуют, могут привести к значительному повышению стабильности атомных ядер. Существенным является также то, что распад сверхтяжелых ядер будет происходить в результате α-распада, что важно для разработки экспериментальных методов детектирования и идентификации новых сверхтяжелых ядер.

При энергии ионов криптона вблизи кулоновского барьера наблюдалось три случая образования 118 элемента . Ядра 293 118 имплантировались в кремниевый детектор и наблюдалась цепочка шести последовательных α-распадов, которая заканчивалась на изотопе 269 Sg. Сечение образования 118 элемента составляло ~2 пикобарна. Период полураспада изотопа 293 118 равен 120 мс. На рис. 3 показана цепочка последовательных α-распадов изотопа 293 118 и приведены периоды полураспада дочерних ядер, образующихся в результате α-распадов.

На основе различных теоретических моделей были рассчитаны распадные характеристики сверхтяжелых ядер. Результаты одного из таких расчетов показаны на рис. 4. Приведены периоды полураспада четно-четных сверхтяжелых ядер относительно спонтанного деления (а), α-распада (б), β-распада (в) и для всех возможных процессов распада (г). Наиболее устойчивым ядром по отношению к спонтанному делению (рис. 4а) является ядро с Z = 114 и N = 184. Для него период полураспада по отношению к спонтанному делению ~10 16 лет. Для изотопов 114-го элемента, отличающихся от наиболее устойчивого на 6-8 нейтронов, периоды полураспада уменьшаются на 10-15 порядков. Периоды полураспада по отношению к α-распаду приведены на рис. 4б. Наиболее устойчивое ядро расположено в области Z < 114 и N = 184 (T 1/2 = 10 15 лет). Для изотопа 298 114 период полураспада составляет около 10 лет.

Стабильные по отношению к β-распаду ядра показаны на рис. 4в темными точками. На рис. 4г приведены полные периоды полураспада. Для четно-четных ядер, расположенных внутри центрального контура, составляют ~10 5 лет. Таким образом, после учета всех типов распада оказывается, что ядра в окрестности Z = 110 и N = 184 образуют "остров стабильности". Ядро 294 110 имеет период полураспада около 10 9 лет. Отличие величины Z от предсказываемого оболочечной моделью магического числа 114 связано с конкуренцией между делением (относительно которого ядро с Z = 114 наиболее стабильно) и α-распадом (относительно которого устойчивы ядра с меньшими Z). У нечетно-четных и четно-нечетных ядер периоды полураспада по отношению к α-распаду и спонтанному делению увеличиваются, а по отношению к β-распаду уменьшаются. Следует отметить, что приведенные оценки сильно зависят от параметров, использованных в расчетах, и могут рассматриваться лишь как указания на возможность существования сверхтяжелых ядер, имеющих времена жизни достаточно большие для их экспериментального обнаружения.

Результаты еще одного расчета равновесной формы сверхтяжелых ядер и их периодов полураспада показаны на рис. 5, 11.11 . На рис. 11.10 показана зависимость энергии равновесной деформации от количества нейтронов и протонов для ядер с Z = 104-120. Энергия деформации определяется как разность энергий ядер в равновесной и сферической форме. Из этих данных видно, что в области Z = 114 и N = 184 должны располагаться ядра, имеющие в основном состоянии сферическую форму. Все обнаруженные на сегодня сверхтяжелые ядра (они показаны на рис. 5 темными ромбами) деформированы. Светлыми ромбами показаны ядра стабильные по отношению к β-распаду. Эти ядра должны распадаться в результате α-распада или деления. Основным каналом распада должен быть α-распад.

Периоды полураспада для четно-четных β-стабильных изотопов показаны на рис. 6. Согласно этим предсказаниям для большинства ядер ожидаются периоды полураспада гораздо большие, чем наблюдались для уже обнаруженных сверхтяжелых ядер (0.1-1 мс). Так например, для ядра 292 110 предсказывается время жизни ~ 51 год.
Таким образом, согласно современным микроскопическим расчетам, стабильность сверхтяжелых ядер резко возрастает по мере приближения к магическому числу по нейтронам N = 184. До недавнего времени единственным изотопом элемента с Z = 112 был изотоп 277 112, имеющий период полураспада 0.24 мс. Более тяжелый изотоп 283 112 был синтезирован в реакции холодного слияния 48 Ca + 238 U. Время облучения 25 дней. Полное число ионов 48 Ca на мишени - 3.5·10 18 . Зарегистрированы два случая, которые были интерпретированы как спонтанное деление образовавшегося изотопа 283 112. Для периода полураспада этого нового изотопа получена оценка T 1/2 = 81 c. Таким образом видно, что увеличение числа нейтронов в изотопе 283 112 по сравнению с изотопом 277 112 на 6 единиц увеличивает время жизни на 5 порядков.

На рис. 7 показано измеренное время жизни изотопов сиборгия Sg (Z = 106) в сравнении с предсказаниями различных теоретических моделей . Обращает на себя внимание уменьшение почти на порядок времени жизни изотопа с N = 164 по сравнению с временем жизни изотопа с N = 162.
Наибольшего приближения к острову стабильности можно достичь в реакции 76 Ge + 208 Pb. Сверхтяжелое почти сферическое ядро может образоваться в реакции слияния с последующим испусканием γ-квантов или одного нейтрона. Согласно оценкам образующееся ядро 284 114 должно распадаться с испусканием α-частиц с периодом полураспада ~ 1 мс. Дополнительную информацию о заполненности оболочки в районе N = 162 можно получить, изучая α-распады ядер 271 108 и 267 106. Для этих ядер предсказываются периоды полураспада 1 мин. и 1 час. Для ядер 263 106, 262 107, 205 108, 271,273 110 ожидается проявление изомерии, причиной которой является заполнение подоболочек с j = 1/2 и j = 13/2 в районе N = 162 для ядер деформированных в основном состоянии.

На рис. 8 показаны экспериментально измеренные функции возбуждения реакции образования элементов Rf (Z = 104) и Hs (Z = 108)для реакций слияния налетающих ионов 50 Ti и 56 Fe с ядром-мишенью 208 Pb.
Образовавшееся компаунд-ядро охлаждается испусканием одного или двух нейтронов. Информация о функциях возбуждения реакций слияния тяжелых ионов особенно важны для получения сверхтяжелых ядер. В реакции слияния тяжелых ионов необходимо точно сбалансировать действие кулоновских сил и сил поверхностного натяжения. Если энергия налетающего иона недостаточно большая, то расстояние минимального сближения будет недостаточно для слияния двойной ядерной системы. Если энергия налетающей частицы будет слишком большой, то образовавшаяся в результате система будет иметь большую энергию возбуждения и с большой вероятностью произойдет развал ее на фрагменты. Эффективно слияние происходит в довольно узком диапазоне энергий сталкивающих частиц.

Реакции слияния с испусканием минимального числа нейтронов (1-2) представляют особый интерес, т.к. в синтезируемых сверхтяжелых ядрах желательно иметь максимально большое отношение N/Z. На рис. 9 показан потенциал слияния для ядер в реакции
64 Ni + 208 Pb 272 110. Простейшие оценки показывают, что вероятность туннельного эффекта для слияния ядер составляет ~ 10 -21 , что существенно ниже наблюдаемой величины сечения. Это можно объяснить следующим образом. На расстоянии 14 Фм между центрами ядер первоначальная кинетическая энергия 236.2 МэВ полностью компенсируется кулоновским потенциалом. На этом расстоянии находятся в контакте только нуклоны, расположенные на поверхности ядра. Энергия этих нуклонов мала. Следовательно существует высокая вероятность того, что нуклоны или пары нуклонов покинут орбитали в одном ядре и переместятся на свободные состояния ядра-партнера. Передача нуклонов от налетающего ядра ядру-мишени особенно привлекательна в случае, когда в качестве мишени используется дважды магический изотоп свинца 208 Pb. В 208 Pb заполнены протонная подоболочка h 11/2 и нейтронные подоболочки h 9/2 и i 13/2 . Вначале передача протонов стимулируется силами притяжения протон-протон, а после заполнения подоболочки h 9/2 - силами притяжения протон-нейтрон. Аналогично нейтроны перемещаются в свободную подоболочку i 11/2 , притягиваясь нейтронами из уже заполненной подоболочки i 13/2 . Из-за энергии спаривания и больших орбитальных моментов передача пары нуклонов более вероятна, чем передача одного нуклона. После передачи двух протонов от 64 Ni 208 Pb кулоновский барьер уменьшается на 14 МэВ, что способствует более тесному контакту взаимодействующих ионов и продолжению процесса передачи нуклонов.
В работах [В.В. Волков. Ядерные реакции глубоконеупругих передач. М. Энергоиздат, 1982; В.В. Волков. Изв. АН СССР серия физич., 1986 т. 50 с. 1879] был детально исследован механизм реакции слияния. Показано, что уже на стадии захвата формируется двойная ядерная система после полной диссипации кинетической энергии налетающей частицы и нуклоны одного из ядер постепенно оболочка за оболочкой передаются другому ядру. То есть оболочечная структура ядер играет существенную роль в образовании компаунд-ядра. На основе этой модели удалось достаточно хорошо описать энергию возбуждения составных ядер и сечение образования 102-112 элементов в реакциях холодного синтеза.
В Лаборатории ядерных реакций им. Г.Н. Флерова (Дубна) синтезирован элемент с Z = 114. Была использована реакция

Идентификация ядра 289 114 проводилась по цепочке α-распадов. Экспериментальная оценка периода полураспада изотопа 289 114 ~30 с. Полученный результат находится в хорошем согласии с ранее выполненными расчетами .
При синтезе 114 элемента в реакции 48 Cu + 244 Pu максимальный выход дает канал с испарением трех нейтронов. При этом энергии возбуждения составного ядра 289 114 была 35 МэВ.
Теоретически предсказываемая последовательность распадов, происходящих с ядром 296 116, образующемся в реакции , приведена на рис.10.



Рис. 10. Схема распада ядра 296 116

Ядро 296 116 охлаждается испусканием четырех нейтронов и превращается в изотоп 292 116, который далее с 5% -ой вероятностью в результате двух последовательных e-захватов превращается в изотоп 292 114. В результате α-распада (T 1/2 = 85 дней) изотоп 292 114 превращается в изотоп 288 112. Образование изотопа 288 112 происходит и по каналу

Конечное ядро 288 112, образующееся в результате обеих цепочек, имеет период полураспада около 1 часа и распадается в результате спонтанного деления. Примерно с 10%-ой вероятностью в результате α-распада изотопа 288 114 может образовываться изотоп 284 112. Приведенные выше периоды и каналы распада получены расчетным путем.
Анализируя различные возможности образования сверхтяжелых элементов в реакциях с тяжелыми ионами нужно учитывать следующие обстоятельства.

  1. Необходимо создать ядро с достаточно большим отношением числа нейтронов к числу протонов. Поэтому в качестве налетающей частицы надо выбирать тяжелые ионы, имеющие большое N/Z.
  2. Необходимо, чтобы образующееся компаунд-ядро имело малую энергию возбуждения и небольшую величину момента количества движения, так как в противном случае будет снижаться эффективная высота барьера деления.
  3. Необходимо, чтобы образующееся ядро имело форму близкую к сферической, так как даже небольшая деформация будет приводить к быстрому делению сверхтяжелого ядра.

Весьма перспективным методом получения сверхтяжелых ядер являются реакции типа 238 U + 238 U, 238 U + 248 Cm, 238 U + 249 Cf, 238 U + 254 Es. На рис. 11 приведены оценочные сечения образования трансурановых элементов при облучении ускоренными ионами 238 U мишеней из 248 Cm, 249 Cf и 254 Es. В этих реакциях уже получены первые результаты по сечениям образования элементов с Z > 100. Для увеличения выходов исследуемых реакций толщины мишеней выбирались таким образом, чтобы продукты реакции оставались в мишени. После облучения из мишени сепарировались отдельные химические элементы. В полученных образцах в течение нескольких месяцев регистрировались продукты α-распада и осколки деления. Данные, полученные с помощью ускоренных ионов урана, ясно указывают на увеличение выхода тяжелых трансурановых элементов по сравнениюю с более легкими бомбардирующими ионами. Этот факт чрезвычайно важен для решения проблемы синтеза сверхтяжелых ядер. Несмотря на трудности работы с соответствующими мишенями прогнозы продвижения к большим Z выглядят довольно оптимистично.

Продвижение в область сверхтяжелых ядер в последние годы оказалось ошеломляюще впечатляющим. Однако, пока все попытки обнаружить остров стабильности не увенчались успехом. Поиск его интенсивно продолжается.

Поделиться: