Сокращенное ионное молекулярное уравнение реакции. Составление уравнений реакций ионного обмена

11. Электролитическая диссоциация. Ионные уравнения реакций

11.5. Ионные уравнения реакций

Поскольку в водных растворах электролиты распадаются на ионы, можно утверждать, что реакции в водных растворах электролитов - это реакции между ионами. Такие реакции могут протекать как с изменением степени окисления атомов:

Fe 0   + 2 H + 1 Сl = Fe + 2 Сl 2 + H 0 2  

так и без изменения:

NaOH + HCl = NaCl + H 2 O

В общем случае реакции между ионами в растворах называются ионными , а если они являются обменными, то реакциями ионного обмена . Реакции ионного обмена протекают только в том случае, когда образуются вещества, которые покидают сферу реакции в виде: а) слабого электролита (например, воды, уксусной кислоты); б) газа (CO 2 , SO 2); в) труднорастворимого вещества (осадка). Формулы труднорастворимых веществ определяются по таблице растворимости (AgCl, BаSO 4 , H 2 SiO 3 , Mg(OH) 2 , Cu(OH) 2 т.д.). Формулы газов и слабых электролитов нужно запомнить. Отметим, что слабые электролиты могут быть хорошо растворимы в воде: например, CH 3 COOH, H 3 PO 4 , HNO 2 .

Сущность реакций ионного обмена отражают ионные уравнения реакций , которые получают из молекулярных уравнений с соблюдением следующих правил:

1) в виде ионов не записывают формулы слабых электролитов, нерастворимых и малорастворимых веществ, газов, оксидов, гидроанионов слабых кислот (HS − , НSО 3 − , НСО 3 − , Н 2 РО 4 − , НРО 4 2 − ; исключение - ион HSO 4 − в разбавленном растворе); гидроксокатионов слабых оснований (MgOH + , CuOH +); комплексных ионов ( 3− , 2− , 2−);

2) в виде ионов представляют формулы сильных кислот, щелочей, растворимых в воде солей. Формулу Са(ОН) 2 представляют в виде ионов, если используется известковая вода, но не записывают в виде ионов в случае известкового молока, содержащего нерастворимые частицы Ca(OH) 2 .

Различают полное ионное и сокращенное (краткое ) ионное уравнения реакции. В сокращенном ионном уравнении отсутствуют ионы, представленные в обеих частях полного ионного уравнения. Примеры записи молекулярного, полного ионного и сокращенного ионного уравнений:

  • NaHCO 3 + HCl = NaCl + H 2 O + CO 2 - молекулярное,

Na + + HCO 3 − + H + + Cl − = Na + + Cl − + H 2 O + CO 2   - полное ионное,

HCO 3 − + H + = H 2 O + CO 2   - сокращенное ионное;

  • BaCl 2 + K 2 SO 4 = BaSO 4 ↓ + 2KCl - молекулярное,

Ba 2 + + 2 Cl − + 2 K + + SO 4 2 − = BaSO 4   ↓ + 2 K + + 2 Cl − - полное ионное,

Ba 2 + + SO 4 2 − = BaSO 4   ↓ - сокращенное ионное.

Иногда полное ионное и сокращенное ионное уравнения совпадают:

Ba(OH) 2 + H 2 SO 4 = BaSO 4 ↓ + 2H 2 O

Ba 2+ + 2OH − + 2H + + SO 4 2 − = BaSO 4 ↓ + 2H 2 O,

а для некоторых реакций ионное уравнение вообще нельзя составить:

3Mg(OH) 2 + 3H 3 PO 4 = Mg 3 (PO 4) 2 ↓ + 6H 2 O

Пример 11.5. Укажите пару ионов, которые могут присутствовать в полном ионно-молекулярном уравнении, если ему соответствует сокращенное ионно-молекулярное уравнение

Ca 2 + + SO 4 2 − = CaSO 4 .

1) SO 3 2 − и H + ; 3) CO 3 2 − и K + ;2) HCO 3 − и K + ; 4) Cl − и Pb 2+ .

Решение. Правильным является ответ 2):

Ca 2 + + 2 HCO 3 − + 2 K + + SO 4 2 − = CaSO 4   ↓ + 2 HCO 3 − + 2 K + (соль Ca(HCO 3) 2 растворимая) или Ca 2+ + SO 4 2 − = CaSO 4 .

Для других случаев имеем:

1) CaSO 3 + 2H + + SO 4 2 − = CaSO 4 ↓ + H 2 O + SO 2 ;

3) CaCO 3 + 2K + + SO 4 2 − (реакция не протекает);

4) Ca 2+ + 2Cl − + PbSO 4 (реакция не протекает).

Ответ : 2).

Вещества (ионы), которые в водном растворе реагируют между собой (т.е. взаимодействие между ними сопровождается образованием осадка, газа или слабого электролита), совместно существовать в водном растворе в значительных количествах не могут

Таблица 11.2

Примеры пар ионов, не существующих совместно в значительных количествах в водном растворе

Пример 11.6. Укажите в этом ряду: HSO 3 − , Na + , Cl − , CH 3 COO − , Zn 2+ - формулы ионов, которые не могут в значительных количествах присутствовать: а) в кислой среде; б) в щелочной среде.

Решение. а) В кислой среде, т.е. совместно с ионами H + , не могут присутствовать анионы HSO 3 − и CH 3 COO − , так как они реагируют с катионами водорода, образуя слабый электролит или газ:

СН 3 СОО − + Н + ⇄ СН 3 СООН

HSO 3 − + H + ⇄ H 2 O + SO 2  

б) в щелочной среде не могут присутствовать ионы HSO 3 − и Zn 2+ , так как они реагируют с гидроксид-ионами с образованием либо слабого электролита, либо осадка:

HSO 3 − + OH − ⇄ H 2 O + SO 3 2 −

Zn 2+ + 2OH– = Zn(OH) 2 ↓.

Ответ : а) HSO 3 − и CH 3 COO − ; б) HSO 3 − и Zn 2+ .

Остатки кислых солей слабых кислот не могут в значительных количествах присутствовать ни в кислой, ни в щелочной среде, потому что в обоих случаях образуется слабый электролит

То же можно сказать об остатках основных солей, содержащих гидроксогруппу:

CuOH + + OH − = Cu(OH) 2 ↓

При растворении в воде не все вещества имеют способность проводить электрический ток. Те соединения, водные растворы которых способны проводить электрический ток называются электролитами . Электролиты проводят ток за счет так называемой ионной проводимости, которой обладают многие соединения с ионным строением (соли, кислоты, основания). Существуют вещества, имеющие сильнополярные связи, но в растворе при этом подвергаются неполной ионизации (например, хлорид ртути II) – это слабые электролиты. Многие органические соединения (углеводы, спирты), растворенные воде, не распадаются на ионы, а сохраняют свое молекулярное строение. Такие вещества электрический ток не проводят и называются неэлектролитами .

Приведем некоторые закономерности, руководствуясь которыми можно определить к сильным или слабым электролитам относится то или иное соединение:

  1. Кислоты . К сильным кислотам из наиболее распространенных относятся HCl, HBr, HI, HNO 3 , H 2 SO 4 , HClO 4 . Почти все остальные кислоты – слабые электролиты.
  2. Основания . Наиболее распространенные сильные основания – гидроксиды щелочных и щелочноземельных металлов (исключая Be). Слабый электролит – NH 3 .
  3. Соли. Большинство распространенных солей – ионных соединений, — электролиты сильные. Исключения составляют, в основном, соли тяжелых металлов.

Теория электролитической диссоциации

Электролиты, как сильные, так и слабые и даже очень сильно разбавленные не подчиняются закону Рауля и . Имея способность к электропроводности, значения давления пара растворителя и температуры плавления растворов электролитов будут более низкими, а температуры кипения более высокими по сравнению с аналогичными значениями чистого растворителя. В 1887 г С. Аррениус, изучая эти отклонения, пришел к созданию теории электролитической диссоциации.

Электролитическая диссоциация предполагает, что молекулы электролита в растворе распадаются на положительно и отрицательно заряженные ионы, которые названы соответственно катионами и анионами.

Теория выдвигает следующие постулаты:

  1. В растворах электролиты распадаются на ионы, т.е. диссоциируют. Чем более разбавлен раствор электролита, тем больше его степень диссоциации.
  2. Диссоциация — явление обратимое и равновесное.
  3. Молекулы растворителя бесконечно слабо взаимодействуют (т.е. растворы близки к идеальным).

Разные электролиты имеют различную степень диссоциации, которая зависит не только от природы самого электролита, но природы растворителя, а также концентрации электролита и температуры.

Степень диссоциации α , показывает какое число молекул n распалось на ионы, по сравнению с общим числом растворенных молекул N :

α = n/ N

При отсутствии диссоциации α = 0, при полной диссоциации электролита α = 1.

С точки зрения степени диссоциации, по силе электролиты делятся на сильные (α > 0,7), средней силы (0,3 > α > 0,7), слабые (α < 0,3).

Более точно процесс диссоциации электролита характеризует константа диссоциации , не зависящая от концентрации раствора. Если представить процесс диссоциации электролита в общем виде:

A a B b ↔ aA — + bB +

K = a · b /

Для слабых электролитов концентрация каждого иона равна произведению α на общую концентрацию электролита С таким образом, выражение для константы диссоциации можно преобразовать:

K = α 2 C/(1-α)

Для разбавленных растворов (1-α) =1, тогда

K = α 2 C

Отсюда нетрудно найти степень диссоциации

Ионно–молекулярные уравнения

Рассмотрим пример нейтрализации сильной кислоты сильным основанием, например:

HCl + NaOH = NaCl + HOH

Процесс представлен в виде молекулярного уравнения . Известно, что как исходные вещества, так и продукты реакции в растворе полностью ионизированы. Поэтому представим процесс в виде полного ионного уравнения :

H + + Cl — +Na + + OH — = Na + + Cl — + HOH

После «сокращения» одинаковых ионов в левой и правой частях уравнения получаем сокращенное ионное уравнение:

H + + OH — = HOH

Мы видим, что процесс нейтрализации сводится к соединению H + и OH — и образованию воды.

При составлении ионных уравнений следует помнить, что в ионном виде записываются только сильные электролиты. Слабые электролиты, твердые вещества и газы записываются в их молекулярном виде.

Процесс осаждения сводится к взаимодействию только Ag + и I — и образованию нерастворимого в воде AgI.

Чтобы узнать способно ли интересующее нас вещество растворяться в воде, необходимо воспользоваться таблицей нерастворимости.

Рассмотрим третий тип реакций, в результате которой образуется летучее соединение. Это реакции взаимодействия карбонатов, сульфитов или сульфидов с кислотами. Например,

При смешении некоторых растворов ионных соединений, взаимодействия между ними может и не происходить, например

Итак, подводя итог, отметим, что химические превращения наблюдаются в случаях, если соблюдается одно из следующих условий:

  • Образование неэлектролита . В качестве неэлектролита может выступать вода.
  • Образование осадка.
  • Выделение газа.
  • Образование слабого электролита, например уксусной кислоты.
  • Перенос одного или нескольких электронов. Это реализуется в окислительно – восстановительных реакциях.
  • Образование или разрыв одной или нескольких .
Категории ,

Так как электролиты в растворе находятся в виде ионов, то реакции между растворами солей, оснований и кислот – это реакции между ионами, т.е. ионные реакции. Некоторые из ионов, участвуя в реакции, приводят к образованию новых веществ (малодиссоциирующих веществ, осадков, газов, воды), а другие ионы, присутствуя в растворе, не дают новых веществ, но остаются в растворе. Для того, чтобы показать, взаимодействие каких ионов приводит к образованию новых веществ, составляют молекулярные, полные и краткие ионные уравнения.

В молекулярных уравнениях все вещества представлены в виде молекул. Полные ионные уравнения показывают весь перечень ионов имеющихся в растворе при данной реакции. Краткие ионные уравнения составлены лишь теми ионами, взаимодействие между которыми приводит к образованию новых веществ (малодиссоциирующих веществ, осадков, газов, воды).

При составлении ионных реакций следует помнить, что вещества малодиссоциированные (слабые электролиты), мало – и труднорастворимые (выпадающие в осадок – “Н ”, “М ”, см. приложение‚ таблица 4) и газообразные записываются в виде молекул. Сильные электролиты, диссоциированные практически полностью, – в виде ионов. Знак “↓”, стоящий после формулы вещества, указывает на то, что это вещество удаляется из сферы реакции в виде осадка, а знак “”, указывает на удаление вещества в виде газа.

Порядок составления ионных уравнений по известным молекулярным уравнениям рассмотрим на примере реакции между растворами Na 2 CO 3 и HCl.

1. Уравнение реакции записывается в молекулярной форме:

Na 2 CO 3 + 2HCl → 2NaCl + H 2 CO 3

2. Уравнение переписывается в ионной форме, при этом хорошо диссоциирующие вещества записываются в виде ионов, а вещества малодиссоциирующие (в том числе и вода), газы или труднорастворимые – в виде молекул. Коэффициент, стоящий перед формулой вещества в молекулярном уравнении одинаково относится к каждому из ионов, составляющих вещество, и поэтому он выносится в ионном уравнении перед ионом:

2 Na + + CO 3 2- + 2H + + 2Cl - <=> 2Na + + 2Cl - + CO 2 + H 2 O

3. Из обеих частей равенства исключаются (сокращаются) ионы, встречающиеся в левой и правой частях (подчеркнуты соответствующими черточками):

2 Na + + CO 3 2- + 2H + + 2Cl - <=> 2Na + + 2Cl - + CO 2 + H 2 O

4. Ионное уравнение записывается в его окончательном виде (краткое ионоое уравнение):

2H + + CO 3 2- <=> CO 2 + H 2 O

Если в ходе реакции образуются и/или малодиссоциированные, и/или труднорастворимые, и/или газообразные вещества, и/или вода, а в исходных веществах такие соединения отсутствуют‚ то реакция будет практически необратимой (→), и для неё можно составить молекулярное, полное и краткое ионное уравнение. Если такие вещества есть и в реагентах‚ и в продуктах, то реакция будет обратимой (<=>):

Молекулярное уравнение : СаСО 3 + 2HCl <=> CaCl 2 + H 2 O + CO 2

Полное ионное уравнение : СаСО 3 + 2H + + 2Cl – <=> Ca 2+ + 2Cl – + H 2 O + CO 2

Достаточно часто школьникам и студентам приходится составлять т. н. ионные уравнения реакций. В частности, именно этой теме посвящена задача 31, предлагаемая на ЕГЭ по химии. В данной статье мы подробно обсудим алгоритм написания кратких и полных ионных уравнений, разберем много примеров разного уровня сложности.

Зачем нужны ионные уравнения

Напомню, что при растворении многих веществ в воде (и не только в воде!) происходит процесс диссоциации - вещества распадаются на ионы. Например, молекулы HCl в водной среде диссоциируют на катионы водорода (H + , точнее, H 3 O +) и анионы хлора (Cl -). Бромид натрия (NaBr) находится в водном растворе не в виде молекул, а в виде гидратированных ионов Na + и Br - (кстати, в твердом бромиде натрия тоже присутствуют ионы).

Записывая "обычные" (молекулярные) уравнения, мы не учитываем, что в реакцию вступают не молекулы, а ионы. Вот, например, как выглядит уравнение реакции между соляной кислотой и гидроксидом натрия:

HCl + NaOH = NaCl + H 2 O. (1)

Разумеется, эта схема не совсем верно описывает процесс. Как мы уже сказали, в водном растворе практически нет молекул HCl, а есть ионы H + и Cl - . Так же обстоят дела и с NaOH. Правильнее было бы записать следующее:

H + + Cl - + Na + + OH - = Na + + Cl - + H 2 O. (2)

Это и есть полное ионное уравнение . Вместо "виртуальных" молекул мы видим частицы, которые реально присутствуют в растворе (катионы и анионы). Не будем пока останавливаться на вопросе, почему H 2 O мы записали в молекулярной форме. Чуть позже это будет объяснено. Как видите, нет ничего сложного: мы заменили молекулы ионами, которые образуются при их диссоциации.

Впрочем, даже полное ионное уравнение не является безупречным. Действительно, присмотритесь повнимательнее: и в левой, и в правой частях уравнения (2) присутствуют одинаковые частицы - катионы Na + и анионы Cl - . В процессе реакции эти ионы не изменяются. Зачем тогда они вообще нужны? Уберем их и получим краткое ионное уравнение:

H + + OH - = H 2 O. (3)

Как видите, все сводится к взаимодействию ионов H + и OH - c образованием воды (реакция нейтрализации).

Все, полное и краткое ионные уравнения записаны. Если бы мы решали задачу 31 на ЕГЭ по химии, то получили бы за нее максимальную оценку - 2 балла.


Итак, еще раз о терминологии:

  • HCl + NaOH = NaCl + H 2 O - молекулярное уравнение ("обычное" уравнения, схематично отражающее суть реакции);
  • H + + Cl - + Na + + OH - = Na + + Cl - + H 2 O - полное ионное уравнение (видны реальные частицы, находящиеся в растворе);
  • H + + OH - = H 2 O - краткое ионное уравнение (мы убрали весь "мусор" - частицы, которые не участвуют в процессе).

Алгоритм написания ионных уравнений

  1. Составляем молекулярное уравнение реакции.
  2. Все частицы, диссоциирующие в растворе в ощутимой степени, записываем в виде ионов; вещества, не склонные к диссоциации, оставляем "в виде молекул".
  3. Убираем из двух частей уравнения т. н. ионы-наблюдатели, т. е. частицы, которые не участвуют в процессе.
  4. Проверяем коэффициенты и получаем окончательный ответ - краткое ионное уравнение.

Пример 1 . Составьте полное и краткое ионные уравнения, описывающие взаимодействие водных растворов хлорида бария и сульфата натрия.

Решение . Будем действовать в соответствии с предложенным алгоритмом. Составим сначала молекулярное уравнение. Хлорид бария и сульфат натрия - это две соли. Заглянем в раздел справочника "Свойства неорганических соединений" . Видим, что соли могут взаимодействовать друг с другом, если в ходе реакции образуется осадок. Проверим:

Упражнение 2 . Дополните уравнения следующих реакций:

  1. KOH + H 2 SO 4 =
  2. H 3 PO 4 + Na 2 O=
  3. Ba(OH) 2 + CO 2 =
  4. NaOH + CuBr 2 =
  5. K 2 S + Hg(NO 3) 2 =
  6. Zn + FeCl 2 =

Упражнение 3 . Напишите молекулярные уравнения реакций (в водном растворе) между: а) карбонатом натрия и азотной кислотой, б) хлоридом никеля (II) и гидроксидом натрия, в) ортофосфорной кислотой и гидроксидом кальция, г) нитратом серебра и хлоридом калия, д) оксидом фосфора (V) и гидроксидом калия.

Искренне надеюсь, что у вас не возникло проблем с выполнением этих трех заданий. Если это не так, необходимо вернуться к теме "Химические свойства основных классов неорганических соединений".

Как превратить молекулярное уравнение в полное ионное уравнение

Начинается самое интересное. Мы должны понять, какие вещества следует записывать в виде ионов, а какие - оставить в "молекулярной форме". Придется запомнить следующее.

В виде ионов записывают:

  • растворимые соли (подчеркиваю, только соли хорошо растворимые в воде);
  • щелочи (напомню, что щелочами называют растворимые в воде основания, но не NH 4 OH);
  • сильные кислоты (H 2 SO 4 , HNO 3 , HCl, HBr, HI, HClO 4 , HClO 3 , H 2 SeO 4 , ...).

Как видите, запомнить этот список совсем несложно: в него входят сильные кислоты и основания и все растворимые соли. Кстати, особо бдительным юным химикам, которых может возмутить тот факт, что сильные электролиты (нерастворимые соли) не вошли в этот перечень, могу сообщить следующее: НЕвключение нерастворимых солей в данный список вовсе не отвергает того, что они являются сильными электролитами.

Все остальные вещества должны присутствовать в ионных уравнениях в виде молекул. Тем требовательным читателям, которых не устраивает расплывчатый термин "все остальные вещества", и которые, следуя примеру героя известного фильма, требуют "огласить полный список" даю следующую информацию.

В виде молекул записывают:

  • все нерастворимые соли;
  • все слабые основания (включая нерастворимые гидроксиды, NH 4 OH и сходные с ним вещества);
  • все слабые кислоты (H 2 СO 3 , HNO 2 , H 2 S, H 2 SiO 3 , HCN, HClO, практически все органические кислоты...);
  • вообще, все слабые электролиты (включая воду!!!);
  • оксиды (всех типов);
  • все газообразные соединения (в частности, H 2 , CO 2 , SO 2 , H 2 S, CO);
  • простые вещества (металлы и неметаллы);
  • практически все органические соединения (исключение - растворимые в воде соли органических кислот).

Уф-ф, кажется, я ничего не забыл! Хотя проще, по-моему, все же запомнить список N 1. Из принципиально важного в списке N 2 еще раз отмечу воду.


Давайте тренироваться!

Пример 2 . Составьте полное ионное уравнение, описывающие взаимодействие гидроксида меди (II) и соляной кислоты.

Решение . Начнем, естественно, с молекулярного уравнения. Гидроксид меди (II) - нерастворимое основание. Все нерастворимые основания реагируют с сильными кислотами с образованием соли и воды:

Cu(OH) 2 + 2HCl = CuCl 2 + 2H 2 O.

А теперь выясняем, какие вещества записывать в виде ионов, а какие - в виде молекул. Нам помогут приведенные выше списки. Гидроксид меди (II) - нерастворимое основание (см. таблицу растворимости), слабый электролит. Нерастворимые основания записывают в молекулярной форме. HCl - сильная кислота, в растворе практически полностью диссоциирует на ионы. CuCl 2 - растворимая соль. Записываем в ионной форме. Вода - только в виде молекул! Получаем полное ионное уравнение:

Сu(OH) 2 + 2H + + 2Cl - = Cu 2+ + 2Cl - + 2H 2 O.

Пример 3 . Составьте полное ионное уравнение реакции диоксида углерода с водным раствором NaOH.

Решение . Диоксид углерода - типичный кислотный оксид, NaOH - щелочь. При взаимодействии кислотных оксидов с водными растворами щелочей образуются соль и вода. Составляем молекулярное уравнение реакции (не забывайте, кстати, о коэффициентах):

CO 2 + 2NaOH = Na 2 CO 3 + H 2 O.

CO 2 - оксид, газообразное соединение; сохраняем молекулярную форму. NaOH - сильное основание (щелочь); записываем в виде ионов. Na 2 CO 3 - растворимая соль; пишем в виде ионов. Вода - слабый электролит, практически не диссоциирует; оставляем в молекулярной форме. Получаем следующее:

СO 2 + 2Na + + 2OH - = Na 2+ + CO 3 2- + H 2 O.

Пример 4 . Сульфид натрия в водном растворе реагирует с хлоридом цинка с образованием осадка. Составьте полное ионное уравнение данной реакции.

Решение . Сульфид натрия и хлорид цинка - это соли. При взаимодействии этих солей выпадает осадок сульфида цинка:

Na 2 S + ZnCl 2 = ZnS↓ + 2NaCl.

Я сразу запишу полное ионное уравнение, а вы самостоятельно проанализируете его:

2Na + + S 2- + Zn 2+ + 2Cl - = ZnS↓ + 2Na + + 2Cl - .

Предлагаю вам несколько заданий для самостоятельной работы и небольшой тест.

Упражнение 4 . Составьте молекулярные и полные ионные уравнения следующих реакций:

  1. NaOH + HNO 3 =
  2. H 2 SO 4 + MgO =
  3. Ca(NO 3) 2 + Na 3 PO 4 =
  4. CoBr 2 + Ca(OH) 2 =

Упражнение 5 . Напишите полные ионные уравнения, описывающие взаимодействие: а) оксида азота (V) с водным раствором гидроксида бария, б) раствора гидроксида цезия с иодоводородной кислотой, в) водных растворов сульфата меди и сульфида калия, г) гидроксида кальция и водного раствора нитрата железа (III).


1. Записывают формулы веществ, вступивших в реакцию, ставят знак «равно» и записывают формулы образовавшихся веществ. Расставляют коэффициенты.

2. Пользуясь таблицей растворимости, записывают в ионном виде формулы веществ (солей, кислот, оснований), обозначенных в таблице растворимости буквой «Р» (хорошо растворимые в воде), исключение – гидроксид кальция, который, хотя и обозначен буквой «М», все же в водном растворе хорошо диссоциирует на ионы.

3. Нужно помнить, что на ионы не разлагаются металлы, оксиды металлов и неметаллов, вода, газообразные вещества, нерастворимые в воде соединения, обозначенные в таблице растворимости буквой «Н». Формулы этих веществ записывают в молекулярном виде. Получают полное ионное уравнение.

4. Сокращают одинаковые ионы до знака «равно» и после него в уравнении. Получают сокращенное ионное уравнение.

5. Помните!

Р - растворимое вещество;

М - малорастворимое вещество;

ТР - таблица растворимости.

Алгоритм составления реакций ионного обмена (РИО)

в молекулярном, полном и кратком ионном виде


Примеры составления реакций ионного обмена

1. Если в результате реакции выделяется малодиссоциирующее (мд) вещество – вода.

В данном случае полное ионное уравнение совпадает с сокращенным ионным уравнением.

2. Если в результате реакции выделяется нерастворимое в воде вещество.


В данном случае полное ионное уравнение реакции совпадает с сокращенным. Эта реакция протекает до конца, о чем свидетельствуют сразу два факта: образование вещества, нерастворимого в воде, и выделение воды.

3. Если в результате реакции выделяется газообразное вещество.




ВЫПОЛНИТЕ ЗАДАНИЯ ПО ТЕМЕ "РЕАКЦИИ ИОННОГО ОБМЕНА"

Задание №1.
Определите, может ли осуществляться взаимодействие между растворами следующих веществ, записать реакциив молекулярном,полном, кратком ионном виде:
гидроксид калия и хлорид аммония.

Решение

Составляем химические формулы веществ по их названиям, используя валентности и записываем РИО в молекулярном виде (проверяем растворимость веществ по ТР):

KOH + NH4 Cl = KCl + NH4 OH

так как NH4 OH неустойчивое вещество и разлагается на воду и газ NH3 уравнение РИО примет окончательный вид

KOH (p) + NH4 Cl (p) = KCl (p) + NH3 + H2 O

Cоставляем полное ионное уравнение РИО, используя ТР (не забывайте в правом верхнем углу записывать заряд иона):

K+ + OH- + NH4 + + Cl- = K+ + Cl- + NH3 + H2 O

Cоставляем краткое ионное уравнение РИО, вычёркивая одинаковые ионы до и после реакции:

OH - + NH4 + = NH3 + H2 O

Делаем вывод:
Взаимодействие между растворами следующих веществ может осуществляться, так как продуктами данной РИО являются газ (NH3 ) и малодиссоциирующее вещество вода (H2 O).

Задание №2

Дана схема:

2H + + CO3 2- = H 2 O + CO 2

Подберите вещества, взаимодействие между которыми в водных растворах выражается следующими сокращёнными уравнениями. Составьте соответствующие молекулярное и полное ионное уравнения.

Используя ТР подбираем реагенты - растворимые в воде вещества, содержащие ионы 2H + и CO 3 2- .

Например, кислота - H 3 PO 4 (p) и соль -K 2 CO 3 (p).

Составляем молекулярное уравнение РИО:

2H 3 PO 4 (p) +3 K 2 CO 3 (p) -> 2K 3 PO 4 (p) + 3H 2 CO 3 (p)

так как угольная кислота – неустойчивое вещества, она разлагается на углекислый газ CO 2 и воду H 2 O, уравнение примет окончательный вид:

2H 3 PO 4 (p) +3 K 2 CO 3 (p) -> 2K 3 PO 4 (p) + 3CO 2 + 3H 2 O

Составляем полное ионное уравнение РИО:

6H + +2PO 4 3- + 6K + + 3CO 3 2- -> 6K + + 2PO 4 3- + 3CO 2 + 3H 2 O

Составляем краткое ионное уравнение РИО:

6H + +3CO 3 2- = 3CO 2 + 3H 2 O

2H + +CO 3 2- = CO 2 + H 2 O

Делаем вывод:

В конечном итоге мы получили искомое сокращённое ионное уравнение, следовательно, задание выполнено верно.

Задание №3

Запишите реакцию обмена между оксидом натрия и фосфорной кислотой в молекулярном, полном и кратком ионном виде.

1. Составляем молекулярное уравнение, при составлении формул учитываем валентности (см. ТР)

3Na 2 O (нэ) + 2H 3 PO 4 (р) -> 2Na 3 PO 4 (р) + 3H 2 O (мд)

где нэ - неэлектролит, на ионы не диссоциирует,
мд - малодиссоциирующее вещество, на ионы не раскладываем, вода - признак необратимости реакции

2. Составляем полное ионное уравнение:

3Na 2 O + 6H + + 2PO 4 3- -> 6Na + + 2PO4 3- + 3H 2 O

3. Сокращаем одинаковые ионы и получаем краткое ионное уравнение:

3Na 2 O + 6H + -> 6Na + + 3H 2 O
Сокращаем коэффициенты на три и получаем:
Na
2 O + 2H + -> 2Na + + H 2 O

Данная реакция необратима, т.е. идёт до конца, так как в продуктах образуется малодиссоциирующее вещество вода.

ЗАДАНИЯ ДЛЯ САМОСТОЯТЕЛЬНОЙ РАБОТЫ

Задание №1

Взаимодействие карбоната натрия и серной кислоты

Составьте уравнение реакции ионного обмена карбоната натрия с серной кислотой в молекулярном, полном и кратком ионном виде.

Задание №2

ZnF 2 + Ca(OH) 2 ->
K
2 S + H 3 PO 4 ->

Задание №3

Посмотрите следующий эксперимент

Осаждение сульфата бария

Составьте уравнение реакции ионного обмена хлорида бария с сульфатом магния в молекулярном, полном и кратком ионном виде.

Задание №4

Закончите уравнения реакций в молекулярном, полном и кратком ионном виде:

Hg(NO 3 ) 2 + Na 2 S ->
K
2 SO 3 + HCl ->

При выполнении задания используйте таблицу растворимости веществ в воде. Помните об исключениях!

Поделиться: