К объективным методам изучения слуха относятся. Объективные методы исследования слуха. Слуховые вызванные потенциалы. Большую ценность для получения сведений о развитии какого-либо психического процесса представляет исследование, проводимое с одними и тем

Современная аудиология располагает множеством методов изучения слуховой функции. Среди них выделяют четыре основные группы методов.
В практике наиболее распространены психоакустические методы аудиометрии, основанные на регистрации субъективного слухового ощущения обследуемых. Но в некоторых случаях психоакустические методы не дают эффекта. Это касается, например, оценки слуховой функции новорожденных детей и детей раннего возраста, умственно отсталых, больных с нарушением психики, определения притворной глухоты и тугоухости, экспертизы инвалидности по слуху, профессионального отбора.
В таких случаях нередко возникает необходимость в применении объективных методов исследования слуха, которые основаны на регистрации биоэлектрических ответов слуховой системы на акустические сигналы, в частности акустического рефлекса внутриушных мышц и слуховых вызванных потенциалов.

Психоакустические методы аудиометрии составляют основу современной аудиометрии. Они предусматривают исследование слуха с помощью живой речи, камертонов и специальных электроакустических приборов - аудиометров. Обследование слуха с помощью речи и камертонов называется акуметрией, а исследование с помощью аудиометров - аудиометрией.

Исследование слуха с помощью живой речи . Для исследования слуха используют шепотную и разговорную речь, а при тяжелых формах тугоухости и глухоты - громкую речь и крик. При исследовании слуха неисследуемое ухо закрывают пальцем, смоченным водой, турундой с вазелином или заглушают шумом от трения провощенной бумагой, трещоткой Барани.
Для стандартизации условий исследования, снижения процентов вариабельных данных рекомендуется проводить исследование слуха шепотной речью после спокойного выдоха - резервным воздухом. В этом случае сила голоса не превышает 35-40 дБ, поэтому расхождения в результатах исследования слуха разными исследователями уменьшаются.
Пациент становится так, чтобы исследуемое ухо было обращено в сторону врача. Исследование начинают с максимального расстояния (5-6 м), постепенно приближаясь к месту, с которого исследуемый может повторить все сказанные ему слова. В условиях JTOP-кабинета, длина которого не превышает 5-6 м, практически невозможно определить точное расстояние восприятия шепотной речи здоровым человеком. Поэтому слух считается нормальным, если исследуемый воспринимает шепотную и разговорную речь с расстояния более 5 м при отсутствии жалоб на снижение слуха.
При отсутствии восприятия шепотной речи или при его снижении переходят к следующему этапу - исследованию восприятия обычной (разговорной) речи. Чтобы сила голоса сохранялась приблизительно постоянной, рекомендуется во время обследования слуха придерживаться старого правила - произносить слова и цифры резервным воздухом после выдоха. В повседневной практике большинство специалистов во время обследования слуха с помощью речи пользуются произвольным набором цифр, например: 35, 45, 86 и т. д.

Исследование слуха с помощью камертонов . Для нужд медицины изготовляют камертоны, настроенные на тон «до» в разных октавах. Камертоны соответственно обозначают латинской буквой «С» (обозначение ноты «до» по музыкальной шкале) с указанием наименования октавы (верхний индекс) и частоты колебаний за 1 с (нижний индекс). Несмотря на то что в последнее время камертоны стали вытесняться современными электроакустическими устройствами, они остаются ценными инструментами для исследования слуха, особенно при отсутствии аудиометров. Большинство специалистов считают достаточным применение камертонов С128 и C42048 для дифференциальной диагностики, поскольку один камертон басовый, а другой - дискантовый. Нарушение восприятия басовых звуков более характерно для кондуктивной тугоухости, дискантовых - для сенсоневральной.
После «запуска» камертона определяют длину восприятия его звучания по воздушной и костно-тканевой проводимости. При обследовании остроты слуха по воздушной проводимости камертон размещают на расстоянии 1 см от ушной раковины, не касаясь кожи и волос. Камертон держат так, чтобы его бранши были перпендикулярны ушной раковине. Через каждые 2-3 с камертон отводят от уха на расстояние 2-5 см, чтобы не допустить развития адаптации к тону или утомлению слуха. При обследовании слуха по костно-тканевой проводимости ножку камертона прижимают к коже сосцевидного отростка.

Исследование восприятия звука по воздушной и костно-тканевой проводимости имеет важное значение для дифференциальной диагностики нарушения функции звукопроводящей и звуковоспринимающей систем. Для этого предложено множество камертональных тестов. Коротко остановимся на опытах, которые явдяются наиболее распространенными.
1. Опыт Вебера . Предусматривает определение стороны латерализации звука. Ножку звучащего камертона С|28 прикладывают к середине темени и спрашивают исследуемого, где он слышит звук - в ухе или голове. В норме и при симметричных нарушениях слуха звук ощущает
ся в голове (латерализация отсутствует). При одностороннем наруше
нии функции звукопроводящего аппарата звук латерализируется в сто
рону больного уха, а при двустороннем нарушении - в сторону более пораженного уха. При одностороннем нарушении функции звуковоспринимающего аппарата звук латерализируется в сторону здорового уха, а при двустороннем - в сторону уха, которое лучше слышит.

2. Опыт Ринне . Суть исследования состоит в определении и сопоставлении продолжительности восприятия камертона Ср8 по воздушной и костно-тканевой проводимости. Звучащий камертон С,8 ставят на сосцевидный отросток. После того как пациент перестает слышать звук, камертон подносят к ушной раковине, определяя, слышит ли пациент звук. В норме и при нарушении функции звуковосприятия воздушная проводимость преобладает над костной. Результат оценивается как положительный («Ринне+»). При нарушении функции звукопрове- дения костная проводимость не изменяется, а воздушная - укорачивается. Опыт оценивается как отрицательный («Ринне-»). Таким образом, опыт позволяет в каждом конкретном случае дифференцировать поражение звукопроводящего и звуковоспринимающего аппаратов.
3. Опыт Бинга . Звучащий камертон С|28 размещают на коже сосцевидного отростка, при этом исследователь на стороне исследуемого уха поочередно пальцем открывает и закрывает наружный слуховой проход. В норме и при нарушении функции звуковосприятия, когда слуховой проход закрыт, звук будет восприниматься как более громкий - опыт положительный («Бинг+»), Если есть поражение функции звукопроведения, закрытие слухового прохода не влияет на громкость звука - опыт отрицательный («Бинг-»).
4. Опыт Федеричи . Сравнивают результаты восприятия звука камертона С128, ножку которого поочередно устанавливают то на коже сосцевидного отростка, то на козелке. В норме и при условии поражения звуковоспринимающего аппарата звук камертона, установленного на козелке, воспринимается как более громкий, что может расцениваться как положительный опыт. Обозначается такой результат «К>С», т. е. восприятие с козелка громче, чем с сосцевидного отростка. При нарушении функции звукопроведения (отосклероз, разрыв барабанной перепонки, отсутствие цепи слуховых косточек и т. п.) камертон с козелка слышен хуже, чем с сосцевидного отростка, - опыт отрицательный.
5. Опыт Швабаха . Ножку камертона С,28 ставят на сосцевидный отросток и определяют время восприятия его звучания. Уменьшение времени восприятия характерно для сенсоневральной тугоухости.
6. Опыт Желле . Ножку камертона С]28 ставят на сосцевидный отросток, а в наружном слуховом проходе сгущают и разрежают воздух путем нажатия на козелок и его отпускания. Это приводит к колебаниям основания стремени и изменению восприятия звука. Он становится более тихим при сгущении воздуха и более громким при разрежении. Если основание стремени неподвижно, звук не меняется. Такое бывает при отосклерозе.

Исследование слуха камертонами на сегодняшний день используют для ориентировочного проведения дифференциальной диагностики поражения звукопроводящего и звуковоспринимающего аппарата.

Исследование слуха с помощью аудиометра . В настоящее время основным методом определения слуха является аудиометрия, т. е. исследование слуха с помощью электроакустического аппарата, называемого аудиометром. Аудиометр состоит из трех основных частей: 1) генератора разных акустических сигналов (чистых тонов, шума, вибрации), которые могут восприниматься ухом человека; 2) регулятора УЗД сигнала (аттенюатора); 3) излучателя звуков, трансформирующего электрические сигналы в акустические путем передачи звуковых колебаний к исследуемому через воздушные и костные телефоны.
С использованием современных клинических аудиометров исследуют слух методами тональной пороговой, тональной надпороговой и речевой аудиометрии.
Тональная пороговая аудиометрия предназначена для исследования порогов слуховой чувствительности к тонам фиксированных частот (125-10 000 Гц). Тональная надпороговая аудиометрия позволяет оценить функцию громкости, т. е. способность слуховой системы воспринимать и распознавать сигналы надпороговой силы - от тихих до максимально громких. Речевая аудиометрия обеспечивает получение данных о порогах и возможностях распознавания исследуемых речевых сигналов.

Тональная пороговая аудиометрия . Первым этапом аудиометрии является измерение слуховой чувствительности - слуховых порогов. Порог восприятия тона - это минимальная интенсивность акустического сигнала, при которой возникает первое ощущение звука. Изменяя частоту и силу звука с помощью специальных устройств, размещенных на панели аудиометра, исследователь определяет тот момент, в который исследуемый услышит едва ощутимый сигнал. Передача звука от аудиометра к пациенту осуществляется с помощью головных телефонов воздушной проводимости и костного вибратора. При появлении звука исследуемый сигнализирует об этом нажатием на выносную кнопку аудиометра, зажигается сигнальная лампочка. Сначала определяются пороги восприятия тонов по воздушной проводимости, а затем - по костно-тканевой. Результаты исследования порогов восприятия звука наносят на бланк аудиограммы, где на оси абсцисс обозначены частоты в герцах, а на оси ординат - интенсивность в децибелах. При этом пороги восприятия тонов по воздушной проводимости обозначаются точками и соединяются сплошной линией, а пороги восприятия по костно-тканевой проводимости - крестиками, которые соединяют пунктирной линией. Показателем нормального слуха считается отклонение порогов восприятия тонов от нулевой отметки аудиограммы в пределах до 10-15 дБ на каждой из частот.
Показатели восприятия звуков, проведенных воздушным путем, характеризуются состоянием звукопроводящего аппарата, а показатели восприятия звуков, проведенных через кость, - состоянием звуковоспринимающей системы. При нарушении звукопроводящего аппарата кривые восприятия тонов по воздушной и костно-тканевой проводимости не совпадают и размещаются на некотором расстоянии друг от друга, образуя костно-воздушный интервал. Чем больше этот интервал, тем значительнее поражение звукопроводящей системы. В случае полного повреждения системы звукопроведения максимальная величина костно-воздушного интервала составляет 55-65 дБ. Образец тональной пороговой аудиометрии при нарушении функции звукопроведения представлен на рис. 11, а (см. вклейку). Наличие костно-воздушного интервала всегда свидетельствует о нарушении звукопроведения или кондуктивном типе поражения слуха. Если показатели порогов слуха по воздушной и костно-тканевой проводимости повышены в одинаковой степени, а кривые размещены рядом (т. е. костно-воздушный интервал отсутствует), то такая аудиограмма свидетельствует о нарушении функции звуковоспринимающего аппарата (см. вклейку, рис. 11, б). В случаях неравнозначного повышения порогов восприятия тонов по воздушной и костно-тканевой проводимости с наличием между ними костно-воздушного интервала констатируют комбинированное (смешанное) нарушение функций звукопроводящей и звуковоспринимающей систем (см. вклейку, рис. 11, в). Оценивая состояние слуха у пожилых людей, полученную кривую костно-воздушного звукопроведения следует сопоставлять с возрастной нормой слуха.


Рис. 12. Варианты кривых разборчивости речевых тестов: 1 - поражение звукопроводящего аппарата или ретрокохлеарных отделов преддверно-улитко- вого органа; 2 - поражение звуковоспринимающего аппарата (спирального органа) с нарушением функции громкости; 3 - замедленное нарастание разборчивости речи при так называемой корковой тугоухости

Тональная надпороговая аудиометрия . Пороговая аудиометрия определяет состояние слуховой чувствительности, но не дает представления о способности человека воспринимать различные звуки сверхпороговой интенсивности в реальной жизни, в том числе звуки речи. Известны случаи, когда нормальная разговорная речь не воспринимается или воспринимается плохо из-за дефектов слуха, а громкая - не переносится из-за неприятного болезненного ощущения громких звуков (слуховой дискомфорт). В 1937 г. американский ученый Фоулер (Е.Р. Fowler) выявил, что при патологических изменениях в спиральном органе развивается повышенная чувствительность уха к громким звукам. При этом ощущение громкости при усилении звука нарастает быстрее по сравнению со здоровым ухом. Это явление Fowler назвал феноменом выравнивания громкости (loudness recruitment ). В отечественной литературе такое состояние описано как феномен ускоренного нарастания громкости. Как правило, этот феномен обнаруживают при повреждении спирального органа. Нарушение функции звуковосприятия за пределами кохлеарных структур не сопровождается таким явлением.

В настоящее время в надпороговой аудиометрии наиболее распространенными являются следующие методики: 1) выявление феномена выравнивания с помощью дифференциального порога восприятия силы звука (ДПВСЗ) в модификации Е. Luscher; 2) определение индекса чувствительности к кратковременным усилениям интенсивности (SISI-тест); 3) определение уровня слухового дискомфорта.
Исследование ДПВСЗ основывается на определении способности исследуемого различать минимальные изменения силы тестирующего тона. Измерения проводят на клинических аудиометрах, которые оснащены специальными устройствами, позволяющими воссоздавать колебательный тон при изменении его интенсивности от 0,2 до 6 дБ. Пробу можно проводить на разных частотах тон-шкалы аудиометра, но практически ее выполняют на частотах 500 и 2000 Гц при интенсивности тестирующего тона 20 или 40 дБ над порогом восприятия. ДПВСЗ у людей с нормальным слухом при интенсивности сигнала над порогом слуха 20 дБ составляет 1,0-2,5 дБ. У лиц с явлениями феномена выравнивания (положительный рекруитмент) изменение громкости звука воспринимается при меньшей интенсивности тона: ДПВСЗ колеблется в них от 0,2 до 0,8 дБ, что свидетельствует о поражении спирального органа внутреннего уха и нарушении функции громкости. При условии поражения звукопроводящего аппарата и слухового нерва величина дифференциального порога не изменяется по сравнению с нормой, а при поражении центральных отделов звукового анализатора - увеличивается до 6 дБ.

Одной из модификаций определения ДПВСЗ является SISI -тест (Short Increment Sensitivity Index - индекс чувствительности к кратковременным усилениям интенсивности ). Тест выполняется следующим образом. В ухо обследуемого подают ровный тон частотой 500 или 2000 Гц интенсивностью 20 дБ над порогом восприятия. Через определенные промежутки времени (3-5 с - в зависимости от типа аудиометра) звук автоматически усиливается на 1 дБ. Всего подается 20 приростов. Затем вычисляют индекс малых приростов интенсивности (ИМПИ), т. е. проценты слышных усилений звука. В норме при нарушениях звукопроводящего аппарата и ретрокохлеарных отделов звукового анализатора индекс составляет 0-20 % утвердительных ответов, т. е. исследуемые практически не дифференцируют прироста звука. Если поражен спиральный орган, SISI-тест составляет 70-100 % ответов (т. е. больные различают 14-20 усилений звука).

Следующим тестом надпороговой аудиометрии является определение порогов слухового дискомфорта . Пороги измеряют по уровню интенсивности тестирующих тонов, при которых звук воспринимается как неприятно громкий. В норме пороги слухового дискомфорта на низко- и высокочастотные тоны равны 70-85 дБ, на среднечастотные - 90-100 дБ. При поражении звукопроводящего аппарата и ретрокохлеарных отделов слухового анализатора ощущения слухового дискомфорта не достигается. Если поражены волосковые клетки, пороги дискомфорта повышаются (динамический диапазон слуха суживается).
Резкое сужение динамического диапазона (до 25-30 дБ) ухудшает восприятие речи и часто является препятствием для слухопротезирования.
Речевая аудиометрия. Тональная аудиометрия дает представление
о качестве восприятия чистых тонов, исследование разборчивости речи - о функции звукового анализатора в целом. Поэтому оценка состояния слуховой функции должна базироваться на результатах исследования как тональных, так и речевых сигналов.
Речевая аудиометрия характеризуется социальной адекватностью слуха, ее основной целью является определение процентов разборчивости речи при разных УЗД речевых сигналов. Результаты речевой аудиометрии имеют большое значение для дифференциальной и топической диагностики, выбора тактики лечения, оценки эффективности слуховой реабилитации, решения ряда вопросов профотбора и экспертизы.
Исследования осуществляются с использованием аудиометра и подключенного к нему магнитофона. Магнитофон обеспечивает воспроизведение слов с ферромагнитной ленты, а аудиометр - усиление их до необходимого уровня и подачу к уху исследуемого посредством воздушного и костного телефонов. Результаты оцениваются по количеству распознанных исследуемым слов в одной группе. Поскольку группа содержит 20 слов, то значение каждого отдельного слова составляет 5 %. В практике измеряют четыре показателя: 1) порог недифференцированной разборчивости речи; 2) порог 50 % разборчивости речи; 3) порог 100 % разборчивости речи; 4) процент разборчивости речи в пределах максимальной интенсивности аудиометра. В норме порог недифференцированной разборчивости речи (порог ощущения - 0-уровень) составляет 7-10 дБ, 50 % порог разборчивости - 20-30 дБ, 100 % порог разборчивости - 30-50 дБ. При подаче речевых сигналов максимальной силы, т. е. на границе возможностей аудиометра (100-110 дБ), разборчивость речи не ухудшается и сохраняется на 100 % уровне. Кривые разборчивости речевых таблиц на украинском языке у лиц с нормальным слухом и у больных с нарушением функции звукопроведения (кондуктивная тугоухость) и звуковосприятия (сенсоневральная тугоухость) представлены на рис. 12.

При патологическом состоянии слуховой системы показатели речевой аудиометрии отличаются от нормы. Если поражен звукопроводящий аппарат или ретрокохлеарные отделы слухового анализатора, то кривая нарастания разборчивости речи при усилении УЗД акустических сигналов идет параллельно кривой в норме, но отстает от нее на величину средней потери тонального слуха (дБ) в диапазоне речевых частот (500-4000 Гц). Например, если потеря слуха при тональной аудиометрии составляет 30 дБ, то исследуемая кривая разборчивости речи будет сдвинута вправо от кривой нормы на 30 дБ, сохраняя при этом ее точную конфигурацию (рис. 12, 1). Если поражен звуковоспринимающий аппарат и имеются признаки феномена выравнивания, т. е. нарушена функция громкости, 100 % разборчивость речи не наступает, а после достижения своего максимума дальнейшее увеличение интенсивности сигнала сопровождается ухудшением разборчивости речи, т. е. отмечается известный феномен парадоксального падения разборчивости (ППР), характерный для слуховой патологии с нарушенной функцией громкости. В таких случаях кривая разборчивости речи напоминает форму крючка (рис. 12, 2). У пожилых людей с нарушениями ЦНС и поражением коркового отдела слухового анализатора (корковая тугоухость) нарастание разборчивости речи замедляется, кривая приобретает патологический вид и, как правило, даже при максимальном УЗД речевых сигналов (110-120 дБ) 100 % разборчивости речи не достигается (рис. 12, 5).

Объективная аудиометрия. Психоакустические методы исследования функции звукового анализатора в большинстве случаев позволяют достоверно определить характер и степень нарушения слуха. Но эти методы недостаточны или совсем неэффективны для исследования слуха у детей раннего возраста, лиц с нервно-психическими нарушениями, умственно отсталых, эмоционально неуравновешенных, симулирующих глухоту при судебно-медицинских исследованиях и т. п.
Определить состояние слуховой функции в таких случаях можно путем использования методов так называемой объективной аудиометрии. Ее основу составляют безусловные рефлексы (вегетативные, двигательные и биоэлектрические), возникающие в организме человека под воздействием разных акустических стимулов независимо от субъективных ответов исследуемого, его воли и желания.
В настоящее время среди многих средств и методов объективного исследования слуховой функции в клинической практике чаще всего используется акустическая импедансометрия и регистрация слуховых вызванных потенциалов.
Акустическая импедансометрия основывается на измерении акустического сопротивления (импеданса), которое оказывают звуковой волне структуры среднего уха, передающие ее улитке. Акустический импеданс (АИ) среднего уха имеет ряд составных частей - сопротивление наружного слухового прохода, барабанной перепонки, цепи слуховых косточек, функцию внутриушных мышц.
Многочисленными исследованиями установлено, что патология среднего уха существенно изменяет величину АИ по сравнению с нормой. По характеру изменений АИ можно объективно охарактеризовать состояние среднего уха и функцию внутриушных мышц. Так, повышенный АИ наблюдают при остром среднем отите, рубцовых изменениях барабанной перепонки, фиксации цепи слуховых косточек, наличии секрета в барабанной полости, нарушении вентиляционной функции слуховой трубы. Значение АИ снижается при разрыве цепи слуховых косточек. В аудиологической практике результаты АИ оцениваются по данным акустического рефлекса тимпанометрии.
Тимпанометрия (ТМ) основывается на регистрации сдвигов АИ в процессе искусственно созданного перепада давления воздуха в герметически закрытом наружном слуховом проходе. При этом изменения давления составляют ±100-200 мм вод. ст. Известно, что давление воздуха в наружном слуховом проходе здорового человека равняется давлению воздуха в барабанной полости. При неодинаковом давлении воздуха в среднем ухе и наружном слуховом проходе повышается акустическое сопротивление барабанной перепонки и соответственно увеличивается АИ. Динамику изменений АИ при перепаде давления воздуха в наружном слуховом проходе можно записать графически в виде тимпанограммы.
В норме тимпанограмма по форме напоминает перевернутую букву «V», вершина которой соответствует атмосферному давлению воздуха (давление 0) в наружном слуховом проходе. На рис. 13 представлены основные типы тимпанограмм, характерные для различных состояний среднего уха.
Тимпанограмма типа А соответствует нормальной функции среднего уха, давление в наружном слуховом проходе равно атмосферному.


Рис. 13. Варианты тимпанометрических кривых и их обозначения (поJ. Jerger, 1970): 1- тип А (норма); 2 - тип В (перфорация барабанной перепонки, секреторный средний отит); 3 - тип С (дисфункция слуховой трубы); 4 - тип Ad (разрыв цепи слуховых косточек); 5 - тип /4s (отосклероз); 6 - тип D (адгезивный отит)
Тип В свидетельствует о незначительных изменениях АИ при перепадах давления воздуха в наружном слуховом проходе; наблюдается при секреторном отите, при наличии экссудата в барабанной полости.
Тип С характеризуется нарушением вентиляционной функции слуховой трубы с наличием отрицательного давления в полости среднего уха.
Тип D определяется раздвоением верхушки тимпанограммы на два пика в области, близкой к нулевому давлению, что происходит при деструктивных изменениях барабанной перепонки (атрофия, рубцы).
Тип Ad - внешне кривая напоминает тимпанограмму типа А, но имеет очень высокую амплитуду, за счет чего верхушка выглядит срезанной; этот тип определяется в случае разрыва цепи слуховых косточек.
Тип As - напоминает тимпанограмму типа А, но с очень низкой амплитудой, наблюдается при анкилозе стремени (отосклероз).

Акустический рефлекс (АР) - один из защитных рефлексов человека, физиологическое назначение которого заключается в защите структур внутреннего уха от повреждения сильными звуками. Дуга этого рефлекса образуется благодаря наличию ассоциативных связей между слуховыми ядрами верхнеоливарного комплекса и двигательными ядрами лицевого нерва. Последний иннервирует не только мышцы лица, но и стременную мышцу, сокращение которой ограничивает движение цепи слуховых косточек, барабанной перепонки, резко повышая акустическое сопротивление среднего уха. Следует отметить, что этот рефлекс возникает как на стороне раздражения (ипсилате- ральной), так и на противоположной (контрлатеральной) стороне благодаря наличию перекреста проводниковых путей слухового анализатора.
Основными диагностическими критериями АР являются величина его порога, характер надпороговых изменений при разных условиях надпороговой стимуляции и латентный период.

Для исследования АР используют специальную аппаратуру - импедансометры . В норме сокращение внутриушных мышц наступает при интенсивности звуковых раздражителей 70-85 дБ над порогом слуха. Образец записи АР в зависимости от уровня звукового давления (УЗД) акустического стимула представлен на рис. 14. Условием для регистрации АР являются тимпанограммы типа А или As и потеря слуха не превышающая 50 дБ УЗД.


Рис. 14. Запись акустического рефлекса здорового человека при акустической стимуляции уха полосным шумом (100-4000 Гц) разной длительности и интенсивности: 1 - кривая акустического рефлекса; 2 - величина звукового давления акустического раздражителя в децибелах; 3 - указатель времени (в миллисекундах); а - порог акустического рефлекса; б и в - изменение амплитуды рефлекса и его длительности при увеличении звукового давления и длительности акустического стимула

При патологическом состоянии среднего уха защитный механизм АР нарушается. При этом АР изменяется по сравнению с нормой. Полученные данные применяются в практике аудиометрии для улучшения дифференциально-топической диагностики заболеваний органа слуха.
Регистрация биоэлектрических реакций - слуховых вызванных потенциалов (СВП), возникающих в ответ на звуковые раздражители, является распространенным методом объективной аудиометрии.

Выделение и суммация СВП на фоне спонтанной биоэлектрической активности слуховой системы и биопотенциалов других стволовомозговых структур осуществляется с помощью специальных электроакустических устройств, основу которых составляет ЭВМ с быстродействующими аналого-цифровыми преобразователями.
Использование компьютеров для исследования слуховой функции с помощью записи СВП получило за границей название ERA (evoked response audiometry), т. e. аудиометрия вызванных ответов, или компьютерная аудиометрия. Выявлены разные компоненты СВП. По месту локализации соответствующего электрода в клинической аудиологии принято различать улитковые (электрокохлеография) и мозговые (вертекс-потенциалы) СВП.

Рис. 15. Схематическое изображение слуховых вызванных потенциалов (noT.W. Picton и соавт., 1974): 1 - коротколатентные; 2-среднелатентные; 3 - длиннолатентные

При электрокохлеографии активный электрод размещают на медиальной стенке барабанной полости в области мыса (promontorium). При регистрации мозговых СВП активный электрод закрепляют в области темечка (vertex),а заземленный - на коже сосцевидного отростка. К улитковым СВП относятся микрофонный и суммационный потенциалы, потенциал действия слухового нерва; к мозговым - биопотенциалы кохлеарных ядер, стволово-мозговых нейронов, активность слуховой зоны коры большого мозга.

СВП по времени их возникновения подразделяют на три основные группы: коротко-, средне- и длиннолатентные. Коротколатентные СВП являются наиболее ранними: они возникают в первые 10 мс после действия акустического стимула, отражают реакцию волосковых клеток спирального ганглия и периферических окончаний волокон слухового нерва. В составе коротколатентных СВП различают ряд компонентов (волн), обозначаемых римскими цифрами. Волны отличаются друг от друга локализацией, амплитудой вызванных потенциалов и латентным периодом их возникновения. На рис. 15 приведено схематическое изображение записей СВП здорового человека. В группе коротколатентных СВП волны I-II характеризуют электрическую активность улитки и слухового нерва, волны III-IV - ответы нейронов верхнеоливарного комплекса, ядер латеральной петли и нижних бугорков четверохолмия. Время возникновения среднелатентных СВП составляет от 8-10 до 50 мс после начала звукового раздражения, длиннолатентных - от 50 до 300 мс.

Компоненты, входящие в состав средне- и длиннолатентных СВП, обозначаются соответственно латинскими буквами Р и N. Происхождение среднелатентных СВП до настоящего времени не определено. Допускается, что эта группа биопотенциалов имеет не столько интракраниальное (мозговое), сколько экстракраниальное происхождение, обусловленное миогенными реакциями (постуральными, височными, шейными и т. п.). Поэтому среднелатентные СВП значительного распространения в клинической практике не имели. Длиннолатентные СВП, с точки зрения большинства исследователей, характеризуют электрическую активность слуховой зоны коры большого мозга.
Сопоставление количественных значений латентного периода и амплитуды волн (пиков) СВП позволяет объективно определить заболевание периферического и центрального отделов звукового анализатора, в частности звукопроводящих систем, звуковоспринимающего аппарата улитки, невриному слухового нерва, патологические изменения ядер ствола мозга и слуховых корковых структур.
Компьютерная аудиометрия является перспективным и очень ценным методом клинической диагностики нарушений слуха, выявления симуляции и агравации притворной глухоты и тугоухости.


В настоящее время врачи-специалисты - аудиологи, сурдологи, оториноларингологи - применяют субъективные и объективные методы диагностики слуха. Рассмотрим эти методы подробнее. 1

Объективные методы:

^ Акустическая импедансометрия (тимпанометрия) применяется для обследования и выявления причин заболеваний среднего уха. При этом исследовании в ухо пациента вставляется специальная пробочка, соединенная с импедансометром, через которую в наружном слуховом проходе создается отрицательное или положительное давление, а также подаются различные звуки. График зависимости импеданса от изменения давления в широком диапазоне может дать важную информацию о состоянии среднего уха, барабанной перепонки и цепи слуховых косточек.

^ Отоакустическая эмиссия (ОАЭ) - это чрезвычайно слабые звуковые колебания, генерируемые улиткой, которые свидетельствуют о нормальном функционировании слухового рецептора. Эти колебания могут быть зарегистрированы в наружном слуховом проходе при помощи высокочувствительного малошумящего микрофона. Чаще всего метод ОАЭ используется для скрининга новорожденных и для обследования слуха детей первого года жизни. Если ОАЭ регистрируется, слух у ребенка не нарушен. Если ОАЭ не регистрируется, то это является показанием к дальнейшему обследованию ребенка у сурдолога. Процедура абсолютно безболезненная, занимает всего несколько минут и может проводиться, когда ребенок спит.

Электрокохлеография - метод регистрации вызванной активности улитки и слухового нерва, возникающей после предъявления короткого акустического стимула. Активность эта включает пресинаптические микрофонный (МП) и суммационный (СП) потенциалы и постсинаптический потенциал действия интракохлеарной порции слухового нерва. Основную ценность метод представляет при диагностике состояний, сопровождающихся эндолимфатическим гидропсом. Регистрация вызванных электрических потенциалов позволяет определить, не поражен ли слуховой нерв или какой-либо отдел головного мозга. Метод заключается в измерении электрической активности головного мозга в ответ на звуковые сигналы.

Объективные методы используются для исследования слуха не только у взрослых, но и у маленьких, и даже новорожденных детей.

Субъективные методы 1

Аудиометрия - наиболее простое и доступное исследование, проводимое с помощью специального прибора - аудиометра, с помощью которого оценивается величина снижения слуха. Обычно человек способен воспринимать звуки частотой от 20 Гц до 20000 Гц. Для понимания речи достаточно слышать звуки в диапазоне от 200 Гц до 6000 Гц. Речевая аудиометрия позволяет определить процент слов, которые может разобрать человек, при различной громкости их воспроизведения.

^ Тональная пороговая аудиометрия - это определение порогов слышимости на частотах от 125 до 8000 Гц. Измерения проводятся в специально оборудованной, защищенной от шума комнате. Сигнал подается в ухо пациента либо через наушник или вкладыш (исследование воздушной проводимости), либо через костный вибратор (исследование костной проводимости). Пациенту предъявляются звуки различных частот с разной интенсивностью. Когда пациент слышит звук, он сообщает об этом, нажимая сигнальную кнопку. Поскольку результат определяется по реакции пациента, измерения организованы так, что пациент не видит, когда оператор переключает частоты и изменяет интенсивность сигнала. По результатам измерений строится аудиограмма, которая необходима для правильного выбора и настройки слуховых аппаратов. Пороговое тональное аудиометрическое обследование должно являться первичным или «обзорным» обследованием слуховой функции.

Измерение порога слышимости методом тональной аудиометрии проводят с помощью наушников отдельно для каждого уха. Определение порога слышимости с помощью громкоговорителя рекомендуется только в исключительных случаях, например для малолетних детей и при испытании слуховых аппаратов. Аудиометрическую проверку слуха следует проводить в помещении, хорошо защищенном от мешающих внешних шумов. Наушник нужно надежно закрепить к контролируемой стороне головы.

Пункты измерения, полученные при проверке слуха, необходимо немедленно с помощью полуавтоматических средств отмечать в формуляре аудиограммы, используя единые символы (например, «х» - воздушная проводимость слева, «о» - воздушная проводимость справа).

Измерения всегда начинают с лучше слышащего уха. Прежде всего проводят тестирование на средней (тональной) частоте, обычно 1000Гц (1кГц). Затем с октавным интервалом контролируют порог слышимости при 2000 Гц, 4000 Гц, 8000 Гц. После этого еще раз проверяют порог слышимости определенный при частоте 1000Гц, корректируют его в случае отклонения результатов и при необходимости проводят повторный контроль результатов полученных при всех других частотах. Далее определяют порог слышимости при частотах 500, 250 и 125 Гц и, наконец, восполняют частоты верхнего диапазона. При этом можно проверить, не имеет ли линия, соединяющая пункты измерения (так называемая кривая порога слышимости), резких изломов, что иногда может объясняться неточностью ответов пациента. В таких случаях требуется многократная проверка. Если отдельные пункты измерения порога чувствительности при различных частотах представляются вероятными, их соединяют отрезками прямой. Для определения порога слышимости по тональной частоте не рекомендуется использовать звуки большой длительности. Контроль прерывистыми звуками дает более достоверные результаты. Наиболее благоприятная последовательность из двух тональных импульсов в секунду. Порог слышимости не изменяется от применения импульсных тонов достаточной продолжительности, но облегчает пациенту распознание звуков вблизи порога слышимости особенно в тех случаях, когда невозможно полностью избежать мешающих внешних шумов или у самого пациента возникают шумы в ушах. Скорость, с которой следует повышать уровень длительного тона при исследовании порога слышимости, зависит от реакции пациента. У здоровых людей время реакции на акустические сигналы составляет примерно 1/10 секунды. Для пациентов с нормальным временем реагирования рекомендуется повышать громкость на 10-20 дБ в секунду. Для пациентов с замедленной реакцией иногда необходимо значительно уменьшать скорость повышения уровня. Проводя испытания с различной скоростью усиления сигналов одинаковой частоты, можно проверить, будет ли полученный порог слышимости зависеть от скорости подачи усиления. В таком случае необходимо провести скорость усиления звука в соответствие с реакционной способностью пациента.

К точности определения порога слышимости нельзя предъявить слишком высоких требований, так как все психофизические эксперименты, к каковым относится и определение порога слышимости, дают нормальную амплитуду вариации. Для одного и того же пациента в разное время могут быть получены различные значения порога слышимости. Нормальный разброс значений при определении порога слышимости методом тональной аудиометрии составляет 10 дБ. Определив порог слышимости по воздушной проводимости для лучше слышащего уха, необходимо повторить те же измерения на ухе с ослабленным слухом. Если оба уха слышат одинаково, тоне имеет значения, с какого уха начинать.

Важным фактором является определенная зависимость остроты слуха у детей от тонуса вегетативной нервной системы, который меняется в течение суток. Поэтому желательно проводить исследования в одно и то же определенное время дня, а именно утром. В это время имеется еще относительное равновесия между тонусом симпатического и парасимпатического отделов вегетативной нервной системы. Это особенно важно при повторных обследованиях того же самого ребенка. Можно также проводить «групповые исследования» с участием 2 - 3 детей. Такая обстановка успокаивает ребенка, а кроме того возможно возникновение соревнования между детьми, которое настраивает детей на работу. Нередко плохо контактирующий ребенок, отказывающийся от исследования, в присутствии других детей, несомненно под их влиянием, становится спокойным, заинтересованным, желает повторить то, что на его глазах делал его сверстник.

Довольно трудным является вопрос о начальной интенсивности подаваемого звука. Для этого предложено несколько способов, которые связаны или с подачей звуков с большой надпороговой интенсивностью, или, наоборот, с наращиванием интенсивности от нулевого уровня до появления восприятия. При первом методе подается звук заведомо слышимый (это дает ребенку возможность скорее осознавать, что содержать в себе понятия «тон» или «звук», о которых ему говорили перед началом исследования). После того, как ребенок услышит первоначальный тон, постепенно, с интервалами в 5 или 10 дБ ослабляют интенсивность до тех пор, пока его восприятие не исчезнет. С этого уровня медленно увеличивают интенсивность тона до того момента, пока у ребенка вновь не появится ощущение звука. Это и будет то пороговое восприятие звука, которое объясняется детям как звук «едва-едва». В другом случае звук подается с очень малого значения интенсивности и постепенно его увеличивается до тех пор, пока ребенок его не услышит.

Результаты измерения порога слышимости с использованием чистых тоновых сигналов для воздушной и костной проводимости дают представление о потере слуха на определенных частотах и позволяют различать между нарушениями звукопроводимости и лабиринтными нарушениями или же комбинацией тех и других.

Вместе с клиническим диагнозом результат такой проверки служит важным указанием по выбору соответствующего метода терапевтического лечения.

Нормальная кривая порога слышимости для костной проводимости при одновременной потере слуха для воздушной проводимости свидетельствует о нормальном состоянии внутреннего уха, при котором ставится диагноз: нарушение звукопроводимости. Такое нарушение слуха сегодня, как правило, должно устраняться оперативным путем. Если по каким-либо причинам оперативное вмешательство невозможно, для пациента легко подобрать подходящий слуховой аппарат.

Если потеря слуха для воздушной и костной проводимости практически одинакова, имеет место чисто лабиринтное нарушение. Однако установленная потеря слуха, не позволяет судить о том, насколько возможно с помощью слухового аппарата использовать сохранившиеся остатки слуха. Сведения о том может дать измерение степени различения речи.

Если слух пациента различен для одной и другой стороны, то иногда приходится устанавливать настолько большую громкость для хуже слышащего уха, что звук начинает восприниматься скорее другим, более здоровым ухом. Это явление называют «суперпозиционным слушанием». Его следует избегать, чтобы не получить в результате измерений искаженный порог слышимости. Ведь пациент обычно не различает, слышит ли он звук справа или слева. Лишь очень внимательные пациенты обращают внимание испытующего на то, что слышат звук другим ухом, а не тем, которое проверяется. Для того чтобы исключить влияние суперпозиционного слушания на результаты измерения, необходимо искусственно ухудшать восприятие на здоровой стороне, т.е. приглушать звук для лучше слышащего уха.

Для приглушения можно использовать другие звуки и шумы. Использование тональных звуков не рекомендуется по той причине, что пациенту трудно различать между звуками, воспринимаемыми испытуемым и не испытуемым ухом. Только в том случае, когда для приглушения используется непрерывный, а для контроля прерывистый тон, возможно приглушение тем же звуком, которым контролируется другое ухо.

Более эффективно приглушение шумами, причем узкополосные шумы следует предпочесть широкополосным, так как вероятность ошибок при этом снижается. При использовании приглушения следует иметь в виду, что суперпозиционирование контрольных тонов возможно лишь в том случае, если их громкость более чем на 50% превышает порог слышимости для лучше слышащего уха.

Следовательно, для того чтобы с уверенностью исключить суперпозиционирование, нужно помнить, что оно возможно с того момента, когда для достижения порога слышимости на стороне хуже слышащего уха громкость повышается до значений, на 40 дБ превышающих порог слышимости для лучше слышащего уха. Это правило распространяется на испытания с применением звуков воздушной проводимости; при костной проводимости суперпозиционирование возможно уже начиная с порога слышимости лучше слышащего уха, т.е. приглушение необходимо создавать сразу же, как только громкость контрольного звука превысит порог слышимости лучше слышащего уха

Самый простой и надежный способ приглушения или искусственного ухудшения слуха заключается в том, что узкополосный шум на стороне приглушаемого уха усиливают пропорционально усилению контрольного звука для хуже слышащего уха. Если приглушающий шум и контрольный звук сохраняют одинаковую громкость, то в большинстве случаев, когда необходимо приглушение, сколько-нибудь значительное искажение результатов будет практически исключено. Шум при этом задают одновременно с контрольным звуком и усиливают пропорционально ему. Громкости контрольного звука и приглушающего шума в течение всего испытания остаются одинаковыми. Если на стороне лучше слышащего уха имеет место нарушение звукопроводимости, необходимо с самого начала усиливать приглушающий шум на величину, равную составляющей звукопроводимости, по сравнению с громкостью контрольного тона для хуже слышащего уха. Правда, этот метод может оказаться неэффективным, если мы имеем дело со значительной комбинированной тугоухостью одного или обоих ушей.

Если в исследуемом ухе имеется звукопроводящая тугоухого, а в неисследуемом - звуковоспринимающая, то в таком случае применение заглушения будет иметь незначительную роль. Так как больной звуковоспринимающий аппарат слабо реагирует на окружающий звуковой фон и требует небольшой интенсивности маскирующего шума (10-20 дБ над порогом слуха). В противоположном случае роль маскировки значительно возрастет. Так при кондуктивной тугоухости костная чувствительность значительно обостряется, и звук от костного вибратора будет восприниматься лучше по стороне неисследуемого уха, что требует увеличения маскирующего шума до 20-30 дБ над порогом слуха, однако по мнению некоторых авторов 1 (Ю.Б. Преображенский, Л.С. Годин) он не должен превышать 70 дБ. Вообще, применение маскировки у детей требует специального объяснения и ознакомления с маскирующим шумом; иначе его подача может привести к негативной реакции (испуг, отказ от исследования и др.).

Иногда применение маскировки неэффективно и тогда можно воспользоваться комплексом латераллизованных проб; это происходит в следующих случаях:

1. Если имеется комплексное нарушение лучше слышащего уха (комплексное нарушение звукопроводящей системы с потерей слуха равной или большей 10 дБ и комплексное нарушение звуковоспринимающей системы с потерей слуха равной или большей 15 дБ).

2. Если применение маскировки противопоказано после звукоулучшающей операции на лучше слышащем ухе.

3. В случае психологически плохого переношения маскировки.

4. Сам комплекс латераллизованных проб включает в себя опыт Штенгера, при котором больному даются наушники, а на лучше слышащее ухо подается сигнал (равный тон) на 5 дБ выше порога слышимости. В течение всего исследования интенсивность его не меняется. Целью обследования является определение порога слышимости для прерывистого тона, поэтому на хуже слышащее ухо подается прорывный тон, которого интенсивность повышается, пока обследуемый не услышит его.

Игровая аудиометрия применяется для исследования слуха у детей младше 4-х лет. Специальная методика позволяет определять состояние слуха у детей в процессе игры. Исследование слуха у детей раннего возраста, по всеобщему признанию, представляет весьма трудную задачу. Основной трудностью, с которой сталкиваются исследователи, является выбор методики исследования, с помощью которой, можно произвести измерение слуховой чувствительности, и критерии оценки состояния слуха (имеется ввиду возрастные особенности слуха и т. д.).

По своему существу игровая аудиометрия является обычным видом аудиометрического обследования, проводимым в виде игры. Данный метод используется с того момента жизни ребенка, когда можно у него выработать условный рефлекс. У ребенка есть кнопка, на которую он должен нажать в тот момент, когда услышит звук. Но использование кнопки не соответствует психологическому статусу ребенка раннего возраста, поэтому в настоящий момент ребенок использует вместо нее, например, пирамидку. Когда ребенок услышит звуковой сигнал, то должен надеть колечко пирамидки на стержень. Кроме этого обычно условный рефлекс подкрепляется показом картинки или игрушки.

Большое значение имеет учет возрастных особенностей при проведении исследования. Прежде всего, надо помнить об этом, что у маленького ребенка иные пороги восприятия, чем у взрослого или подростка. Кроме того, имея в виду, что большинство исследуемых относится к не говорящим, то применение речевой аудиометрии не подходить и надо ограничиваться проведением тональной пороговой и надпороговой аудиометрии. Надо также внимательно следить за реакциями ребенка. Иногда он хочет увидеть картинку и поэтому необходимо делать разные, по продолжительности паузы между звуками. К особенностям относится тоже характер работы ребенка. Известно, что есть дети, которые сразу реагируют на подачу звукового сигнала. Но некоторые ждут того момента, когда он закончится, поэтому экспериментатору, перед проведением основного обследования надо подстроится под стиль работы обследуемого. Работа с детьми, у которых наблюдаются различные формы задержки психического развития, тоже имеет свои особенности работы. Это, как правило, медленность действий. Из этого можно сделать вывод, что исследователь, кроме того, что с начала исследования должен не только подстроиться под манеру работы ребенка, но и быть знаком с медицинскими документами, имеющимися на него, где указываются все особенности развития и настоящего состояния интеллекта исследуемого. Нужно добавить, что иногда ребенок отказывается работать. Это может быть связано с тем, что экспериментатор является для ребенка чужим лицом и в этом случае нужно привлечь к обследованию человека хорошо знакомого пациенту.

Важным условием изучения органа слуха является выработка процесса прислушивания - установочной реакции прислушивания, которая является условной комплексной реакцией и проявляется в «торможении и позе» (у взрослого человека вырабатывается ее с помощью установки «слушайте внимательно...»). Во время этого процесса наступает мобилизация порогов восприятия. Во время проведения обследования однообразный тип смену игрушек и/или картинок может утомлять ребенка и являться причиной некорректных результатов. Поэтому важно, чтобы повобрать такие схемы их смены, которые были бы интересны ребенку. Он должен также почувствовать, что управляет процессом их появления, что дает еще один стимул для работы.

Речевая аудиометрия является основным методом определения состояния слуха до и после протезирования и оценки качества слухопротезирования. Врач предъявляет пациенту специальные тестовые последовательности слов, которые воспроизводятся с различными уровнями громкости. Пациент повторяет услышанные слова. Результат определяется по количеству правильно услышанных слов при соответствующих уровнях громкости. Речевая аудиометрия позволяет более точно подобрать и настроить слуховой аппарат с целью достижения максимально возможной разборчивости речи. Особенностью речевой аудиометрии является то, что в отличие от других методов обследования она позволяет не только врачу, но и пациенту объективно оценить состояние собственного слуха и эффективность слухового аппарата. Речевая аудиометрия в отличие от тональной использует «социально адекватный» 1 раздражитель слухового анализатора - речь. Определение возможности воспринимать звуки речи является одним из важнейших факторов для оценки имеющегося у человека дефекта слуха, а также для определения дальнейших реабилитационных мер; для оценки уже проводящихся.

У взрослых определяется 5 порогов речевого слуха. У детей предлагается 2 определять 3 порога - порог первоначального ощущения речи, порог 50% и 100% разборчивости речи. Усредненная кривая разборчивости речи находится в интервале от 15 до 45 дБ. Имеются два способа подачи теста - с магнитофона или «живым» голосом исследователя через микрофон; имеются также два способа восприятия - через наушники или через динамик в свободном звуковом пространстве. Каждый из этих способов имеет свои преимущества и недостатки. При подаче из магнитофона достигается равномерную интенсивность, но при этом выступают дополнительные искажения речи. Преимуществом подачи «живого» голоса через микрофон является большая физиологичность, наличие возможности использования индивидуально подобранных слов в соответствии со словарным запасом исследуемого. Однако необходимость равномерной интенсивности может быть здесь достигнута только путем долгих тренировок.

У больных с тугоухостью она смещается вправо, в сторону увеличения интенсивностей, а при резко выраженной тугоухости появляется нарушение различия речи. У таких больных увеличение интенсивности при подаче речевого теста не улучшает, а, наоборот, ухудшает разборчивость речи 1 , что в значительном числе случаев приводит к отсутствию порога 100% разборчивости.

Преимущество подачи через телефон заключается в том, что можно достичь большую максимальную интенсивность, а также, в случае необходимости (если разница между порогами восприятия ушей составляет больше 30 дБ) такой способ позволяет применить маскировку. Определение порогов разборчивости речи ведется из процентного расчета числа услышанных слов к числу всех поданных слов (в каждой группе имеется 10 слов).

Для проведения речевой аудиометрии можно воспользоваться следующими тестами:

1. Тест числительных Хоршака. В этом тесте в качестве слов подаются числительные, а сам опыт заканчивается на метке, когда исследуемый слышит не менее 50% числительных. В норме человек 50% слов различает при громкости в 20 дБ и с этой величиной надо сравнивать его конкретный результат.

2. Тест разборчивости реальной речи (например, тест разборчивости русской речи Гринберга и Зиндера). В этом тесте используется набор из бытовых слов, а изучение заканчивается, когда исследуемый слышит 100% слов. В норме человек различает 100% слов при громкости 50 дБ и сравнение надо проводить, как в выше упомянутом тесте.

Эти тесты проводятся через наушники. Определение снижения порога различения:

При определении порога снижения разборчивости речи необходимо установить способность понимания речи при различной громкости и нанести полученные результаты в виде кривой на речевую аудиограмму. Затем по максимальному значению определяют порог различения, а форма кривой показывает, способен ли испытуемый правильно понимать речь не только «нормальной громкости», но и очень громкую (в дальнейшем усиливаемую слуховым аппаратом).

^ Исследование слуха при помощи шепотной и разговорной речи

Выбор слов для исследования должен быть удовлетворяющим определенным акустическим требованиям, так как звуки речи обладают разной степенью громкости и выслушиваются ухом на очень разных расстояниях. Есть звуки в спектре которых преобладают высокие фонемы, и к которым очень чувствительно человеческое ухо (, и др.). Эти звуки воспринимаются с далекого расстояния. Есть также звуки, в спектре которых преобладают фонемы средней и низкой частоты (, и др.);они воспринимаются с менее далеких расстояний. При обследовании ребенка надо по дБирать такие слова, значение которых известно ребенку и в которых содержатся звуки, наиболее воспринимаемые ухом (автобус, оса, хвост и т.д.) 1 , У детей с сильным снижением слуха нужно знать уровень их речевого развития. Если у ребенка имеются в запасе только отдельные слова, то нужно использовать именно их, если сохранились лепетные слова, которыми ребенок определяет окружающий мир, то использовать эти звукосочетания. Необходимо учитывать, что дети не очень любят повторять, в том числе и то, что они хорошо слышат, а также и то, что им быстро надоедает однообразное обследование. Поэтому в процессе исследования нужно прибегать к игре: выражать удивление или радость, когда ребенок воспринимает слово, использовать метод диалога, показывать картинки соответствующие словам и т.д. Количественная оценка состояния слуховой функции при исследовании шепотом и речью производится на основании определения того расстояния, с которого ребенок правильно воспринимает произносимые слова. Но следует учитывать, что расстояние, с которого слышит обследуемый, зависит не только от состояния его слуховой функции, но также и от громкости произношения, и от разборчивости дикции исследователя.

При обследовании слуха шепотом слова должны произноситься на резервном воздухе (вдох - выдох - шепот), что способствует уравнению громкости шепота у разных лиц, а также с хорошей разборчивостью, с определенной скоростью произношения, дающей ребенку возможность осознать сказанное. Исследователь во время произношения не должен двигаться, чтобы не отвлекать внимания ребенка. У детей в возрасте 5-7 лет исследование нужно начинать более громким голосом, постепенно отходя от ребенка. Это нужно для того, чтобы привлечь внимание ребенка, а также дать возможность его слуховому анализатору адаптироваться к голосу человека ведущего обследование. У детей старше 7 лет можно начинать с максимального расстояния и постепенно приближаться до тех пор, пока правильно не повторит слово. В процессе исследования, как шепотной, так и разговорной речью нельзя менять слова если ребенок их не воспринимает, а необходимо повторять одно и то же слово до тех пор, пока исследуемый его не повторит. Важным является заглушение неисследуемого уха (например, при помощи вдавления в наружный слуховой проход козелка или намоченного пальца).

При исследовании состояния слуховой функции у детей старше 7 лет можно пользоваться специальными детскими таблицами, соответствующими возрасту, а также проверять фонематический слух, т.е. способность различать отдельные, схожие между собой в акустическом отношении фонемы («чашка» - «шашка», «коза» - «коса» и др.). Практика также показывает, что после проведения обследования на каждое ухо в отдельности нужно также проверить бинауральный слух, при котором снижаются пороги восприятия звука, а также ненамного улучшается дифференциация.

При проведении анализа полученных результатов нужно обращать внимание на наличие или отсутствие диссоциации между восприятием шепотной и разговорной речи, так как при нарушении звукопроведения разница между ними будет невелика, а при нарушении звуковосприятия она значительная.

У детей старше 7 лет значительно изменена фонетическая разборчивость. Восприятия шепота на расстоянии меньше 1м указывает на значительную тугоухость; полное невосприятие шепота и значительное (1-2м) ухудшение восприятия разговорной речи указывает на тяжелую форму тугоухости, затрудняющую не только речевое развитие, но и речевое общение.

^ Определение динамического диапазона:

Так называемый динамический диапазон соответствует рабочему диапазону уха в пределах между порогом слышимости и границей рабочего участка модуляционной характеристики. Приблизительной мерой рабочего участка модуляционной характеристики является так называемый порог дискомфорта, при превышении которого пациент указывает на неприятную громкость звука. Это ощущение дискомфорта объясняется прежде всего возникновением сильных энауральных искажений, однако зависит и от центральной оценки громкости, т.е. от трудно поддающихся контролю психогенных критериев оценки. Несмотря на такую ограниченную достоверность, порог дискомфорта обычно определяется довольно точно, и его значения имеют лишь незначительно больший разброс, чем значение порога слышимости. У людей с нормальным слухом порог дискомфорта от воздействия звука достигается примерно при 100 - 120 дБ (некоторые авторы, например О. Петерсон, 1 подают величину в 120 дБ), а от воздействия шума -примерно 90-100 дБ.

Порог дискомфорта определяют с помощью тональных импульсов продолжительностью не менее 1 секунды. Усиление медленно наращивают, начиная с 70 дБ, пока пациент не скажет, что он ощущает тональные импульсы как неприятные, слишком громкие. Найденное пороговое значение дискомфорта отмечается на аудиограмме крестиком.

При улиточной тугоухости порог дискомфорта достигается в большинстве случаев уже в диапазоне нормальных значений или даже раньше (Феномен Ускоренного Нарастания Громкости или «рекрутмент»). В этих случаях интервал в дБ между порогом слышимости и порогом дискомфорта укорочен. При отсутствии сужения динамического диапазона большая потеря слуха ведет к превышению предела усиления аудиометра, так что порог дискомфорта уже не поддается измерению. Поэтому отрицательный результат измерения порога дискомфорта не свидетельствует о том, что улиточная тугоухость отсутствует. Использовать можно только положительный результат контроля на сужение динамического диапазона.

^ Камертональный метод 2

Камертональное исследование дает возможность провести предположительную «качественную» и «количественную» характеристику состояния слуховой функции. С помощью камертонов определяется восприятие звуков по воздуху и по кости. Данные, полученные по воздушной и костной звукопроводимости, сравнивают, после чего делаются выводы о качественном состоянии слуховой функции. Количественная оценка результатов исследования слуха камертонами сводится к определению времени (в секундах), в течение которого раздраженный камертон воспри­нимается обследуемым через воздух и через кость.

Обследование лучше проводить низкочастотными камертонами (С-128, С-256), т.к. их звук долго слышится через воздух, через кость и ребенок успевает адекватно отреагировать на тестовые задания.

При про ведении дифференциальной диагностики используют пробы Вебера, Ринне, Швабаха и др.

Сущность пробы Вебера состоит в том, что звучащий камертон ставится на середину темени, и обследуемый отвечает, слышит ли он звук камертона одинаково в обоих ушах (в середине темени) или только в одном ухе. При нормальном или одинаковом слухе на оба уха (даже при снижении остроты слуха) латерализации (смещения звукового образа) не происходит. При поражении звукопроводящего аппарата звук камертона латерализуется в сторону хуже слышащего уха. При поражении звуковоспринимающего аппарата звук камертона латерализуется в сторону нормально (или лучше) слышащего уха.

Для уточнения результатов пробы Вебера проводится опыт Ринне, который заключается в сравнении воздушной и костной проводимости для одного и того же уха. При здоровом ухе или поражении звуковоспринимающего аппарата воздушная проводимость преобладает над костной (Ринне +). Преобладание же костной проводимости над воздушной характерно для заболевания звукопроводящего аппарата (Ринне -). Если воздушная и костная звукопроводимость одинаковые, то имеет место нарушение слуха смешанного характера.

Тест Швабаха используется для приближенной оценки потери слуха в результате дисфункции звуковоспринимающего аппарата. Основание вибрирующего камертона устанавливают на сосцевидный отросток височной кости пациента. Когда звук ослабнет до такой степени, что пациент уже не воспринимает его, врач быстро приставляет камертон к собственному сосцевидному отростку. Если врач слышит тон, можно сделать вывод, что у пациента нейросенсорная потеря слуха. Результат теста записывается как «понижение», что отражает слуховой статус пациента. Обязательным условием для этого теста является нормальный слух у врача.

Негативной стороной каждой из методик, которые в процессе изучения состояния слуховой функции человека базируются на выработке и последующим использовании условно-рефлекторной реакции является то, что в процессе самого исследования может наступать утомление, что особенно касается детей. С другой стороны, тоже, прежде всего, у детей могут появляться меж - и внесигнальные, двигательные реакции. У маленьких детей через 20-40 минут может появляться снижение четкости ответов, капризность, отказ от исследования и т. д.

Введение……………………………………………………………………...3

1. Методы исследования слуха……………………………………………..5

2. Аудиометрия и импедансометрия……………………………………...12

3. Технические средства для неслышащих……………………………….16

Заключение…………………………………………………………………18

Литература………………………………………………………………….20

Введение

Слуховой анализатор (слуховая сенсорная система) - второй по значению диктантный анализатор человека, играющий крайне важную роль не только как составляющая первой сигнальной системы, но и как основное звено в развитии второй сигнальной системы. В последние десятилетия возросли требования к методам и техническим средствам, применяемым для исследования состояния органов слуха в связи с увеличением:

Числа факторов риска, способствующих развитию патологий слухового анализатора,

Общей продолжительности жизни, что автоматически ставит задачу повышения ее качества,

Новыми общественными стереотипами, основанными на идеях личной ответственности человека за свое физическое состояние. Следствием этой социальной модели является значительный интерес населения к методам и техническим средствам для самооценки физического состояния.

Одним из наиболее актуальных вопросов современной аудиологии является совершенствование методов диагностики нарушений слуха. Успехи в этом направлении, прежде всего, определяются своевременностью постановки диагноза, эффективностью лечения и реабилитации больных.

Слух - важнейшее из человеческих чувств. Несмотря на то, что здоровые люди ценят его меньше, чем зрение. А ведь с помощью слуха мы поддерживаем более тесную связь с окружающим миром, чем с помощью зрения.

В отличие от зрения, слух действует непрерывно, даже во сне. Его невозможно «выключить».

Слух – первое чувство, которое формируется у ребенка. Еще в утробе матери он начинает слышать и узнавать окружающие звуки.

В настоящее время значительно расширился арсенал методов реабилитации детей с нарушениями слуха, появились принципиально новые возможности их реабилитации. Эти методы можно разделить на:

1. Медицинские методы - консервативное лечение и хирургические методы, в том числе, кохлеарная имплантация

2. Технические методы - слухопротезирование слуховыми аппаратами и кохлеарная имплантация

3. Психолого-педагогические методы – включают развитие у детей слуха, речи, мышления и других психических функций. Необходимы при использовании любых медицинских и технических методов реабилитации.

4. Социальные методы - направлены на социализацию неслышащего ребенка, на то, чтобы он стал полноправным членом общества, мог получить образование, работу. К этим методам, можно отнести законодательную базу, обеспечивающую бесплатное предоставление детям слуховых аппаратов и кохлеарных имплантов, возможность выбора родителями глухого ребенка типа образовательного учреждения и многое другое.

1. Методы исследования слуха

Исследование выявляет минимальный уровень звука, который слышит человек, по средствам измерения порогов слуха на тоны разных частот. Пороги слуха измеряют в децибелах – чем хуже человек слышит, тем больше пороги слуха в децибелах он имеет.

Существует также речевая аудиометрия, при которой предъявляют слова и оценивают их разборчивость в разных условиях (в тишине, в шуме и при других искажениях).В настоящее время для определения слуха у людей используют поведенческие, психофизические, электроакустические и электрофизиологические методы исследования.

Все методики исследования органа слуха у детей раннего возраста подразделяются на 3 группы.

    Безусловнорефлекторные методы исследования слуха.

    Условнорефлекторные методы исследования слуха.

    Объективные методы исследования слуха.

Все методики информативны при правильном применении.

Одним из направлений современной клинической аудиологии является разработка и усовершенствование объективных методов исследования слуха.

К объективным методам исследования относятся методики, основанные на регистрации электрических сигналов, возникших в различных отделах слуховой системы в ответ на действие звуковых стимулов.

Объективные методы исследования функционального состояния слуховой системы являются прогрессивными, перспективными и чрезвычайно актуальными для современной аудиологии. Из объективных методов в настоящее время используются следующие: импедансометрия, регистрация слуховых вызванных потенциалов (СВП), в том числе, электрокохлеография, отоакустическая эмиссия.

Остановимся на каждом из методов более подробно.

Акустическая импедансометрия

Акустическая импедансометрия включает несколько способов диагностического обследования: измерение величины абсолютного акустического импеданса, тимпанометрию, измерение акустического мышечного рефлекса (А.С. Розенблюм, Е.М. Цирюльников, 1993).

Наибольшее распространение получила оценка динамических показателей импедансометрии – тимпанометрия и акустический рефлекс.

Тимпанометрия – измерение зависимости акустической проводимости от давления воздуха в наружном слуховом проходе.

Акустическая рефлексометрия – регистрация сокращения стременной мышцы в ответ на звуковую стимуляцию (J. Jerger, 1970). Минимальный уровень звука, необходимый для вызывания сокращения стременной мышцы, рассматривается как порог акустического рефлекса (J. Jerger, 1970; J. Jerger et al., 1974; G.R. Popelka, 1981). Акустический рефлекс – это реакция противодействия нервной системы сильному звуку, предназначенный для защиты преддверно-улиткового органа от звуковых перегрузок (J. Jerger, 1970; В.Г. Базаров и соавторы, 1995).

Амплитудные характеристики акустического рефлекса стременной мыщцы нашли широкое практическое применение. По мнению многих авторов, этот метод может быть использован с целью ранней и дифференциальной диагностики тугоухости.

Акустический рефлекс, замыкаясь на уровне ядер ствола мозга и участвуя в сложных механизмах обработки звуковой информации, может реагировать изменением своей амплитуды при нарушениях функционального состояния органа слуха и центральной нервной системы.

Необходимо отметить значительную ценность тимпанометрии в диагностике поражений среднего уха у детей всех возрастных групп.

До настоящего времени дискутируется вопрос о ценности акустического рефлекса для предсказания тугоухости у детей. В большинстве работ сообщается о пороге рефлекса как главном критерии импедансометрии (S. Jerger, J. Jerger, 1974; M. McMillan et al., 1985), но известно, что у детей первого года жизни пороговые ответы отличаются нечеткостью и неустойчивостью. Например, G.Liden, E.R. Harford (1985) отметили, что у половины детей со снижением слуха в пределах 20-75 Дб наблюдался нормальный акустический рефлекс (как и у хорошо слышащих детей). С другой стороны, только у 88% детей с нормальным слухом акустический рефлекс соответствовал норме.

Б.М. Сагалович, Е.И. Шиманская (1992) изучали результаты импедансометрии у детей раннего возраста. По данным авторов, у многих детей 1-го месяца жизни омечалось отсутствие акустического рефлекса даже при такой интенсивности стимула, при которой дети просыпаются и в записи появляется артефакт движения (100 – 110 дб). Следовательно, реакция на звук есть, но она не выражается в формировании акустического стапедиального рефлекса.

По мнению Б.М. Сагаловича, Е.И. Шиманской (1992), при скрининговой диагностике нецелесообразно опираться на данные импедансометрии у детей первого месяца жизни. Они отмечают, что в возрасте старше 1,5 месяцев появляется акустический рефлекс, порог рефлекса колеблется в пределах 85-100 дб. У всех детей в возрасте 4-12 месяцев регистрировался акустический рефлекс, поэтому импедансометрия может использоваться как объективный тест с достаточной степенью надежности при строгом соблюдении некоторых специальных методических условий.

Весьма сложным остается вопрос о применении седативных средств для устранения артефактов движения у детей, особенно при скрининговой диагностике (Б.М. Сагалович, Е.И. Шиманская, 1992).

В этом смысле использование их целесообразно, однако седативные препараты небезразличны для организма ребенка, к тому же седативный эффект достигается не у всех детей, а в ряде случаев меняет величину порога и амплитуду надпороговых ответов акустического рефлекса (S. Jerger, J. Jerger, 1974; O. Dinc, D. Nagel, 1988).

Различные лекарственные и токсические препараты могут оказывать возздействие на акустический рефлекс (В.Г. Базаров и соавторы, 1995).

Метод динамической импедансометрии заслуживает широкого внедрения в аудиологическую практику.

Слуховые вызванные потенциалы

Объективность метода регистрации СВП основана на следующем. В ответ на звуковое воздействие в различных отделах слухового анализатора возникает электрическая активность, которая охватывает постепенно все отделы анализатора от периферии до центров: улитка, слуховой нерв, ядра ствола, корковые отделы.

Запись КСВП состоит из 5 основных волн, возникающих в ответ на звуковое раздражение в первые 10 мс. Принято считать, что отдельные волны КСВП генерируются разными уровнями слуховой системы: слуховым нервом, улиткой, кохлеарными ядрами, верхнеоливарным комплексом, ядрами латеральной петли и нижними буграми четверохолмия. Наиболее устойчивой из всего комплекса волн является V волна, которая сохраняется до пороговых уровней стимуляции и по которой определяется уровень слуховых потерь (А.С. Розенблюм и соавт., 1992; И.И. Абабий, Е.М. Пруняну и соавт.,1995 и др.).

Слуховые вызванные потенциалы подразделяются на три класса: улитковые, мышечные и мозговые (А.С. Розенблюм и соавт., 1992). Улитковые СВП объединяют микрофонный потенциал, суммационный потенциал улитки и потенциал действия слухового нерва. К мышечным (сенсомоторным) СВП относятся вызванные потенциалы отдельных мышц головы и шеи. В классе мозговых СВП потенциалы подразделяются в зависимости от латентного периода. Выделяют коротко -, средне - и длиннолатентные СВП.

Т.Г. Гвелесиани (2000) выделяет следующие классы слуховых вызванных потенциалов:

    потенциалы улитки (электрокохлеограмма);

    коротколатентные (стволомозговые) слуховые вызванные потенциалы;

    среднелатентные слуховые вызванные потенциалы;

    длиннолатентные (корковые) слуховые вызванные потенциалы.

В настоящее время надежным методом исследования слуха, приобретающим все большее распространение, является компьютерная аудиометрия, включающая регистрацию коротколатентных, среднелатентных и длиннолатентных вызванных потенциалов.

Регистрацию КСВП проводят в состоянии бодрствования обследуемого или естественного сна. В некоторых случаях при чрезмерно возбужденном состоянии ребенка и при негативном отношении к исследованию (что наблюдается чаще у детей с патологией центральной нервной системы), следует прибегать к применению седатации (А.С. Розенблюм и соавт., 1992).

Зависимость амплитудно-временных характеристик СВП и порогов их обнаружения от возраста ребенка (Е.Ю. Глухова, 1980; M.P. Fried et al., 1982), объясняются процессом созревания клеток глии, дифференциацией и миелинизацией нейронов, а также функциональной неполноценностью синаптической передачи.

Результат КСВП зависит от состояния рецепторов и центров в стволе мозга. Аномальные кривые могут быть обусловлены поражением и того и другого.

G. Liden, E.R. Harford (1985) подчеркивают, что использование этого метода может дать неправильные результаты, поэтому в случае получения атипичной записи КВСП у младенцев, нужно повторить исследование через 6 месяцев.

Электрокохлеография

Данные электрокохлеографии (регистрация микрофонного потенциала улитки, суммационного потенциала и суммарного потенциала действия слухового нерва) позволяют судить о состоянии периферической части слухового анализатора.

В последнее время электрокохлеография (ЭкоГ) применяется в основном для диагностики гидропса лабиринта и как базисная методика интраоперационного мониторинга. Для диагностических целей предпочтителен неинвазивный вариант исследования - экстратимпанальная ЭкоГ (Е.Р. Цыганкова, Т.Г. Гвелесиани 1997).

Экстратимпанальная электрокохлеография–способ неинвазивной регистрации вызванной электрической активности улитки и слухового нерва, обеспечивающий повышение эффективности дифференциальной и топической диагностики различных форм тугоухости (Е.Р. Цыганкова и соавт., 1998).

К сожалению, метод применяется у детей, как правило, под общим наркозом, что препятствует его широкому использованию в практике (Б.Н. Миронюк, 1998).

Отоакустическая эмиссия

Открытие феномена ОАЭ имело огромное практическое значение, позволив объективно, неинвазивно оценить состояние микромеханики улитки.

Отоакустическая эмиссия (ОАЭ) – это звуковые колебания, генерируемые наружными волосковыми клетками органа Корти. Явление ОАЭ широко используется в исследованиях механизмов первичного слухового восприятия, а также в клинической практике как средство оценки функционирования сенсорного аппарата органа слуха.

Существует несколько классификаций ОАЭ. Приводим наиболее распространенную классификацию (R. Probst et al., 1991).

Cпонтанная ОАЭ, которая может быть зарегистрирована без акустической стимуляции органа слуха.

Вызванная ОАЭ, в том числе:

1) задержанная ОАЭ – регистрируется после короткого акустического стимула.

2) стимул-частотная ОАЭ – регистрируется при стимуляции единичным тональным акустическим стимулом.

3) ОАЭ на частоте продукта искажения – регистрируется при стимуляции двумя чистыми тонами.

Оптимальным сроком проведения этого теста является 3-4-й день после рождения.

Известно, что характеристики ВОАЭ меняются с возрастом. Эти изменения могут быть связаны с процессами матурации в органе Корти (т.е. в месте генерализации ВОАЭ) и/или возрастными изменениями в наружном, среднем ухе. Большая часть энергии ЗВОАЭ у новорожденных сосредоточена в достаточно узкой частотной полосе, в то время как у старших детей она имеет более равномерное распределение (А.В. Гуненков, Т.Г. Гвелесиани, Г.А. Таварткиладзе, 1997).

В ряде работ отмечены отрицательные стороны данного метода объективного обследования. Вызванная ОАЭ физиологически крайне уязвима, амплитуда ОАЭ значительно снижается после интенсивного шумового воздействия, а также после тоновой стимуляции. Кроме того, дисфункция среднего уха также приводит к снижению амплитуды и изменению частотного спектра ОАЭ и даже к невозможности ее зарегистрировать. Патологические процессы в среднем ухе влияют как на передачу стимула к внутреннему уху, так и на обратный путь до слухового прохода. Для аудиологического скрининга детей первых дней жизни целесообразно применение метода регистрации ЗВОАЭ, а при исследовании слуха у детей, находящихся в отделениях недоношенных, предпочтительнее использовать тест ПВОАЭ.

Известно, что ЗВОАЭ характеризуется значительно менее выраженной адаптацией, чем КСВП. Регистрация ЗВОАЭ возможна лишь в относительно короткие периоды физического и «голосового» покоя ребенка.

I группа- исследование слуха с помощью живой речи. Этот метод весьма ценен, поскольку позволяет определить ост­роту слуха и разборчивость речи. Данные качества интересуют пациента прежде всего. В не меньшей мере они интересуют и исследователя, поскольку имеют социальную значимость, опре­деляют профессиональную пригодность пациента, возможности его контакта с окружающими, служат показателем эффективности применяемых методов лечения и критерием при подборе слуховых аппаратов, являются главным признаком для суждения о степени поражения слуха при трудовой, военной и судебной эксперти­зах. Слух исследуют шепотной и разговорной речью. При этом используют набор двузначных чисел и слов из таблицы В. И. Воячека с преобладанием в нем басовых или дискантовых фонем. Исследование слуха речью является самым простым методом, не требующим йрйторов или оборудования, но дающим определенную информацию для суждения об уровне поражения слухового анали­затора. Так, если шепотная речь воспринимается очень плохо^ (у ушной раковины), а разговорная достаточно хорошо-с рас­стояния 4-5 см, то есть основания предполагать поражение звуковоспринимающего аппарата; если простые звуки-числа и односложные слова - пациент различает хорошо, а фразы с того же расстояния не разбирает, то это может свидетельствовать о патологическом процессе в области слуховых центров.

II г р у п п а - исследование слуха с помощью камертонов (камертональная аудиометрия). Этот простой инструментальный метод известен более 100 лет. Существуют различные наборы камертонов- малые, состоящие из 3 камертонов (128, 1024, 2048 Гц), и большие-из 5,7 и даже 9 камертонов (16, 32, 64, 128, 356, 512, 1024, 2048, 4096 Гц). Для обозначения камертонов используют буквы латинского алфавита. Камертональная аудиометрия позволяет судить о характере нарушения слуховой функции, т. е. о том, звукопроводящий или звуковоспринимающий аппарат поражен у данного пациента. Ка­мертонами исследуют эрздушную и костную проводимости, прово­дят опыты Вебера, Ринне, Швабаха, Федеричи, Желле и на осно­вании их делаю предварительное заключение о характере туго­ухости - басовая она или дискантовая. III труппа - исследование слуха с помощью электро­акустической аппаратуры (электроаудиометрия). Различают то­нальную аудиометрию (пороговую и надпороговую), речевую аудиометрию, определение слуховой чувствительности к ультра­звукам, к высоким тонам слышимого диапазона частот (выше 8 кГц), выявление нижней границы воспринимаемых звуковых частот.Все эти методы относятся к субъективной аудйометрии, т. е. складывающиеся представления о слухрвой функции зави­сят не только от ее истинного состояния и используемой для исследования аппаратуры, но и от способности обследуемого понимать, реагировать и отвечать на подаваемые сигналы. В дополнение к субъективной аудйометрии существует объективная аудиометрия. В этом случае ответы не зависят от желания или воли обследуемого. Это очень важно при исследовании слуха у маленьких детей, в военно-медицинской и судебно-медицинской экспертизе. Объективную аудиометрию, которая позволяет точ-установить факт наличия или отсутствия слуха, а также уточнить характер его нарушения, мы рассмотрим немного позже.

Что касается таких аудиометрических методов, как тональная пороговая, речевая аудиометрия, определение слуховой чувствительности в расширенном диапазоне частот и к ультра­звукам, то они дают возможность установить не только харак тер поражения слуховой функции, но и его локализацию: рецеп­тор в улитке, ствол нерва, ядра, подкорковые и корковые

Аудиометрия осуществляется с помощью специальных элект­ронных приборов, воспроизводящих колебания определенной час­тоты и интенсивности, и преобразующих устройств - телефонов, воздушного и костного.

Результаты исследования слуха при тональной пороговой аудйометрии записывают на специальных бланках - аудиограммах. На них имеется нулевой уровень - порог слуховой чувст­вительности в норме, на оси абсцисс обозначены частоты, на которых исследуют слух-от 125 Гц до 8 кГц, а на оси орди­нат - понижение слуха в дБ. У большинства аудиометров макси­мальная интенсивность звукового сигнала при воздушном прове­дении составляет 100-110 дБ, при костном - 60-70 дБ над ну­левым уровнем. Наиболее распространены следующие тесты надпороговой аудиометрии: определение дифференциального порога восприятия силы звука, времени прямой и обратной слуховой адаптации, слухового дискомфорта и индекса чувствительности к коротким нарастаниям звука. Уточнению характера и локализации поражения слухового анализатора в определенной степени помогает аудиометрическое исследование шума в ушах (если он есть у больного). На аудиограмме можно видеть графическую регистрацию субъектив­ного шума в ушах, исследованного методом перекрытия. При этом устанавливают интенсивность шума в дБ и его спектр, т. е. частотную характеристику. Обычно при поражении звуко­проводящего аппарата шум низкочастотный, а при поражении звуковоспринимающего - высокочастотный. На нашей кафедре много лет подробно изучают патологические слуховые ощущения, т. е. шум в ушах, при различной патологии, но главным обра­зом при негнойных заболеваниях уха. Результаты исследований помогают проводить дифференциальный диагноз, уточнять пока­зания к операции и выбирать сторону операции, например при отосклерозе, мучительный шум в ушах при котором нередко больше всего беспокоит больных. Электроакустическое изучение шума в ушах служит контролем за эффективностью лечения - хи­рургического и консервативного, включающего различные виды рефлексотерапии. Результаты наблюдений по изучению шума в ушах у значительного числа пациентов (более 4000) позволили нам обобщить этот материал и представить его в виде моно­графии.

Для речевой аудиометрии используют магнитофон, к которому приспособлено дополнительное устройство, позволяющее менять в известных пределах интенсивность воспроизводимой речи. При этом пользуются стандартной речью одного лица, которым начи­таны группы слов по 10 -3-10 *6 раз в каждой, с одинаковой громкостью. В одной группе преобладают слова с фонемами средних и высоких частот, в другой - низких. Как правило, при речевой аудиометрии определяют порог 50% разборчивости и уровень 100% разборчивости речи. Поскольку при этом измеряют процент разборчивости речи при различных уровнях ее интен­сивности, речевая аудиометрия тоже относится к надпороговым пробам. При проведении речевой аудиометрии также составляют аудиограмму. У людей с нарушением слуха, обусловленным пора­жением звукопроводящего аппарата, кривая нарастания разбор­чивости речи повторяет по форме кривую у нормально слышащих, но отстоит от нее вправо, т. е. в сторону больших интенсив-ностей. При поражении звуковоспринимающего аппарата кривая разборчивости речи расположена не параллельно нормальной кривой - она резко отклоняется вправо, нередкб^ не достигает уровня 100%. При возрастании интенсивности подаваемой речи разборчивость может даже уменьшиться. Исследование слуховой чувствительности к ультразвукам широко применяют в последние 15-20 лет. Это очень информа­тивный метод, позволяющий определять характер и уровень по­ражения слухового анализатора (по величинам порогов при костном проведении судят о восприятии ультразвуков частотой до 200 кГц и феномене их латеризации). Существует и объективная аудиометрия. Речь идет прежде всего о регистрации слуховых корковых и стволовых вызванных потенциалов. Дело в том, что звуковые сигналы влияют на спонтанную электрическую активность мозга, т. е. на актив­ность, существующую независимо от внешних раздражителей и отражающуюся на электроэнцефалограмме определенными кривы­ми. Эти кривые характеризуются амплитудой и периодичностью. Параметры электроэнцефалограммы меняются при действии зву­ков. Однако попытки использовать изменения самих параметров электроэнцефалограммы для установления состояния слуха не увенчались успехом и не нашли применения в аудиологической практике, хотя и имеют большое значение для физиологических исследований. Современная электрофизиологическая оценка слуха в клинической аудиологии основана на регистрации по­тенциалов в отдельных участках мозга (кора, ствол мозга) в ответ на действие звукового сигнала. Поэтому такие потен­циалы получили название слуховых вызванных потенциалов. Обычно слуховые вызванные потенциалы отводятся с области верхушечной точки темени - vertex. Для воспроизведения выз­ванных потенциалов используют звуковые сигналы малой дли­тельности-щелчки, не имеющие тональной окрашенности, и более длительные звуковые импульсы, содержащие тоны различ­ной частоты. Для того чтобы оценивать результаты исследова­ния с помощью компьютера, необходимо прежде всего усреднить вызванные потенциалы, поэтому такое исследование получило название компьютерной аудиометрии. Метод компьютерной Аудиометрии сложен - ограниченность задач, для решения ко­торых он предназначен, делает целесообразным организацию подобных исследований в специальных центрах или институтах. Однако развитие этого метода должно привести к разработке физиологически обоснованного и надежного метода объективной оценки слуха.

Одним из методов объективной оценки слуха является импедансная тимпано- и рефлексометрия. В основе метода лежит регистрация акустического импеданса, или сопротивления, ко­торое встречает звуковая волна на пути распространения по акустической системе наружного, среднего и внутреннего уха. Преимущественное значение импедансометрия имеет для оценки состояния структур среднего уха. Оценка производится по ана­лизу тимпанограммы, на которой графически представлена дина­мика акустического импеданса в процессе искусственно созда­ваемого перепада давления воздуха в наружном слуховом прохо­де в пределах ±200 мм вод. ст.

IV группа-исследование слуха с помощью безуслов­ных и условных рефлексов на звук.

Из безусловных рефлексов прежде всего нужно назвать два - ауропальпебральный и ауропупиллярный, соответственно мигательная и зрачковая реакции на звук. Безусловная реакция на звук возникает у ребенка уже с первых часов после рожде­ния. Однако она ориентировочная, а следовательно, неустойчи­вая, малочувствительная и быстро угасающая. Но решить вопрос в общей форме о наличии или отсутствии слуха у ребенка ауро­пальпебральный и ауропупиллярный рефлексы помогают. Необхо­димо только исключить при исследовании элемент тактильного раздражения, т. е. звук производить трещоткой Барани или камертонами, а не хлопком в ладоши.

2. Ядра вестибулярного анализатора и их связи с другими отделами
центральной нервной системы.

3. Перегородка носа, ее деформация; показания и виды операций на
перегородке носа.

Искривление перегородки носа является одной из наиболее частых риноло-гических патологий. По литературным оно встречается у 95% людей. Причинами такой частой деформации могут быть аномалии (вариации) развития лицевого скелета, рахит, травмы и др. В связи с тем, что перегородка носа состоит из различных хрящевых и костных струк­тур, ограниченных сверху и снизу другими элементами лицевого черепа, идеаль­ное и сочетанное развитие всех этих компонентов встречается исключительно редко, именно несогласованные темпы развития лицевого скелета и определяют одну из главных причин ее деформации.

Вариации искривления перегородки носа весьма различны. Возможны смеще­ния в ту или другую сторону, S-образное искривление, образование гребней и ши­пов, подвывих переднего отдела четырехугольного хряща. Наиболее часто дефор­мация наблюдается в месте соединения отдельных костей и четырехугольного хря­ща. Особенно заметные искривления образуются в местах соединения четыреху­гольного хряща с сошником и перпендикулярной пластинкой решетчатой кости. Не­обходимо напомнить, что четырехугольный хрящ нередко имеет удлиненный сфеноидальный отросток, направляющийся кзади, в сторону клиновидной кости. Образу­ющиеся деформации могут иметь форму длинных образований в виде гребней, либо коротких в виде шипов. Место соединения сошника с гребешком, образуемым у дна полости носа небными отростками обеих верхних челюстей, также является излюб­ленной локализацией деформаций. Нельзя не упомянуть и о коварной форме ис­кривления перегородки носа, которую практические ЛОР- врачи часто недооценива­ют. Таковой является искривление четырехугольного хряща в передне-верхнем его отделе, которое не мешает обозрению большей части полости носа и даже задней стенки носоглотки. Однако именно эта вариация искривления перегородки носа мо­жет вызвать затруднение дыхания. Последнее связано с тем, что вдыхаемая струя воздуха, имея, как известно, не сагиттальное направление спереди назад, а образуя выпуклую кверху дугу, находит в этом месте препятствие своему движению.

Деформация перегородки носа, вызывая нарушение функции внешнего дыха­ния, определяет целый ряд физиологических отклонений, которые упоминались при рассмотрении функции носа.

В самой полости носа дефекты дыхания снижают газообмен околоносовых па­зух, способствуя развитию синуситов, а затруднение поступления воздуха в обоня­тельную щель вызывает нарушение обоняния. Давление гребней и шипов на слизи­стую оболочку носа может привести к развитию вазомоторного ринита, бронхиаль­ной астмы и других рефлекторных расстройств (Воячек В.И.,1953; Дайняк Л.Б.,1994).

Клиника и симптомы. Важнейшим симптомом клинически значимого искривле­ния перегородки носа является одно- или двустороннее затруднение носового ды­хания. Другими симптомами могут быть нарушение обоняния, гнусавость, частые и упорные насморки.

Диагноз. Устанавливается на основании совокупной оценки состояния носово­го дыхания и результатов риноскопии. Следует добавить, что искривление перего­родки носа нередко сочетается с деформацией наружного носа врожденного или приобретенного (обычно травматического) генеза.

Лечение. Возможно только хирургическое. Показанием к операции является зат­рудненное носовое дыхание через одну или обе половины носа. Операции на пере­городке носа производятся и как предварительный этап, предшествующий другим оперативным вмешательствам или консервативным методам лечения (например, для устранения гребня или шипа, мешающего катетеризации слуховой трубы).

Операции на перегородке носа производятся под местной или общей анестези­ей. Они являются технически сложными манипуляциями. Повреждение слизистой оболочки на смежных участках перегородки приводит к образованию стойких, прак­тически не устраняемых перфораций. По краям последних насыхают кровянистые корочки. Большие перфорации способствуют развитию атрофических процессов, малые вызывают "посвистывание" при дыхании.

В.И. Воячек предложил обобщающее название всем операциям на перегород­ке носа "септум-операция". В последние годы популярность приобретает термин "септопластика".

Среди различных модификаций септум-операций следует выделить два прин­ципиально отличающихся друг от друга метода. Первый - радикальная подсли-зистая резекция перегородки носа по Киллиану, второй - консервативная сеп­тум-операция по Воячеку. При первом методе подслизисто (одновре­менно поднадхрящнично и поднадкостнично) удаляется большая часть хряще­вого и костного остова перегородки. Достоинство этой операции - ее сравни­тельная простота и быстрота исполнения. Недостаток - наблюдаемая во время дыхания флотация перегородки носа, лишенной большей части костно-хряще-вого остова, а также склонность к развитию атрофических процессов. При вто­ром методе удаляются только те участки хрящевого и костного остова, которые нельзя редрессировать и поставить в правильное срединное положение. При искривлении четырехугольного хряща выкраивается диск путем циркулярной резекции. В результате диск, сохраняющий связь со слизистой оболочкой од­ной из сторон и приобретший мобильность, устанавливается в срединное поло­жение

При очень выраженных искривлениях четырехугольного хряща он может быть рассечен на большее количество фрагментов, также сохраняющих связь со слизи­стой оболочкой одной из сторон.

Консервативные методы операции на перегородке носа - более сложные в хирур­гическом отношении вмешательства. Однако большая их продолжительность и воз­можные умеренные реактивные явления в полости носа в первые недели после опе­рации в дальнейшем окупаются сохранением практически полноценной перегород­ки носа.

4. Профессиональный отбор по слуховой и вестибулярной функции, его
значение для различных видов авиации, в том числе космической и
морского флота.

Заключается в определении годности к тому или иному виду труда, той или иной профессии. На основании данных о строении и функции ВДП и уха решается вопрос в каком производстве человек может работать, в каком –нет, годность к службе в ВС или в определенном роде войск. Проф.отбор осуществляется путем выявления показаний, которые должны отражать действительную невозможность выполнения конкретного труда в связи с определнным состоянием здоровья. С учетом состояния здоровья обследуемому дают совет по выбору наиболее целесообразного вида трудовой деятельности, тем самым осуществляется профессиональная консультация.

При всех субъективных методах обследования слуха сам испытуемый оценивает, слышит он звук или нет и тем либо иным способом сообщает об этом исследователю.

При объективных методах обследования полученные результаты не зависят от желания пациента, регистрация их, в большинстве случаев, происходит при помощи специальной аппаратуры.

Субъективное исследование слуха осуществляется посредством следующих методов:

1. исследование слуха речью (шепотная речь, разговорная речь, крик);

2. исследование слуха при помощи камертонов (длительность восприятия звучащих камертонов разных частот, опыты Ринне, Вебера, Швабаха, Желе, * Федеричи, Бинго );

*Информация, обозначенная курсивом, не входит в обязательный объем учебной программы.

3. аудиометрия (тональная (пороговая, надпороговая ), речевая; исследование слуха ультразвуком, исследование слуховой адаптации ).

В связи с широким внедрением в клиническую практику современных аудиометрических методов, исследование слуха речью и камертонами в настоящее время осуществляют главным образом с целью ориентировочной оценки состояния слуховой функции.

ИССЛЕДОВАНИЕ СЛУХА РЕЧЬЮ

При исследовании слуха речью используют два принципа регуляции уровня интенсивности стимулов:

1. слова произносят с разной интенсивностью (шепотом, разговорной речью, криком);

2. слова произносят на различном расстоянии от уха обследуемого.

При исследовании слуха речью обычно используют слова из таблицы В.И. Воячека либо двузначные числительные.

Исследование слуха шепотной речью. Голову пациента поворачивают так, чтобы исследуемое ухо было обращено к исследующему, которого больной не должен видеть. С целью избегания ошибок, связанных с переслушиванием, пациент надавливает на козелок неисследуемого уха, тем самым, закрывая наружный слуховой проход.

В норме человек должен слышать шепотную речь на расстоянии не менее 6 м . Если пациент не слышит, исследователь, постепенно приближаясь, повторяет слова до тех пор, пока больной сможет отчетливо услышать произнесенные числительные и правильно повторит их, это расстояние (в метрах) вноситься в слуховой паспорт (рисунок 1,2). В случае резкого снижения слуха необходимо произвести исследование по той же методике с помощью разговорной речи или крика (для каждого уха в отдельности).

ИССЛЕДОВАНИЕ СЛУХА КАМЕРТОНАМИ

Полный набор обычно включает восемь камертонов (С 32 , С 64 , С 128 , С 256 , С 512 , С 1026 , С 2048 , С 4096). Для практической повседневной работы в большинстве случаев достаточно иметь лишь два из них (С 128 и С 2048). При оценке результатов исследования слуха с помощью камертонов руководствуются их стандартами, т.е. продолжительностью времени, в течение которого слышат звук камертонов лица с нормальным слухом.

Исследования при помощи камертонов позволяет ориентировочно определить степень снижения слуха и, в ряде случаев, уровень поражения слухового анализатора (кондуктивная или сенсоневральная тугоухость).

Восприятие звука по воздушной проводимости определяют с помощью обоих камертонов (С 128 и С 2048), а по костной проводимости – только с использованием камертона частотой 128 Гц (С 128). Воздушная проводимость дает информацию о слуховом анализаторе в целом (как о звукопроводящей (наружное, среднее ухо), так и о звуковоспринимающей системе (внутреннее ухо)). По костной проводимости звук передается непосредственно на внутреннее ухо, что дает возможность оценить лишь состояние звуковоспринимающего аппарата.

При камертональном исследовании слуха определяют следующие показатели:

1. длительность восприятия (в секундах) камертона С 128 по воздуху ;

2. длительность восприятия (в секундах) камертона С 2048 по воздуху ;

3. длительность восприятия (в секундах) камертона С 128 по кости .

Измерения осуществляют следующим образом:

Звучащий камертон С 128 располагают на расстоянии 2-3 см у ушной раковины и определяют продолжительность восприятия звука (воздушная проводимость) в секундах;

Аналогично определяется время восприятия по воздуху камертона С 2048;

Для изучения костной проводимости звучащий камертон С 128 устанавливают ножкой на сосцевидный отросток и фиксируют время восприятия. Указанные измерения выполняют для каждого уха в отдельности.

Сравнивая длительность восприятия звучащего камертона пациентом со стандартом камертона можно ориентировочно судить о степени снижения остроты слуха. При заболеваниях звукопроводящего отдела (серная пробка, средний отит и др.) снижается лишь воздушная проводимость. Заболевания звуковоспринимающего аппарата (сенсоневральная тугоухость) приводят к нарушению и костной, и воздушной проводимости.

Для определения локализации поражения звукового анализатора (звукопроводящего или звуковоспринимающего его отделов), целесообразно выполнить ряд опытов с применением камертонов.

Опыт Ринне (R) (сравнение продолжительности восприятия звука камертона С 128 по костной и воздушной проводимости) - метод дифференциальной диагностики заболеваний звуковоспринимающего и звукопроводящего аппаратов.

Опыт проводится следующим образом: ножку звучащего камертона С 128 устанавливают на сосцевидный отросток, как только пациент перестает слышать звук камертона, его приближают к наружному слуховому проходу. Поскольку в норме воздушная проводимость продолжительнее костной, звук по воздуху будет еще слышен – опыт Ринне положителен (R+) (это может наблюдаться также и при поражении звуковоспринимающего аппарата, однако длительность восприятия снижается). Если продолжительность восприятия звука через кость больше, чем через воздух (состояние, когда после прекращения восприятия звука посредством костной проводимости пациент не воспринимает звук по воздуху), то это свидетельствует о поражении звукопроводящего аппарата (кондуктивная тугоухость)– опыт Ринне отрицателен (R-).

Опыт Вебера (W) (определение латерализации звука) – метод дифференциальной диагностики поражений звукопроводящего и звуковоспринимающего аппаратов уха, основанный на субъективном восприятии локализации источника звука камертона, уставленного на середину темени пациента.Ножку звучащего камертона С 128 ставят на темя. Поскольку костная звукопроводимость звука в норме в оба уха одинакова, у здорового человека звук ощущается посредине головы (в обоих ушах одинаково) – латерализации звука нет (записывается W «» или «↓»). Аналогичный результат будет получен и при двусторонней сенсоневральной тугоухости одинаковой степени.

Если звук громче слышен в одном из ушей – говорят о латерализации звука в это ухо. При одностороннем поражении, если латерализация звука происходит в хуже слышащее ухо, то это указывает на поражение звукопроводящего аппарата (кондуктивная тугоухость) в этом ухе. Если латерализация звука происходит в лучше слышащее ухо – это указывает на поражение звуковоспринимающего аппарата (сенсоневральная тугоухость) с больной стороны. При двусторонней тугоухости различного генеза оценка диагностической ценности опыта Вебера бывает затруднительной.

Опыт Швабаха (Sch) - метод диагностики сенсоневральной и кондуктивной тугоухости. Звучащий камертон С 128 устанавливают на сосцевидный отросток пациента, после того, как он перестает воспринимать звук, камертон переставляют на сосцевидный отросток исследователя с заведомо хорошим слухом (сравнение костной проводимости у больного и здорового человека). При сенсоневральной тугоухости у пациента опыт Sch у него укорочен на определенное количество секунд. При кондуктивной тугоухости у пациента опыт Sch у негоудленнен. В норме - одинаковый(Sch=) .

Опыт Желе (G) - метод выявления анкилоза подножной пластинки стремени при отосклерозе. Звучащий камертон С 128 устанавливают на сосцевидный отросток, воронкой Зигле или нажатием на козелок повышают давление воздуха в наружном слуховом проходе, в результате чего происходит вдавливание подножной пластинки стремени в нишу овального окна и больной чувствует снижение интенсивности восприятия звука (опыт Желе положительный (G+) – норма). При анкилозе стремени (отосклерозе), подножная пластинка стремени не смещается и ослабления звука не происходит (опыт Желе (G-) – отрицательный).

Результаты исследования слуха речью и с помощью камертонов заносят в предложенный В.И. Воячеком слуховой паспорт (акуметрическую формулу). На рисунке 1 представлен слуховой паспорт больного острым гнойным средним отитом справа (кондуктивная тугоухость).

Слуховой паспорт

5 м РР > 6 м

26 с С 128 (воздух) 67 с

32 с С 128 (кость) 33 с

21 с С 2048 34 с

удлин. на 7 с Sch =

Рисунок 1. Слуховой паспорт больного острым гнойным средним отитом справа (кондуктивная тугоухость).

СШ (субъективный шум) «+»-наличие, «-»-отсутствие;

Восприятие ШР (шепотной речи), РР (разговорной речи), крика (при необхоимости) указывают в метрах; при ШР=6 м. РР часто записывают >6 м;

Время восприятия звучащих камертонов записывают в секундах;

Опыты R и Sch указывают как «+» или «-»;

Опыт W «↔» или «↓» - при отсутствии латерализации, либо «←» или «→» при наличии (в указанную сторону).

На рисунке 2 представлен слуховой паспорт больной острой сенсоневральной тугоухостью слева (поражение звуковоспринимающего аппарата).

Слуховой паспорт

> 6 м РР 3 м

68 с С 128 (воздух) 32 с

34 с С 128 (кость) 17 с

31 с С 2048 18 с

Sch укороч. на 14 с.

Рисунок 2. Слуховой паспорт больного с поражением звуковоспринимающего аппарата слева (сенсоневральной тугоухостью слева).

АУДИОМЕТРИЯ

Методы исследования слуха, основанные на применении в качестве генератора звуков электронной аппаратуры, носят название «аудиометрия». C психофизиологической точки зрения выделяют субъективную и объективную аудиометрию . При субъективной аудиометрии исходящий звук стандартизирован (по частоте и громкости), однако сам испытуемый оценивает, слышит он или нет. Существуют следующие разновидности субъективной аудиометрии: тональная пороговая аудиометрия, речевая аудиометрия, тональная надпороговая аудиометрия, исследование слуховой адаптации, исследование слуха ультразвуком.

ТОНАЛЬНАЯ ПОРОГОВАЯ АУДИОМЕТРИЯ

Тональная пороговая аудиометрия предусматривает применение специального аппарата – аудиометра, который синтезирует звуки определенной частоты (стандартный диапазон: 125гц, 250гц, 500гц, 1кгц, 2кгц, 4кгц, 8кгц) и интенсивности (в децибелах (дБ)). Тональный аудиометр позволяет определять слуховые пороги путем воздушной и костной проводимости в более широком диапазоне частот и с большей точностью, чем при исследовании слуха камертонами. Под порогом слуха понимают наименьшую интенсивность звука, воспринимаемую здоровым ухом. Результаты исследования заносятся в специальный бланк, получивший название «аудиограмма», которая является графическим изображением порога слуховых ощущений. На каждом бланке выстраивают два графика: один - порог восприятия звука по воздушной проводимости (демонстрирует звукопроведение), второй - по костной (демонстрирует звуковосприятие). По характеру пороговых кривых воздушной и костной проводимости, а также их взаимосвязи можно получить качественную характеристику слуха пациента. В норме обе кривые располагаются на уровне не более 10 Дб от изолинии, и не более 10 Дб друг от друга (рисунок 3).

Наличие на тональной пороговой аудиограмме разницы между уровнями порогов воздушной и костной проводимости (костно-воздушный интервал) расценивают как аудиологический симптом кондуктивной тугоухости (рисунок 4).

При нарушении звуковосприятия (сенсоневральная тугоухость) повышается порог восприятия по воздушной и костной проводимости, при этом костно-воздушный разрыв практически отсутствует (рисунок 5).

При смешанном (комбинированном) поражении повышается порог восприятия по воздушной и костной проводимости при наличии костно-воздушного интервала (рисунок 6).

Рисунок 3. Аудиограмма в норме Рисунок 4. Аудиограмма пациента с кондуктивной тугоухостью

Рисунок 5. Аудиограмма пациента

с сенсоневральной тугоухостью Рисунок 6. Аудиограмма пациента с комбинированной тугоухостью

В настоящее время созданы совершенные конструкции автоматических аудиометров, управление которыми осуществляется с помощью встроенных микропроцессоров.

РЕЧЕВАЯ АУДИОМЕТРИЯ

Речевая аудиометрия позволяет определить социальную адекватность слуха, основана на определении порогов разборчивости речи. Под разборчивостью речи понимают отношение числа правильных ответов к общему числу прослушанных, выраженное в процентах. Речевые аудиограммы регистрируют по двухкоординатной системе. По оси абсцисс отмечают интенсивность речевых стимулов в децибелах, а по оси ординат – разборчивость речи, т. е. процент правильно повторенных больным речевых стимулов. Таким способом строят кривую разборчивости речи (рисунок 7). Графики разборчивости речи отличаются при разных формах тугоухости, что имеет важное диагностическое значение.

Рисунок 7. Кривая разборчивости речи (1 - норма, 2 и 3 - сенсоневральная тугоухость)


Похожая информация.


Поделиться: