Этапы эволюции звезд. Жизненный цикл звезды - описание, схема и интересные факты

Звезды, как и люди, могут быть новорожденными, молодыми, старыми. Каждый миг умирают одни звезды и образуются другие. Обычно самые юные из них похожи на Солнце. Они находятся на стадии формирования и фактически представляют собой протозвезды. Астрономы называют их звездами типа Т - Тельца, по имени своего прототипа. По своим свойствам - например, светимости - протозвезды являются переменными, поскольку их существование еще не вошло в стабильную фазу. Вокруг многих из них находится большое количество материи. От звезд типа Т исходят мощные ветровые потоки.

Протозвезды: начало жизненного цикла

Если на поверхность протозвезды падает вещество, оно быстро сгорает и превращается в тепло. Как следствие, температура протозвезд постоянно увеличивается. Когда она поднимается настолько, что в центре звезды запускаются ядерные реакции, протозвезда обретает статус обыкновенной. С началом протекания ядерных реакций у звезды появляется постоянный источник энергии, который поддерживает ее жизнедеятельность в течение длительного времени. Насколько долгой будет жизненный цикл звезды во Вселенной, зависит от ее первоначального размера. Однако считается, что у звезд, диаметром с Солнце, энергии хватит на то, чтобы безбедно существовать в течение приблизительно 10 млрд лет. Несмотря на это, случается и так, что даже более массивные звезды живут всего лишь несколько миллионов лет. Это происходит по причине того, что сжигают они свое топливо гораздо быстрее.

Звезды нормальных размеров

Каждая из звезд представляет собой сгустки горячего газа. В их глубинах постоянно происходит процесс выработки ядерной энергии. Однако не все звезды похожи на Солнце. Одно из главных различий заключается в цвете. Звезды бывают не только желтыми, но и синеватыми, красноватыми.

Яркость и светимость

Различаются они и по таким признакам, как блеск, яркость. То, насколько яркой окажется наблюдаемая с поверхности Земли звезда, зависит не только от ее светимости, но и от удаленности от нашей планеты. Учитывая расстояние до Земли, звезды могут обладать совершенно различной яркостью. Этот показатель колеблется от одной десятитысячной блеска Солнца до яркости, сопоставимой более чем с миллионом Солнц.

Большая часть звезд находится на нижнем отрезке этого спектра, являясь тусклыми. Во многих отношениях Солнце является среднестатистической, типичной звездой. Однако, по сравнению с другими, оно обладает гораздо большей яркостью. Большое количество тусклых звезд могут наблюдаться даже невооруженным глазом. Причина, по которой звезды отличаются по яркости, заключается в их массе. Цвет, блеск и изменение яркости во времени определяется количеством вещества.

Попытки объяснить жизненный цикл звезд

Люди издавна пытались проследить жизнь звезд, однако первые попытки ученых были достаточно робкими. Первым достижением было применение закона Лейна к гипотезе Гельмгольца-Кельвина о гравитационном сжатии. Это принесло в астрономию новое понимание: теоретически температура звезды должна повышаться (ее показатель обратно пропорционален радиусу звезды) до тех пор, пока увеличение плотности не замедлит процессы сжатия. Тогда расход энергии будет выше, чем ее приход. В этот момент звезда начнет стремительно остывать.

Гипотезы о жизни звезд

Одна из оригинальных гипотез о жизненном цикле звезды была предложена астрономом Норманом Локиером. Он считал, что звезды возникают из метеорной материи. При этом положения его гипотезы опирались не только на имеющиеся в астрономии теоретические выводы, но и на данные спектрального анализа звезд. Локиер был убежден в том, что химические элементы, которые принимают участие в эволюции небесных тел, состоят из элементарных частиц - «протоэлементов». В отличие от современных нейтронов, протонов и электронов, они обладают не общим, а индивидуальным характером. Например, согласно Локиеру, водород распадается на так называемый «протоводород»; железо становится «протожелезом». Описать жизненный цикл звезды пытались и другие ученые-астрономы, например, Джеймс Хопвуд, Яков Зельдович, Фред Хойл.

Звезды-гиганты и звезды-карлики

Звезды больших размеров являются самыми горячими и яркими. На вид они обычно белые или голубоватого оттенка. Несмотря на то что они обладают гигантскими размерами, топливо внутри них сгорает настолько быстро, что они лишаются его за каких-то несколько миллионов лет.

Звезды небольших размеров, в противоположность гигантским, обычно не столь яркие. Они обладают красным цветом, живут достаточно долго - в течение миллиардов лет. Но среди ярких звезд на небосклоне есть также красные и оранжевые. Примером может послужить звезда Альдебаран - так называемый «глаз быка», находящийся в созвездии Тельца; а также в созвездии Скорпиона. Почему же эти холодные звезды способны конкурировать по яркости с раскаленными звездами, наподобие Сириуса?

Так происходит из-за того, что когда-то они очень сильно расширились, и по своему диаметру стали превосходить огромные красные звезды (сверхгиганты). Огромная площадь позволяет этим звездам излучать на порядок больше энергии, чем Солнце. И это несмотря на тот факт, что их температура намного ниже. К примеру, диаметр Бетельгейзе, находящейся в созвездии Ориона, в несколько сотен раз больше диаметра Солнца. А диаметр обыкновенных красных звезд обычно не составляет и десятой части размера Солнца. Такие звезды называют карликами. Эти виды жизненного цикла звезд может проходить каждое небесное светило - одна и та же звезда на разных отрезках своей жизни может быть и красным гигантом, и карликом.

Как правило, светила, подобные Солнцу, поддерживают свое существование за счет находящегося внутри водорода. Он превращается в гелий внутри ядерной сердцевины звезды. Солнце располагает огромным количеством топлива, однако даже оно не бесконечно - за последние пять миллиардов лет была израсходована половина запаса.

Время жизни звезд. Жизненный цикл звезд

После того как внутри звезды исчерпываются запасы водорода, приходят серьезные перемены. Остатки водорода начинают сгорать не внутри ее ядра, а на поверхности. При этом все больше сокращается время жизни звезды. Цикл звезд, по крайней мере, большинства из них, на этом отрезке переходит в стадию красного гиганта. Размер звезды становится больше, а ее температура - напротив, меньше. Так появляется большинство красных гигантов, а также сверхгигантов. Этот процесс входит в состав общей последовательности происходящих со звездами изменений, которые ученые назвали эволюцией звезд. Цикл жизни звезды включает все ее стадии: в конечном счете все звезды стареют и умирают, а продолжительность их существования напрямую определяется количеством топлива. Большие звезды заканчивают свою жизнь огромным, эффектным взрывом. Более скромные, наоборот, погибают, постепенно сжимаясь до размеров белых карликов. Затем они просто угасают.

Сколько по времени живет средняя звезда? Жизненный цикл звезды может длиться от менее 1,5 млн лет и до 1 млрд лет и более. Все это, как было сказано, зависит от ее состава и размеров. Звезды, подобные Солнцу, живут от 10 до 16 млрд лет. Очень яркие звезды, наподобие Сириуса, живут относительно недолго - всего лишь несколько сотен миллионов лет. Схема жизненного цикла звезды включает в себя следующие этапы. Это молекулярное облако - гравитационный коллапс облака - рождение сверхновой звезды - эволюция протозвезды - окончание протозвездной фазы. Затем следуют этапы: начало стадии молодой звезды - середина жизни - зрелость - стадия красного гиганта - планетарная туманность - этап белого карлика. Последние две фазы свойственны звездам малого размера.

Природа планетарных туманностей

Итак, мы рассмотрели кратко жизненный цикл звезды. Но что представляет собой Превращаясь из огромного красного гиганта в белого карлика, иногда звезды сбрасывают внешние слои, и тогда ядро звезды становится обнаженным. Газовая оболочка начинает светиться под действием энергии, излучаемой звездой. Название свое эта стадия получила за счет того, что светящиеся газовые пузыри в этой оболочке часто похожи на диски вокруг планет. Но на самом деле они ничего общего с планетами не имеют. Жизненный цикл звезд для детей может не включать всех научных подробностей. Можно лишь описать основные фазы эволюции небесных светил.

Звездные скопления

Астрономы очень любят исследовать Есть гипотеза, что все светила рождаются именно группами, а не поодиночке. Так как звезды, принадлежащие к одному скоплению, обладают схожими свойствами, то и различия между ними являются истинными, а не обусловленными расстоянием до Земли. Какие бы изменения не приходились на долю этих звезд, свое начало они берут в одно и то же время и при равных условиях. Особенно много знаний можно получить, изучая зависимость их свойств от массы. Ведь возраст звезд в скоплениях и их удаленность от Земли примерно равны, поэтому отличаются они только по этому показателю. Скопления будут интересны не только профессиональным астрономам - каждый любитель будет рад сделать красивую фотографию, полюбоваться их исключительно красивым видом в планетарии.

Образуются путём конденсации межзвёздной среды. Путём наблюдений удалось определить что звёзды возникали в разное время и возникают по сей день.

Главной проблемой в эволюции звёзд является вопрос о возникновении их энергии, благодаря которой они светятся и излучают огромное количество энергии. Ранее выдвигалось много теорий, которые были призваны выявить источники энергии звёзд. Считали, что непрерывным источником звёздной энергии является непрерывное сжатие. Этот источник конечно хорош, но не может поддерживать соответствующее излучение в течении долгого времени. В середине XX века был найден ответ на этот вопрос. Источником излучения является термоядерные реакции синтеза. В результате этих реакций водород превращается в гелий, а освобождающаяся энергия проходит сквозь недра звезды, трансформируется и излучается в мировое пространство (стоит отметить, что чем больше температура, тем быстрее идут эти реакции; именно поэтому горячие массивные звёзды быстрее сходят с главной последовательности).

Теперь представим возникновение звезды…

Начало конденсироваться облако межзвёздной газопылевой среды. Из этого облака образуется довольно плотный газовый шар. Давление внутри шара пока не в силах уравновесить силы притяжения, поэтому он будет сжиматься (возможно в это время вокруг звезды образуются сгустки с меньшей массой, которые в итоге превращаются в планеты). При сжатии температура повышается. Таким образом, звёзда постепенно садится на главную последовательность. Затем давление газа внутри звезды уравновешивает притяжение и протозвёзда превращается в звезду.

Ранняя стадия эволюции звёзды очень не велика и звезда в это время погружена в туманность, поэтому протозвезду очень тяжело обнаружить.

Превращение водорода в гелий происходит только в центральных областях звезды. В наружных слоях содержание водорода остаётся практически неизменным. Так как количество водорода ограничено, рано или поздно он выгорает. Выделение энергии в центре звезды прекращается и ядро звёзды начинает сжиматься, а оболочка разбухать. Далее если звезда меньше 1,2 массы солнца, она сбрасывает наружный слой (образование планетарной туманности).

После того, как от звёзды отделяется оболочка, открываются её внутренние очень горячие слои, а оболочка тем временем отходит всё дальше. Через несколько десятков тысяч лет оболочка распадётся и останется только очень горячая и плотная звезда, постепенно остывая она превратится в белый карлик . Постепенно остывая они превращаются в невидимые чёрные карлики . Чёрные карлики – это очень плотные и холодные звёзды, размером чуть больше Земли, но имеющие массу сравнимую с массой солнца. Процесс остывания белых карликов длится несколько сотен миллионов лет.

Если масса звезды от 1,2 до 2,5 солнечной, то такая звёзда взорвётся. Этот взрыв называется вспышкой сверхновой . Вспыхнувшая звезда за несколько секунд увеличивает свою светимость в сотни миллионов раз. Такие вспышки происходят крайне редко. В нашей Галактике взрыв сверхновой происходит, примерно, раз в сто лет. После подобной вспышки остаётся туманность, которая имеет большое радиоизлучение, а также очень быстро разлетается, и так называемая нейтронная звезда (об этом чуть позже). Помимо огромного радиоизлучения такая туманность будет ещё источником рентгеновского излучения, но это излучение поглощается атмосферой земли, поэтому может наблюдаться лишь из космоса.

Существует несколько гипотез о причине взрывов звёзд (сверхновых), однако общепризнанной теории пока нет. Есть предположение, что это происходит из-за слишком быстрого спада внутренних слоёв звезды к центру. Звезда быстро сжимается до катастрофически маленького размера порядка 10км, а плотность её в таком состоянии составляет 10 17 кг/м 3 , что близко к плотности атомного ядра. Эта звезда состоит из нейтронов (при этом электроны, как бы вдавливаются в протоны), именно поэтому она называется «НЕЙТРОННОЙ» . Её начальная температура около миллиарда кельвинов, но в дальнейшем она будет быстро остывать.

Эта звезда из-за её маленького размера и быстрого остывания долгое время считалась невозможной для наблюдения. Но через некоторое время были обнаружены пульсары . Эти пульсары и оказались нейтронными звёздами. Названы они так из-за кратковременного излучения радиоимпульсов. Т.е. звезда как бы «мигает». Это открытие было сделано совершенно случайно и не так давно, а именно в 1967 году. Эти периодичные импульсы обусловлены тем, что при очень быстром вращении мимо нашего взгляда постоянно мелькает конус магнитной оси, которая образует угол с осью вращения.

Пульсар может быть обнаружен только для нас условиях ориентирования магнитной оси, а это примерно 5% из их общего количества. Часть пульсаров не находится в радио туманностях, так как туманности сравнительно быстро рассеиваются. Через сотню тысяч лет эти туманности перестают быть видимыми, а возраст пульсаров исчисляется десятками миллионов лет.

Если масса звезды превышает 2,5 солнечные, то в конце своего существования она как бы обрушится в себя и будет раздавлена собственным весом. В считанные секунды она превратится в точку. Это явление получило название «гравитационный коллапс», а также этот объект стали называть «чёрной дырой» .

Из всего выше сказанного видно, что финальная стадия эволюции звезды зависит от её массы, но при этом необходимо ещё учитывать неизбежную ею потерю этой самой массы и вращение.

Вполне естественно, что звёзды – не живые существа, но и они проходят через эволюционные этапы, сходные с рождением, жизнью и смертью. Подобно человеку, звезда на протяжении своей жизни подвергается радикальным изменениям. Но надо отметить, живут они явно подольше – миллионы и даже миллиарды земных лет.

Как рождаются звезды? Изначально, вернее после Большого Взрыва, материя во Вселенной была распределена неравномерно. Звезды начали образовываться в туманностях – гигантских облаках межзвездной пыли и газов, в основном водорода. На эту материю воздействует гравитация, и происходит сжатие части туманности. Тогда образуются круглые и плотные газопылевых облака – глобулы Бока. По мере того, как такая глобула продолжает сгущаться, её масса увеличивается за счет притяжения к себе материи из туманности. Во внутренней части глобулы сила гравитации наиболее сильна, и она начинает разогреваться и вращаться. Это – уже протозвезда. Атомы водорода начинают бомбардировать друг друга и вырабатывают тем самым большое количество энергии. В конце концов температура центральной части достигает температуры порядка пятнадцати миллионов градусов Цельсия, формируется ядро новой звезды. Новорожденная вспыхивает, начинает гореть и светиться. Как долго это будет продолжаться, зависит от того, какова была масса родившейся звезды. То, что я рассказывал на прошлой нашей встрече. Чем масса больше, тем жизнь звезды короче.
Кстати говоря, именно от массы зависит, сможет ли протозвезда стать звездой. Согласно расчетам, для того, чтобы это сжимающееся небесное тело превратилось в звезду, его масса должна быть не менее 8% от массы Солнца. Глобула меньших размеров, сгущаясь, будет постепенно охлаждаться и превратится в переходный объект, нечто среднее между звездой и планетой. Такие объекты называются коричневыми карликами.

Планета Юпитер, например, слишком мала для того, чтобы стать звездой. Если бы Юпитер был массивней, возможно, в его недрах начались бы термоядерные реакции, и наша Солнечная система была бы системой двойной звезды. Но это всё лирика…

Итак, основной этап жизни звезды. Большую часть своего существования звезда находится в равновесном состоянии. Сила гравитации стремится сжать звезду, а энергия, высвобожденная в результате протекающих в звезде термоядерных реакций, вынуждает звезду расширятся. Эти две силы создают устойчивое положения равновесия – настолько устойчивое, что звезда так живёт миллионы и миллиарды лет. Эта фаза жизни звезды обеспечивает ей место в главной последовательности. -


Просияв миллионы лет, крупная звезда, то есть звезда по меньшей мере вшестеро тяжелее Солнца, - начинает выгорать. Когда в ядре заканчивается водород, звезда расширяется и охлаждается, превращаясь в красный сверхгигант. Затем этот сверхгигант будет сжиматься, пока наконец не взорвется чудовищной и драматической сверкающей вспышкой, получившей название сверхновой звезды. Тут надо отметить, что очень массивные голубые сверхгиганты минуют стадию превращения в красный сверхгигант и куда быстрее взрываются сверхновой.
Если оставшееся ядро сверхновой мало, то начинается его катастрофическое сжатие (гравитационный коллапс) в очень плотную нейтронную звезду, а если оно достаточно большое, то будет сжиматься ещё сильнее, образуя чёрную дыру.

Несколько иная кончина у обычной звезды. Такая звезда живёт дольше и умирает более спокойной смертью. Солнце, например, будет гореть ещё пять миллиардов лет, прежде чем в его ядре иссякнет водород. Его внешние слои затем станут расширяться и охлаждаться; образуется красный гигант. В таком виде звезда может просуществовать порядка 100 миллионов лет на гелии, образовавшемся за время жизни в её ядре. Но и гелий выгорает. В довершении всего внешние слои отнесет прочь – они образуют планетарную туманность, а из ядра сожмётся плотный белый карлик. Хотя белый карлик достаточно горяч, в конце концов и он охладится, превратившись в мёртвую звезду, которую называют чёрным карликом.

Хотя по человеческой шкале времени звезды и кажутся вечными, они, подобно всему сущему в природе, рождаются, живут и умирают. Согласно общепринятой гипотезе газопылевого облака звезда зарождается в результате гравитационного сжатия межзвездного газопылевого облака. По мере уплотнения такого облака сначала образуется протозвезда, температура в ее центре неуклонно растет, пока не достигает предела, необходимого для того, чтобы скорость теплового движения частиц превысила порог, после которого протоны способны преодолеть макроскопические силы взаимного электростатического отталкивания (см. Закон Кулона) и вступить в реакцию термоядерного синтеза (см. Ядерный распад и синтез).

В результате многоступенчатой реакции термоядерного синтеза из четырех протонов в конечном итоге образуется ядро гелия (2 протона + 2 нейтрона) и выделяется целый фонтан разнообразных элементарных частиц . В конечном состоянии суммарная масса образовавшихся частиц меньше массы четырех исходных протонов, а значит, в процессе реакции выделяется свободная энергия (см. Теория относительности). Из-за этого внутренне ядро новорожденной звезды быстро разогревается до сверхвысоких температур, и его избыточная энергия начинает выплескиваться по направлению к ее менее горячей поверхности — и наружу. Одновременно давление в центре звезды начинает расти (см. Уравнение состояния идеального газа). Таким образом, «сжигая» водород в процессе термоядерной реакции, звезда не дает силам гравитационного притяжения сжать себя до сверхплотного состояния, противопоставляя гравитационному коллапсу непрерывно возобновляемое внутреннее термическое давление, в результате чего возникает устойчивое энергетическое равновесие. О звездах на стадии активного сжигания водорода говорят, что они находятся на «основной фазе» своего жизненного цикла или эволюции (см. Диаграмма Герцшпрунга—Рассела). Превращение одних химических элементов в другие внутри звезды называют ядерным синтезом или нуклеосинтезом.

В частности, Солнце находится на активной стадии сжигания водорода в процессе активного нуклеосинтеза уже около 5 миллиардов лет, и запасов водорода в ядре для его продолжения нашему светилу должно хватить еще на 5,5 миллиарда лет. Чем массивнее звезда, тем большим запасом водородного топлива она располагает, но для противодействия силам гравитационного коллапса ей приходится сжигать водород с интенсивностью, превосходящей по темпу роста темп роста запасов водорода по мере увеличения массы звезды. Таким образом, чем массивнее звезда, тем короче время ее жизни, определяемое исчерпанием запасов водорода, и самые крупные звезды в буквальном смысле сгорают за «какие-то» десятки миллионов лет. Самые мелкие звезды, с другой стороны, «безбедно» живут сотни миллиардов лет. Так что по этой шкале наше Солнце относится к «крепким середнякам».

Рано или поздно, однако, любая звезда израсходует весь пригодный для сжигания в своей термоядерной топке водород. Что дальше? Это также зависит от массы звезды. Солнце (и все звезды, не превышающие его по массе более чем в восемь раз) заканчиваю свою жизнь весьма банальным образом. По мере истощения запасов водорода в недрах звезды силы гравитационного сжатия, терпеливо ожидавшие этого часа с самого момента зарождения светила, начинают одерживать верх — и под их воздействием звезда начинает сжиматься и уплотняться. Этот процесс приводит к двоякому эффекту: Температура в слоях непосредственно вокруг ядра звезды повышается до уровня, при котором содержащийся там водород вступает, наконец, в реакцию термоядерного синтеза с образованием гелия. В то же время температура в самом ядре, состоящем теперь практически из одного гелия, повышается настолько, что уже сам гелий — своего рода «пепел» затухающей первичной реакции нуклеосинтеза — вступает в новую реакцию термоядерного синтеза: из трех ядер гелия образуется одно ядро углерода. Этот процесс вторичной реакции термоядерного синтеза, топливом для которого служат продукты первичной реакции, — один из ключевых моментов жизненного цикла звезд.

При вторичном сгорании гелия в ядре звезды выделяется так много энергии, что звезда начинает буквально раздуваться. В частности, оболочка Солнца на этой стадии жизни расширится за пределы орбиты Венеры. При этом совокупная энергия излучения звезды остается примерно на том же уровне, что и в течение основной фазы ее жизни, но, поскольку излучается эта энергия теперь через значительно бо_льшую площадь поверхности, внешний слой звезды остывает до красной части спектра. Звезда превращается в красный гигант.

Для звезд класса Солнца после истощения топлива, питающего вторичную реакцию нуклеосинтеза, снова наступает стадия гравитационного коллапса — на этот раз окончательного. Температура внутри ядра больше не способна подняться до уровня, необходимого для начала термоядерной реакции следующего уровня. Поэтому звезда сжимается до тех пор, пока силы гравитационного притяжения не будут уравновешены следующим силовым барьером. В его роли выступает давление вырожденного электронного газа (см. Предел Чандрасекара). Электроны, до этой стадии игравшие роль безработных статистов в эволюции звезды, не участвуя в реакциях ядерного синтеза и свободно перемещаясь между ядрами, находящимися в процессе синтеза, на определенной стадии сжатия оказываются лишенными «жизненного пространства» и начинают «сопротивляться» дальнейшему гравитационному сжатию звезды. Состояние звезды стабилизируется, и она превращается в вырожденного белого карлика, который будет излучать в пространство остаточное тепло, пока не остынет окончательно.

Звезды более массивные, нежели Солнце, ждет куда более зрелищный конец. После сгорания гелия их масса при сжатии оказывается достаточной для разогрева ядра и оболочки до температур, необходимых для запуска следующих реакций нуклеосинтеза — углерода, затем кремния, магния — и так далее, по мере роста ядерных масс. При этом при начале каждой новой реакции в ядре звезды предыдущая продолжается в ее оболочке. На самом деле, все химические элементы вплоть до железа, из которых состоит Вселенная, образовались именно в результате нуклеосинтеза в недрах умирающих звезд этого типа. Но железо — это предел; оно не может служить топливом для реакций ядерного синтеза или распада ни при каких температурах и давлениях, поскольку как для его распада, так и для добавления к нему дополнительных нуклонов необходим приток внешней энергии. В результате массивная звезда постепенно накапливает внутри себя железное ядро, не способное послужить топливом ни для каких дальнейших ядерных реакций.

Как только температура и давление внутри ядра достигают определенного уровня, электроны начинают вступать во взаимодействие с протонами ядер железа, в результате чего образуются нейтроны. И за очень короткий отрезок времени — некоторые теоретики полагают, что на это уходят считанные секунды, — свободные на протяжении всей предыдущей эволюции звезды электроны буквально растворяются в протонах ядер железа, всё вещество ядра звезды превращается в сплошной сгусток нейтронов и начинает стремительно сжиматься в гравитационном коллапсе, поскольку противодействовавшее ему давление вырожденного электронного газа падает до нуля. Внешняя оболочка звезды, из под которой оказывается выбита всякая опора, обрушивается к центру. Энергия столкновения обрушившейся внешней оболочки с нейтронным ядром столь высока, что она с огромной скоростью отскакивает и разлетается во все стороны от ядра — и звезда буквально взрывается в ослепительной вспышке сверхновой звезды . За считанные секунды при вспышке сверхновой может выделиться в пространство больше энергии, чем выделяют за это же время все звезды галактики вместе взятые.

После вспышки сверхновой и разлета оболочки у звезд массой порядка 10-30 солнечных масс продолжающийся гравитационный коллапс приводит к образованию нейтронной звезды, вещество которой сжимается до тех пор, пока не начинает давать о себе знать давление вырожденных нейтронов — иными словами, теперь уже нейтроны (подобно тому, как ранее это делали электроны) начинают противиться дальнейшему сжатию, требуя себе жизненного пространства. Это обычно происходит по достижении звездой размеров около 15 км в диаметре. В результате образуется быстро вращающаяся нейтронная звезда, испускающая электромагнитные импульсы с частотой ее вращения; такие звезды называются пульсарами. Наконец, если масса ядра звезды превышает 30 солнечных масс, ничто не в силах остановить ее дальнейший гравитационный коллапс, и в результате вспышки сверхновой образуется

  • 20. Радиосвязь между цивилизациями, находящимися на различных планетных системах
  • 21. Возможность осуществления межзвездной связи оптическими методами
  • 22. Связь с инопланетными цивилизациями с помощью автоматических зондов
  • 23. Теоретико-вероятностный анализ межзвездной радиосвязи. Характер сигналов
  • 24. О возможности прямых контактов между инопланетными цивилизациями
  • 25. Замечания о темпах и характере технологического развития человечества
  • II. Возможна ли связь с разумными существами других планет?
  • Часть первая АСТРОНОМИЧЕСКИЙ АСПЕКТ ПРОБЛЕМЫ

    4. Эволюция звезд Современная астрономия располагает большим количеством аргументов в пользу утверждения, что звезды образуются путем конденсации облаков газопылевой межзвездной среды. Процесс образования звезд из этой среды продолжается и в настоящее время. Выяснение этого обстоятельства является одним из крупнейших достижений современной астрономии. Еще сравнительно недавно считали, что все звезды образовались почти одновременно много миллиардов лет назад. Крушению этих метафизических представлений способствовал, прежде всего, прогресс наблюдательной астрономии и развитие теории строения и эволюции звезд. В результате стало ясно, что многие наблюдаемые звезды являются сравнительно молодыми объектами, а некоторые из них возникли тогда, когда на Земле уже был человек. Важным аргументом в пользу вывода о том, что звезды образуются из межзвездной газопылевой среды, служит расположение групп заведомо молодых звезд (так называемых "ассоциаций") в спиральных ветвях Галактики. Дело в том, что согласно радиоастрономическим наблюдениям межзвездный газ концентрируется преимущественно в спиральных рукавах галактик. В частности, это имеет место и в нашей Галактике. Более того, из детальных "радиоизображений" некоторых близких к нам галактик следует, что наибольшая плотность межзвездного газа наблюдается на внутренних (по отношению к центру соответствующей галактики) краях спирали, что находит естественное объяснение, на деталях которого мы здесь останавливаться не можем. Но именно в этих частях спиралей наблюдаются методами оптической астрономии "зоны HII", т. е. облака ионизованного межзвездного газа. В гл. 3 уже говорилось, что причиной ионизации таких облаков может быть только ультрафиолетовое излучение массивных горячих звезд - объектов заведомо молодых (см. ниже). Центральным в проблеме эволюции звезд является вопрос об источниках их энергии. В самом деле, откуда, например, берется огромное количество энергии, необходимой для поддержания излучения Солнца примерно на наблюдаемом уровне в течение нескольких миллиардов лет? Ежесекундно Солнце излучает 4х10 33 эрг, а за 3 млрд лет оно излучило 4х10 50 эрг. Несомненно, что возраст Солнца около 5 млрд лет. Это следует хотя бы из современных оценок возраста Земли различными радиоактивными методами. Вряд ли Солнце "моложе" Земли. В прошлом веке и в начале этого века предлагались различные гипотезы о природе источников энергии Солнца и звезд. Некоторые ученые, например, считали, что источником солнечной энергии является непрерывное выпадение на его поверхность метеорных тел, другие искали источник в непрерывном сжатии Солнца. Освобождающаяся при таком процессе потенциальная энергия могла бы, при некоторых условиях, перейти в излучение. Как мы увидим ниже, этот источник на раннем этапе эволюции звезды может быть довольно эффективным, но он никак не может обеспечить излучение Солнца в течение требуемого времени. Успехи ядерной физики позволили решить проблему источников звездной энергии еще в конце тридцатых годов нашего столетия. Таким источником являются термоядерные реакции синтеза, происходящие в недрах звезд при господствующей там очень высокой температуре (порядка десяти миллионов Кельвинов). В результате этих реакций, скорость которых сильно зависит от температуры, протоны превращаются в ядра гелия, а освобождающаяся энергия медленно "просачивается" сквозь недра звезд и в конце концов, значительно трансформированная, излучается в мировое пространство. Это исключительно мощный источник. Если предположить, что первоначально Солнце состояло только из водорода, который в результате термоядерных реакций целиком превратился в гелий, то выделившееся количество энергии составит примерно 10 52 эрг. Таким образом, для поддержания излучения на наблюдаемом уровне в течение миллиардов лет достаточно, чтобы Солнце "израсходовало" не свыше 10% своего первоначального запаса водорода. Теперь мы можем представить картину эволюции какой-нибудь звезды следующим образом. По некоторым причинам (их можно указать несколько) начало конденсироваться облако межзвездной газопылевой среды. Довольно скоро (разумеется, по астрономическим масштабам!) под влиянием сил всемирного тяготения из этого облака образуется сравнительно плотный непрозрачный газовый шар. Строго говоря, этот шар еще нельзя назвать звездой, так как в его центральных областях температура недостаточна для того, чтобы начались термоядерные реакции. Давление газа внутри шара не в состоянии пока уравновесить силы притяжения отдельных его частей, поэтому он будет непрерывно сжиматься. Некоторые астрономы раньше считали, что такие "протозвезды" наблюдаются в отдельных Туманностях в виде очень темных компактных образований, так называемых глобул (рис. 12). Успехи радиоастрономии, однако, заставили отказаться от такой довольно наивной точки зрения (см. ниже). Обычно одновременно образуется не одна протозвезда, а более или менее многочисленная группа их. В дальнейшем эти группы становятся звездными ассоциациями и скоплениями, хорошо известными астрономам. Весьма вероятно, что на этом самом раннем этапе эволюции звезды вокруг нее образуются сгустки с меньшей массой, которые затем постепенно превращаются в планеты (см. гл. 9).

    Рис. 12. Глобулы в диффузионной туманности

    При сжатии протозвезды температура ее повышается и значительная часть освобождающейся потенциальной энергии излучается в окружающее пространство. Так как размеры сжимающегося газового шара очень велики, то излучение с единицы егo поверхности будет незначительным. Коль скоро поток излучения с единицы поверхности пропорционален четвертой степени температуры (закон Стефана - Больцмана), температура поверхностных слоев звезды сравнительно низка, между тем как ее светимость почти такая же, как у обычной звезды с той же массой. Поэтому на диаграмме "спектр - светимость" такие звезды расположатся вправо от главной последовательности, т. е. попадут в область красных гигантов или красных карликов, в зависимости от значений их первоначальных масс. В дальнейшем протозвезда продолжает сжиматься. Ее размеры становятся меньше, а поверхностная температура растет, вследствие чего спектр становится все более "ранним". Таким образом, двигаясь по диаграмме "спектр - светимость", протозвезда довольно быстро "сядет" на главную последовательность. В этот период температура звездных недр уже оказывается достаточной для того, чтобы там начались термоядерные реакции. При этом давление газа внутри будущей звезды уравновешивает притяжение и газовый шар перестает сжиматься. Протозвезда становится звездой. Чтобы пройти эту самую раннюю стадию своей эволюции, протозвездам нужно сравнительно немного времени. Если, например, масса протозвезды больше солнечной, нужно всего лишь несколько миллионов лет, если меньше - несколько сот миллионов лет. Так как время эволюции протозвезд сравнительно невелико, эту самую раннюю фазу развития звезды обнаружить трудно. Все же звезды в такой стадии, по-видимому, наблюдаются. Мы имеем в виду очень интересные звезды типа Т Тельца, обычно погруженные в темные туманности. В 1966 г. совершенно неожиданно выявилась возможность наблюдать протозвезды на ранних стадиях их эволюции. Мы уже упоминали в третьей главе этой книги об открытии методом радиоастрономии ряда молекул в межзвездной среде, прежде всего гидроксила ОН и паров воды Н2О. Велико же было удивление радиоастрономов, когда при обзоре неба на волне 18 см, соответствующей радиолинии ОН, были обнаружены яркие, чрезвычайно компактные (т. е. имеющие малые угловые размеры) источники. Это было настолько неожиданно, что первое время отказывались даже верить, что столь яркие радиолинии могут принадлежать молекуле гидроксила. Была высказана гипотеза, что эти линии принадлежат какой-то неизвестной субстанции, которой сразу же дали "подходящее" имя "мистериум". Однако "мистериум" очень скоро разделил судьбу своих оптических "братьев" - "небулия" и "корония". Дело в том, что многие десятилетия яркие линии туманностей и солнечной короны не поддавались отождествлению с какими бы то ни было известными спектральными линиями. Поэтому их приписывали неким, неизвестным на земле, гипотетическим элементам - "небулию" и "коронию". Не будем снисходительно улыбаться над невежеством астрономов начала нашего века: ведь теории атома тогда еще не было! Развитие физики не оставило в периодической системе Менделеева места для экзотических "небожителей": в 1927 г. был развенчан "небулий", линии которого с полной надежностью были отождествлены с "запрещенными" линиями ионизованных кислорода и азота, а в 1939 -1941 гг. было убедительно показано, что загадочные линии "корония" принадлежат многократно ионизованным атомам железа, никеля и кальция. Если для "развенчания" "небулия" и "кодония" потребовались десятилетия, то уже через несколько недель после открытия стало ясно, что линии "мистериума" принадлежат обыкновенному гидроксилу, но только находящемуся в необыкновенных условиях. Дальнейшие наблюдения, прежде всего, выявили, что источники "мистериума" имеют исключительно малые угловые размеры. Это было показано с помощью тогда еще нового, весьма эффективного метода исследовании, получившего название "радиоинтерферометрия на сверхдлинных базах". Суть метода сводится к одновременным наблюдениям источников на двух радиотелескопах, удаленных друг от друга на расстояния в несколько тысяч км. Как оказывается, угловое разрешение при этом определяется отношением длины волны к расстоянию между радиотелескопами. В нашем случае эта величина может быть ~3х10 -8 рад или несколько тысячных секунды дуги! Заметим, что в оптической астрономии такое угловое разрешение пока совершенно недостижимо. Такие наблюдения показали, что существуют по крайней мере три класса источников "мистериума". Нас здесь будут интересовать источники 1 класса. Всё они находятся внутри газовых ионизованных туманностей, например в знаменитой туманности Ориона. Как уже говорилось, их размеры чрезвычайно малы, во много тысяч раз меньше размеров туманности. Всего интереснее, что они обладают сложной пространственной структурой. Рассмотрим, например, источник, находящийся в туманности, получившей название W3.

    Рис. 13. Профили четырех компонент линии гидроксила

    На рис. 13 приведен профиль линии ОН, излучаемый этим источником. Как видим, он состоит из большого количества узких ярких линий. Каждой линии соответствует определенная скорость движения по лучу зрения излучающего эту линию облака. Величина этой скорости определяется эффектом Доплера. Различие скоростей (по лучу зрения) между различными облаками достигает ~10 км/с. Упомянутые выше интерферометрические наблюдения показали, что облака, излучающие каждую линию, пространственно не совпадают. Картина получается такая: внутри области размером приблизительно 1,5 секунды дуги движутся с разными скоростями около 10 компактных облаков. Каждое облако излучает одну определенную (по частоте) линию. Угловые размеры облаков очень малы, порядка нескольких тысячных секунды дуги. Так как расстояние до туманности W3 известно (около 2000 пк), то угловые размеры легко могут быть переведены в линейные. Оказывается, что линейные размеры области, в которой движутся облака, порядка 10 -2 пк, а размеры каждого облака всего лишь на порядок величины больше расстояния от Земли до Солнца. Возникают вопросы: что это за облака и почему они так сильно излучают в радиолиниях гидроксила? На второй вопрос ответ был получен довольно скоро. Оказалось, что механизм излучения вполне подобен тому, который наблюдался в лабораторных мазерах и лазерах. Итак, источники "мистериума" - это гигантские, природные космические мазеры, работающие на волне линии гидроксила, длина которой 18 см. Именно в мазерах (а на оптических и инфракрасных частотах - в лазерах) достигается огромная яркость в линии, причем спектральная ширина ее мала. Как известно, усиление излучения в линиях благодаря такому эффекту возможно тогда, когда среда, в которой распространяется излучение, каким-либо способом "активирована". Это означает, что некоторый "сторонний" источник энергии (так называемая "накачка") делает концентрацию атомов или молекул на исходном (верхнем) уровне аномально высокой. Без постоянно действующей "накачки" мазер или лазер невозможны. Вопрос о природе механизма "накачки" космических мазеров пока еще окончательно не решен. Однако скорее всего "накачкой" служит достаточно мощное инфракрасное излучение. Другим возможным механизмом "накачки" могут быть некоторые химические реакции. Стоит прервать наш рассказ о космических мазерах для того, чтобы подумать, с какими удивительными явлениями сталкиваются астрономы в космосе. Одно из величайших технических изобретений нашего бурного века, играющее немалую роль в переживаемой нами теперь научно-технической революции, запросто реализуется в естественных условиях и притом - в громадном масштабе! Поток радиоизлучения от некоторых космических мазеров настолько велик, что мог бы быть обнаружен даже при техническом уровне радиоастрономии лет 35 тому назад, т. е. еще до изобретения мазеров и лазеров! Для этого надо было "только" знать точную длину волны радиолинии ОН и заинтересоваться проблемой. Кстати, это не первый случай, когда в естественных условиях реализуются важнейшие научно-технические проблемы, стоящие перед человечеством. Термоядерные реакции, поддерживающие излучение Солнца и звезд (см. ниже), стимулировали разработку и осуществление проектов получения на Земле ядерного "горючего", которое в будущем должно решить все наши энергетические проблемы. Увы, мы пока еще далеки от решения этой важнейшей задачи, которую природа решила "запросто". Полтора века тому назад основатель волновой теории света Френель заметил (по другому поводу, конечно): "Природа смеется над нашими трудностями". Как видим, замечание Френеля еще более справедливо в наши дни. Вернемся, однако, к космическим мазерам. Хотя механизм "накачки" этих мазеров пока еще не совсем ясен, все же можно составить себе грубое представление о физических условиях в облаках, излучающих мазерным механизмом линию 18 см. Прежде всего, оказывается, что эти облака довольно плотны: в кубическом сантиметре там имеется по крайней мере 10 8 -10 9 частиц, причем существенная (а может быть и большая) часть их - молекулы. Температура вряд ли превышает две тысячи кельвинов, скорее всего она порядка 1000 Кельвинов. Эти свойства резко отличны от свойств даже самых плотных облаков межзвездного газа. Учитывая еще сравнительно небольшие размеры облаков, мы невольно приходим к выводу, что они скорее напоминают протяженные, довольно холодные атмосферы звезд - сверхгигантов. Очень похоже, что эти облака есть не что иное, как ранняя стадия развития протозвезд, следующая сразу за их конденсацией из межзвездной среды. В пользу этого утверждения (которое автор этой книги высказал еще в 1966 г.) говорят и другие факты. В туманностях, где наблюдаются космические мазеры, видны молодые горячие звезды (см. ниже). Следовательно, там недавно закончился и, скорее всего, продолжается и в настоящее время, процесс звездообразования. Пожалуй, самое любопытное это то, что, как показывают радиоастрономические наблюдения, космические мазеры этого типа как бы "погружены" в небольшие, очень плотные облака ионизованного водорода. В этих облаках имеется много космической пыли, что делает их ненаблюдаемыми в оптическом диапазоне. Такие "коконы" ионизуются молодой, горячей звездой, находящейся внутри них. При исследовании процессов звездообразования весьма полезной оказалась инфракрасная астрономия. Ведь для инфракрасных лучей межзвездное поглощение света не так существенно. Мы можем теперь представить следующую картину: из облака межзвездной среды, путем его конденсации, образуется несколько сгустков разной массы, эволюционирующих в протозвезды. Скорость эволюции -различна: для более массивных сгустков она будет больше (см. дальше табл. 2). Поэтому раньше всего превратится в горячую звезду наиболее массивной сгусток, между тем как остальные будут более или менее долго задерживаться на стадии протозвезды. Их-то мы и наблюдаем как источники мазерного излучения в непосредственной близости от "новорожденной" горячей звезды, ионизующей не сконденсировавший в сгустки водород "кокона". Разумеется, эта грубая схема будет в дальнейшем уточняться, причем, конечно, в нее будут внесены существенные изменения. Но факт остается фактом: неожиданно оказалось, что некоторое время (скорее всего - сравнительно короткое) новорожденные протозвезды, образно выражаясь, "кричат" о своем появлении на свет, пользуясь новейшими методами квантовой радиофизики (т. е. мазерами)... Спустя 2 года после открытия космических мазеров на гидроксиле (линия 18 см) - было установлено, что те же источники одновременно излучают (также мазерным механизмом) линию водяных паров, длина волны которой 1,35 см. Интенсивность "водяного" мазера даже больше, чем "гидроксильного". Облака, излучающие линию Н2О, хотя и находятся в том же малом объеме, что и "гидроксильные" облака, движутся с другими скоростями и значительно более компактны. Нельзя исключать, что в близком будущем будут обнаружены и другие мазерные линии * . Таким образом, совершенно неожиданно радиоастрономия превратила классическую проблему звездообразования в ветвь наблюдательной астрономии ** . Оказавшись на главной последовательности и перестав сжиматься, звезда длительно излучает практически не меняя своего положения на диаграмме "спектр - светимость". Ее излучение поддерживается термоядерными реакциями, идущими в центральных областях. Таким образом, главная последовательность представляет собой как бы геометрическое место точек на диаграмме "спектр - светимость", где звезда (в зависимости от ее массы) может длительно и устойчиво излучать благодаря термоядерным реакциям. Место звезды на главной последовательности определяется ее массой. Следует заметить, что имеется еще один параметр, определяющий положение равновесной излучающей звезды на диаграмме "спектр-светимость". Таким параметром является первоначальный химический состав звезды. Если относительное содержание тяжелых элементов уменьшится, звезда "ляжет" на диаграмме ниже. Именно этим обстоятельством объясняется наличие последовательности субкарликов. Как уже говорилось выше, относительное содержание тяжелых элементов у этих звезд в десятки раз меньше, чем у звезд главной последовательности. Время пребывания звезды на главной последовательности определяется ее первоначальной массой. Если масса велика, излучение звезды имеет огромную мощность и она довольно быстро расходует запасы своего водородного "горючего". Так, например, звезды главной последовательности с массой, превышающей солнечную в несколько десятков раз (это горячие голубые гиганты спектрального класса О), могут устойчиво излучать, находясь на этой последовательности всего лишь несколько миллионов лет, в то время как звезды с массой, близкой к солнечной, находятся на главной последовательности 10-15 млрд лет. Ниже приводится табл. 2, дающая вычисленную продолжительность гравитационного сжатия и пребывания на главной последовательности для звезд разных спектральных классов. В этой же таблице приведены значения масс, радиусов и светимостей звезд в солнечных единицах.

    Таблица 2


    лет

    Спектральный класс

    Светимость

    гравитационного сжатия

    пребывания на главной после-довательности

    G2 (Солнце)

    Из таблицы следует, что время пребывания на главной последовательности звезд, более "поздних", чем КО, значительно больше возраста Галактики, который по существующим оценкам близок к 15-20 млрд лет. "Выгорание" водорода (т. е. превращение его в гелий при термоядерных реакциях) происходит только в центральных областях звезды. Это объясняется тем, что звездное вещество перемешивается лишь в центральных областях звезды, где идут ядерные реакции, в то время как наружные слои сохраняют относительное содержание водорода неизменным. Так как количество водорода в центральных областях звезды ограниченно, рано или поздно (в зависимости от массы звезды) он там практически весь "выгорит". Расчеты показывают, что масса и радиус центральной ее области, в которой идут ядерные реакции, постепенно уменьшаются, при этом звезда медленно перемещается, на диаграмме "спектр - светимость" вправо. Этот процесс происходит значительно быстрее у сравнительно массивных звезд. Если представить себе группу одновременно образовавшихся эволюционирующих звезд, то с течением времени главная последовательность на диаграмме "спектр-светимость", построенная для этой группы, будет как бы загибаться вправо. Что же произойдет со звездой, когда весь (или почти весь) водород в ее ядре "выгорит"? Так как выделение энергии в центральных областях звезды прекращается, температура и давление не могут поддерживаться там на уровне, необходимом для противодействия силе тяготения, сжимающей звезду. Ядро звезды начнет сжиматься, а температура его будет повышаться. Образуется очень плотная горячая область, состоящая из гелия (в который превратился водород) с небольшой примесью более тяжелых элементов. Газ в таком состоянии носит название "вырожденного". Он обладает рядом интересных свойств, на которых мы здесь останавливаться не можем. В этой плотной горячей области ядерные реакции происходить не будут, но они будут довольно интенсивно протекать на периферии ядра, в сравнительно тонком слое. Вычисления показывают, что светимость звезды и ее размеры начнут расти. Звезда как бы "разбухает", и начнет "сходить" с главной последовательности, переходя в области красных гигантов. Далее, оказывается, что звезды-гиганты с меньшим содержанием тяжелых элементов будут иметь при одинаковых размерах более высокую светимость. На рис. 14 приведены теоретически рассчитанные эволюционные треки на диаграмме "светимость - температура поверхности" для звезд разной массы. При переходе звезды в стадию красного гиганта скорость ее эволюции значительно увеличивается. Для проверки теории большое значение имеет построение диаграммы "спектр - светимость" для отдельных звездных скоплений. Дело в том, что звезды одного и того же скопления (например. Плеяды) имеют, очевидно, одинаковый возраст. Сравнивая диаграммы "спектр - светимость" для разных скоплений - "старых" и "молодых", можно выяснить, как эволюционируют звезды. На рис. 15 и 16 приведены диаграммы "показатель цвета - светимостью для двух различных звездных скоплений. Скопление NGC 2254 - сравнительно молодое образование.

    Рис. 14. Эволюционные треки для звезд разной массы на диаграмме "светимость-температура"

    Рис. 15. Диаграмма Герцшпрунга - Рессела для звездного скопления NGC 2254


    Рис. 16. Диаграмма Герцшпрунга - Рессела для шарового скопления М 3. По вертикальной оси - относительная звездная величина

    На соответствующей диаграмме отчетливо видна вся главная последовательность, в том числе ее верхняя левая часть, где расположены горячие массивные звезды (показателю-цвета - 0,2 соответствует температура 20 тыс. К, т.е. спектр класса В). Шаровое скопление М 3 - "старый" объект. Ясно видно, что в верхней части главной последовательности диаграммы, построенной для этого скопления, звезд почти нет. Зато ветвь красных гигантов у М 3 представлена весьма богато, в то время как у NGC 2254 красных гигантов очень мало. Это и понятно: у старого скопления М 3 большое число звезд уже успело "сойти" с главной последовательности, в то время как у молодого скопления NGC 2254 это произошло только с небольшим числом сравнительно массивных, быстро эволюционирующих звезд. Обращает на себя внимание, что ветвь гигантов для М 3 идет довольно круто вверх, а у NGC 2254 она - почти горизонтальна. С точки зрения теории это можно объяснить значительно более низким содержанием тяжелых элементов у М 3. И действительно, у звезд шаровых скоплений (так же как и у других звезд, концентрирующихся не столько к галактической плоскости, сколько к галактическому центру) относительное содержание тяжелых элементов незначительно. На диаграмме "показатель цвета - светимость" для М 3 видна еще одна почти горизонтальная ветвь. Аналогичной ветви на диаграмме, построенной для NGC 2254, нет. Теория объясняет появление этой ветви следующим образом. После того как температура сжимающегося плотного гелиевого ядра звезды - красного гиганта - достигнет 100-150 млн К, там начнет идти новая ядерная реакция. Эта реакция состоит в образовании ядра углерода из трех ядер гелия. Как только начнется эта реакция, сжатие ядра прекратится. В дальнейшем поверхностные слои

    звезды увеличивают свою температуру и звезда на диаграмме "спектр - светимость" будет перемещаться влево. Именно из таких звезд образуется третья горизонтальная ветвь диаграммы для М 3.

    Рис. 17. Сводная диаграмма Герцшпрунга - Рессела для 11 звездных скоплений

    На рис. 17 схематически приведена сводная диаграмма "цвет - светимость" для 11 скоплений, из которых два (М 3 и М 92) шаровые. Ясно видно, как "загибаются" вправо и вверх главные последовательности у разных скоплений в полном согласии с теоретическими представлениями, о которых уже шла речь. Из рис. 17 можно сразу определить, какие скопления являются молодыми и какие старыми. Например, "двойное" скопление Х и h Персея молодое. Оно "сохранило" значительную часть главной последовательности. Скопление М 41 старше, еще старше скопление Гиады и совсем старым является скопление М 67, диаграмма "цвет - светимость" для которого очень похожа на аналогичную диаграмму для шаровых скоплений М 3 и М 92. Только ветвь гигантов у шаровых скоплений находится выше в согласии с различиями в химическом составе, о которых говорилось раньше. Таким образом, данные наблюдений полностью подтверждают и обосновывают выводы теории. Казалось бы, трудно ожидать наблюдательной проверки теории процессов в звездных недрах, которые закрыты от нас огромной толщей звездного вещества. И все же теория и здесь постоянно контролируется практикой астрономических наблюдений. Нужно отметить, что составление большого количества диаграмм "цвет - светимость" потребовало огромного труда астрономов-наблюдателей и коренного усовершенствования методов наблюдений. С другой стороны, успехи теории внутреннего строения и эволюции звезд были бы невозможны без современной вычислительной техники, основанной на применении быстродействующих электронных счетных машин. Неоценимую услугу теории оказали также исследования в области ядерной физики, позволившие получить количественные характеристики тех ядерных реакций, которые протекают в звездных недрах. Без преувеличения можно сказать, что разработка теории строения и эволюции звезд является одним из крупнейших достижений астрономии второй половины XX столетия. Развитие современной физики открывает возможность прямой наблюдательной проверки теории внутреннего строения звезд, и в частности Солнца. Речь идет о возможности обнаружения мощного потока нейтрино, который должно испускать Солнце, если в его недрах имеют место ядерные реакции. Хорошо известно, что нейтрино чрезвычайно слабо взаимодействует с другими элементарными частицами. Так, например, нейтрино может почти без поглощения пролететь через всю толщу Солнца, в то время как рентгеновское излучение может пройти без поглощения только через несколько миллиметров вещества солнечных недр. Если представить себе, что через Солнце проходит мощный пучок нейтрино с энергией каждой частицы в

    Поделиться: