3 x višestruko. Klimanje i klimanje od tri ili više brojeva. Pronalaženje faktorizacijom

Pogledajmo tri načina da pronađemo najmanji zajednički višekratnik.

Pronalaženje faktorizacijom

Prva metoda je pronalaženje najmanjeg zajedničkog višekratnika rastavljanjem datih brojeva u proste faktore.

Recimo da treba da pronađemo LCM brojeva: 99, 30 i 28. Da bismo to uradili, razložimo svaki od ovih brojeva u proste faktore:

Da bi željeni broj bio djeljiv sa 99, 30 i 28, potrebno je i dovoljno da sadrži sve proste činioce ovih djelitelja. Da bismo to učinili, moramo uzeti sve proste faktore ovih brojeva na najveći mogući stepen i pomnožiti ih zajedno:

2 2 3 2 5 7 11 = 13.860

Dakle, LCM (99, 30, 28) = 13 860. Nijedan drugi broj manji od 13 860 nije djeljiv sa 99, 30 ili 28.

Da biste pronašli najmanji zajednički višekratnik datih brojeva, rastavite ih u njihove proste faktore, zatim uzmete svaki prosti faktor s najvećim eksponentom u kojem se pojavljuje i pomnožite te faktore zajedno.

Pošto relativno prosti brojevi nemaju zajedničke proste faktore, njihov najmanji zajednički višekratnik jednak je proizvodu ovih brojeva. Na primjer, tri broja: 20, 49 i 33 su relativno prosti. Zbog toga

LCM (20, 49, 33) = 20 49 33 = 32.340.

Isto se mora učiniti kada se pronađe najmanji zajednički višekratnik različitih prostih brojeva. Na primjer, LCM (3, 7, 11) = 3 7 11 = 231.

Pronalaženje odabirom

Druga metoda je pronalaženje najmanje zajedničkog višekratnika odabirom.

Primjer 1. Kada se najveći od datih brojeva podijeli sa drugim datim brojem, tada je LCM ovih brojeva jednak najvećem od njih. Na primjer, data su četiri broja: 60, 30, 10 i 6. Svaki od njih je djeljiv sa 60, dakle:

LCM(60, 30, 10, 6) = 60

U drugim slučajevima, za pronalaženje najmanjeg zajedničkog višekratnika, koristi se sljedeći postupak:

  1. Odredite najveći broj od datih brojeva.
  2. Zatim pronalazimo brojeve koji su višekratnici najvećeg broja množenjem prirodnim brojevima u rastućem redoslijedu i provjeravanjem da li je rezultirajući proizvod djeljiv s preostalim datim brojevima.

Primjer 2. Zadata su tri broja 24, 3 i 18. Određujemo najveći od njih - to je broj 24. Zatim nalazimo brojeve koji su višestruki od 24, provjeravajući da li je svaki od njih djeljiv sa 18 i 3:

24 · 1 = 24 - deljivo sa 3, ali nije deljivo sa 18.

24 · 2 = 48 - deljivo sa 3, ali nije deljivo sa 18.

24 · 3 = 72 - djeljivo sa 3 i 18.

Dakle, LCM (24, 3, 18) = 72.

Pronalaženje uzastopnim pronalaženjem LCM

Treća metoda je pronalaženje najmanje zajedničkog višekratnika sekvencijalnim pronalaženjem LCM.

LCM dva data broja jednak je umnošku ovih brojeva podijeljen sa njihovim najvećim zajedničkim djeliteljem.

Primjer 1. Pronađite LCM dva data broja: 12 i 8. Odredite njihov najveći zajednički djelitelj: GCD (12, 8) = 4. Pomnožite ove brojeve:

Proizvod dijelimo sa njihovim gcd-om:

Dakle, LCM (12, 8) = 24.

Da biste pronašli LCM od tri ili više brojeva, koristite sljedeću proceduru:

  1. Prvo, pronađite LCM bilo koja dva od ovih brojeva.
  2. Zatim, LCM pronađenog najmanjeg zajedničkog višekratnika i trećeg zadanog broja.
  3. Zatim, LCM rezultirajućeg najmanjeg zajedničkog višekratnika i četvrtog broja, itd.
  4. Stoga se potraga za LCM nastavlja sve dok postoje brojevi.

Primjer 2. Nađimo LCM tri data broja: 12, 8 i 9. Već smo pronašli LCM brojeva 12 i 8 u prethodnom primjeru (ovo je broj 24). Ostaje da se pronađe najmanji zajednički višekratnik broja 24 i trećeg datog broja - 9. Odredite njihov najveći zajednički djelitelj: GCD (24, 9) = 3. Pomnožite LCM sa brojem 9:

Proizvod dijelimo sa njihovim gcd-om:

Dakle, LCM (12, 8, 9) = 72.

LCM - najmanji zajednički višekratnik. Broj koji će podijeliti sve date brojeve bez ostatka.

Na primjer, ako su dati brojevi 2, 3, 5, tada je LCM=2*3*5=30

A ako su dati brojevi 2,4,8, onda je LCM =8

šta je GCD?

GCD je najveći zajednički djelitelj. Broj koji se može koristiti za dijeljenje svakog od datih brojeva bez ostavljanja ostatka.

Logično je da ako su dati brojevi prosti, onda je gcd jednak jedinici.

A ako su dati brojevi 2, 4, 8, onda je GCD jednak 2.

Nećemo ga opisivati ​​općenito, već ćemo jednostavno pokazati rješenje na primjeru.

Zadana su dva broja 126 i 44. Nađi GCD.

Onda ako su nam data dva broja oblika

Tada se GCD izračunava kao

gdje je min minimalna vrijednost svih potencija broja pn

i NOC kao

gdje je max maksimalna vrijednost svih potencija broja pn

Gledajući gornje formule, lako možete dokazati da će gcd dva ili više brojeva biti jednak jedan, kada među barem jednim parom datih vrijednosti postoje relativno prosti brojevi.

Stoga je lako odgovoriti na pitanje čemu je jednak gcd brojeva kao što su 3, 25412, 3251, 7841, 25654, 7, a da ništa ne računamo.

brojevi 3 i 7 su međusobno prosti, pa je stoga gcd = 1

Pogledajmo primjer.

Zadana su tri broja 24654, 25473 i 954

Svaki broj se razlaže na sljedeće faktore

Ili, ako to napišemo u alternativnom obliku

To jest, gcd ova tri broja je jednaka tri

Pa, možemo izračunati LCM na sličan način, i on je jednak

Naš bot će vam pomoći da izračunate GCD i LCM bilo kojih cijelih brojeva, dva, tri ili deset.

Nastavimo razgovor o najmanjem zajedničkom višekratniku, koji smo započeli u dijelu “LCM – najmanji zajednički višekratnik, definicija, primjeri”. U ovoj temi ćemo se osvrnuti na načine kako pronaći LCM za tri ili više brojeva, te ćemo se osvrnuti na pitanje kako pronaći LCM negativnog broja.

Yandex.RTB R-A-339285-1

Izračunavanje najmanjeg zajedničkog višekratnika (LCM) putem GCD

Već smo uspostavili odnos između najmanjeg zajedničkog višekratnika i najvećeg zajedničkog djelitelja. Sada ćemo naučiti kako odrediti LCM kroz GCD. Prvo, hajde da shvatimo kako to učiniti za pozitivne brojeve.

Definicija 1

Najmanji zajednički višekratnik možete pronaći kroz najveći zajednički djelitelj koristeći formulu LCM (a, b) = a · b: GCD (a, b).

Primjer 1

Morate pronaći LCM brojeva 126 i 70.

Rješenje

Uzmimo a = 126, b = 70. Zamijenimo vrijednosti u formulu za izračunavanje najmanjeg zajedničkog višekratnika kroz najveći zajednički djelitelj LCM (a, b) = a · b: GCD (a, b) .

Pronalazi gcd brojeva 70 i 126. Za ovo nam je potreban Euklidov algoritam: 126 = 70 1 + 56, 70 = 56 1 + 14, 56 = 14 4, dakle GCD (126 , 70) = 14 .

Izračunajmo LCM: LCD (126, 70) = 126 70: GCD (126, 70) = 126 70: 14 = 630.

odgovor: LCM(126, 70) = 630.

Primjer 2

Pronađite brojeve 68 i 34.

Rješenje

GCD u ovom slučaju nije teško pronaći, jer je 68 djeljivo sa 34. Izračunajmo najmanji zajednički višekratnik koristeći formulu: LCM (68, 34) = 68 34: GCD (68, 34) = 68 34: 34 = 68.

odgovor: LCM(68, 34) = 68.

U ovom primjeru koristili smo pravilo za pronalaženje najmanjeg zajedničkog višekratnika pozitivnih cijelih brojeva a i b: ako je prvi broj djeljiv drugim, LCM tih brojeva će biti jednak prvom broju.

Pronalaženje LCM-a rastavljanjem brojeva u proste faktore

Pogledajmo sada metodu pronalaženja LCM-a, koja se zasniva na faktoringu brojeva u proste faktore.

Definicija 2

Da bismo pronašli najmanji zajednički višekratnik, moramo izvršiti nekoliko jednostavnih koraka:

  • sastavljamo proizvod svih prostih faktora brojeva za koje trebamo pronaći LCM;
  • isključujemo sve primarne faktore iz njihovih rezultirajućih proizvoda;
  • proizvod koji se dobije nakon eliminacije zajedničkih prostih faktora biće jednak LCM datih brojeva.

Ova metoda pronalaženja najmanjeg zajedničkog višekratnika zasniva se na jednakosti LCM (a, b) = a · b: GCD (a, b). Ako pogledate formulu, postat će vam jasno: proizvod brojeva a i b jednak je proizvodu svih faktora koji učestvuju u dekompoziciji ova dva broja. U ovom slučaju, gcd dva broja je jednak proizvodu svih prostih faktora koji su istovremeno prisutni u faktorizaciji ova dva broja.

Primjer 3

Imamo dva broja 75 i 210. Možemo ih faktorirati na sljedeći način: 75 = 3 5 5 I 210 = 2 3 5 7. Ako sastavite proizvod svih faktora dva originalna broja, dobijate: 2 3 3 5 5 5 7.

Ako izuzmemo faktore zajedničke za oba broja 3 i 5, dobićemo proizvod sljedećeg oblika: 2 3 5 5 7 = 1050. Ovaj proizvod će biti naš LCM za brojeve 75 i 210.

Primjer 4

Pronađite LCM brojeva 441 I 700 , faktoring oba broja u proste faktore.

Rješenje

Nađimo sve proste faktore brojeva datih u uslovu:

441 147 49 7 1 3 3 7 7

700 350 175 35 7 1 2 2 5 5 7

Dobijamo dva lanca brojeva: 441 = 3 3 7 7 i 700 = 2 2 5 5 7.

Proizvod svih faktora koji su učestvovali u dekompoziciji ovih brojeva imat će oblik: 2 2 3 3 5 5 7 7 7. Hajde da pronađemo zajedničke faktore. Ovo je broj 7. Isključimo to iz ukupnog proizvoda: 2 2 3 3 5 5 7 7. Ispostavilo se da je NOC (441, 700) = 2 2 3 3 5 5 7 7 = 44 100.

odgovor: LOC(441, 700) = 44.100.

Hajde da damo još jednu formulaciju metode za pronalaženje LCM dekomponovanjem brojeva na proste faktore.

Definicija 3

Prethodno smo isključili iz ukupnog broja faktora koji su zajednički za oba broja. Sada ćemo to učiniti drugačije:

  • Razložimo oba broja u proste faktore:
  • dodaj proizvodu prostih faktora prvog broja faktore koji nedostaju drugog broja;
  • dobijamo proizvod, koji će biti željeni LCM od dva broja.

Primjer 5

Vratimo se na brojeve 75 i 210, za koje smo već tražili LCM u jednom od prethodnih primjera. Podijelimo ih na jednostavne faktore: 75 = 3 5 5 I 210 = 2 3 5 7. Na proizvod faktora 3, 5 i 5 brojevi 75 dodajte faktore koji nedostaju 2 I 7 brojevi 210. Dobijamo: 2 · 3 · 5 · 5 · 7 . Ovo je LCM brojeva 75 i 210.

Primjer 6

Potrebno je izračunati LCM brojeva 84 i 648.

Rješenje

Razložimo brojeve iz uslova u jednostavne faktore: 84 = 2 2 3 7 I 648 = 2 2 2 3 3 3 3. Dodajmo proizvodu faktore 2, 2, 3 i 7 brojevi 84 nedostaju faktori 2, 3, 3 i
3 brojevi 648. Dobijamo proizvod 2 2 2 3 3 3 3 7 = 4536. Ovo je najmanji zajednički višekratnik 84 i 648.

odgovor: LCM(84, 648) = 4,536.

Pronalaženje LCM od tri ili više brojeva

Bez obzira s kojim brojevima imamo posla, algoritam naših akcija će uvijek biti isti: sekvencijalno ćemo pronaći LCM dva broja. Za ovaj slučaj postoji teorema.

Teorema 1

Pretpostavimo da imamo cijele brojeve a 1 , a 2 , … , a k. NOC m k ovi brojevi se nalaze uzastopnim izračunavanjem m 2 = LCM (a 1, a 2), m 3 = LCM (m 2, a 3), ..., m k = LCM (m k − 1, a k).

Pogledajmo sada kako se teorema može primijeniti na rješavanje specifičnih problema.

Primjer 7

Morate izračunati najmanji zajednički višekratnik četiri broja 140, 9, 54 i 250 .

Rješenje

Hajde da uvedemo zapis: a 1 = 140, a 2 = 9, a 3 = 54, a 4 = 250.

Počnimo s izračunavanjem m 2 = LCM (a 1 , a 2) = LCM (140, 9). Primijenimo Euklidov algoritam da izračunamo GCD brojeva 140 i 9: 140 = 9 15 + 5, 9 = 5 1 + 4, 5 = 4 1 + 1, 4 = 1 4. Dobijamo: GCD (140, 9) = 1, GCD (140, 9) = 140 9: GCD (140, 9) = 140 9: 1 = 1.260. Dakle, m 2 = 1,260.

Sada izračunajmo koristeći isti algoritam m 3 = LCM (m 2 , a 3) = LCM (1 260, 54). Tokom proračuna dobijamo m 3 = 3 780.

Moramo samo izračunati m 4 = LCM (m 3 , a 4) = LCM (3 780, 250). Pratimo isti algoritam. Dobijamo m 4 = 94 500.

LCM od četiri broja iz primjera stanja je 94500.

odgovor: NOC (140, 9, 54, 250) = 94.500.

Kao što vidite, proračuni su jednostavni, ali prilično radno intenzivni. Da biste uštedjeli vrijeme, možete ići drugim putem.

Definicija 4

Nudimo vam sljedeći algoritam akcija:

  • rastavljamo sve brojeve na proste faktore;
  • proizvodu faktora prvog broja dodajemo faktore koji nedostaju iz proizvoda drugog broja;
  • proizvodu dobijenom u prethodnoj fazi dodajemo faktore trećeg broja koji nedostaju itd.;
  • rezultirajući proizvod će biti najmanji zajednički višekratnik svih brojeva iz uvjeta.

Primjer 8

Trebate pronaći LCM od pet brojeva 84, 6, 48, 7, 143.

Rješenje

Razložimo svih pet brojeva u proste faktore: 84 = 2 2 3 7, 6 = 2 3, 48 = 2 2 2 2 3, 7, 143 = 11 13. Prosti brojevi, a to je broj 7, ne mogu se rastaviti u proste faktore. Takvi brojevi se poklapaju sa njihovom dekompozicijom na proste faktore.

Sada uzmimo proizvod prostih faktora 2, 2, 3 i 7 broja 84 i dodajmo im faktore koji nedostaju drugog broja. Razložili smo broj 6 na 2 i 3. Ovi faktori su već u proizvodu prvog broja. Stoga ih izostavljamo.

Nastavljamo sa sabiranjem množitelja koji nedostaju. Pređimo na broj 48, iz proizvoda čijih prostih faktora uzimamo 2 i 2. Zatim dodajemo prost faktor 7 iz četvrtog broja i faktore 11 i 13 od petog. Dobijamo: 2 2 2 2 3 7 11 13 = 48,048. Ovo je najmanji zajednički višekratnik od pet originalnih brojeva.

odgovor: LCM(84, 6, 48, 7, 143) = 48,048.

Pronalaženje najmanjeg zajedničkog višekratnika negativnih brojeva

Da bi se pronašao najmanji zajednički višekratnik negativnih brojeva, ovi brojevi se prvo moraju zamijeniti brojevima suprotnog predznaka, a zatim se proračuni moraju izvršiti pomoću gore navedenih algoritama.

Primjer 9

LCM (54, − 34) = LCM (54, 34) i LCM (− 622, − 46, − 54, − 888) = LCM (622, 46, 54, 888).

Takve radnje su dozvoljene zbog činjenice da ako to prihvatimo a I − a– suprotni brojevi,
zatim skup višekratnika broja a odgovara skupu višekratnika broja − a.

Primjer 10

Potrebno je izračunati LCM negativnih brojeva − 145 I − 45 .

Rješenje

Zamenimo brojeve − 145 I − 45 na njihove suprotne brojeve 145 I 45 . Sada, koristeći algoritam, izračunavamo LCM (145, 45) = 145 · 45: GCD (145, 45) = 145 · 45: 5 = 1,305, nakon što smo prethodno odredili GCD pomoću Euklidovog algoritma.

Dobijamo da je LCM brojeva − 145 i − 45 jednaki 1 305 .

odgovor: LCM (− 145, − 45) = 1.305.

Ako primijetite grešku u tekstu, označite je i pritisnite Ctrl+Enter

Da biste razumjeli kako izračunati LCM, prvo morate odrediti značenje pojma „višestruko“.


Višekratnik A je prirodan broj koji je bez ostatka djeljiv sa A. Dakle, brojevi koji su višekratnici od 5 mogu se smatrati 15, 20, 25 itd.


Može postojati ograničen broj djelitelja određenog broja, ali postoji beskonačan broj višekratnika.


Zajednički višekratnik prirodnih brojeva je broj koji je djeljiv s njima bez ostatka.

Kako pronaći najmanji zajednički višekratnik brojeva

Najmanji zajednički višekratnik (LCM) brojeva (dva, tri ili više) je najmanji prirodan broj koji je djeljiv sa svim ovim brojevima.


Da biste pronašli LOC, možete koristiti nekoliko metoda.


Za male brojeve, zgodno je zapisati sve višekratnike ovih brojeva na liniji dok ne nađete nešto zajedničko među njima. Višekratnici se označavaju velikim slovom K.


Na primjer, višekratnici od 4 mogu se napisati ovako:


K (4) = (8,12, 16, 20, 24, ...)


K (6) = (12, 18, 24, ...)


Dakle, možete vidjeti da je najmanji zajednički višekratnik brojeva 4 i 6 broj 24. Ova notacija se radi na sljedeći način:


LCM(4, 6) = 24


Sada zapišite zajedničke faktore za oba broja. U našoj verziji to je dva i pet. Međutim, u drugim slučajevima ovaj broj može biti jedna, dvije ili tri cifre ili čak i više. Zatim morate raditi sa diplomama. Odaberite najmanju snagu za svaki faktor. U primjeru je dva na drugi stepen i pet na prvi.

Na kraju, samo trebate pomnožiti rezultirajuće brojeve. U našem slučaju, sve je krajnje jednostavno: dva na kvadrat pomnožena sa pet jednako je 20. Dakle, broj 20 se može nazvati najvećim zajedničkim djeliteljem za 60 i 80.

Video na temu

Bilješka

Zapamtite da je prosti faktor broj koji ima samo 2 djelitelja: jedan i sam broj.

Koristan savjet

Pored ove metode, možete koristiti i Euklidski algoritam. Njegov puni opis, predstavljen u geometrijskom obliku, može se naći u Euklidovoj knjizi "Elementi".

Povezani članak

Zbrajanje i oduzimanje prirodnih razlomaka moguće je samo ako imaju isti nazivnik. Kako ne biste komplicirali proračune kada ih dovedete do jednog nazivnika, pronađite najmanji zajednički djelitelj nazivnika i izvršite proračun.

Trebaće ti

  • - sposobnost faktoriranja brojeva u proste faktore;
  • - sposobnost izvođenja operacija sa razlomcima.

Instrukcije

Zapišite sabiranje razlomaka. Zatim pronađite njihov najmanji zajednički višekratnik. Da biste to učinili, izvršite sljedeći niz radnji: 1. Zamislite svaki od nazivnika u prostim brojevima (prost broj, broj koji je djeljiv samo sa 1 i sam bez ostatka, na primjer 2, 3, 5, 7, itd.).2. Grupirajte sve jednostavne koji su napisani, navodeći njihove stupnjeve. 3. Odaberite najveće potencije svakog od ovih prostih faktora koji se pojavljuju u ovim brojevima. 4. Pomnožite napisane moći.

Na primjer, zajednički imenilac za razlomke sa nazivnicima 15, 24 i 36 će biti broj koji se može izračunati na sljedeći način: 15=3 5; 24=2^3 3;36=2^3 3^2 Napiši najveće potencije svih prostih djelitelja ovih brojeva: 2^3 3^2 5=360.

Podijelite zajednički imenilac sa svakim i nazivnike razlomaka koji se sabiraju. Pomnožite njihove brojnike s rezultirajućim brojem. Ispod zajedničke linije razlomka napišite najmanju zajedničku dividendu, koja je ujedno i najmanji zajednički imenilac. U brojiocu dodajte brojeve koji nastaju množenjem svakog brojioca s količnikom najmanjeg zajedničkog faktora podijeljenog sa nazivnikom razlomka. Zbroj svih brojnika i podijeljen najmanjim zajedničkim nazivnikom bit će željeni broj.

Na primjer, za 4/15, 7/24 i 11/36 uradite ovo. Pronađite najmanji zajednički imenilac, koji je 360. Zatim podijelite 360/15=24, 360/24=15, 360/36=10. Pomnožite broj 4, koji je brojilac prvog razlomka, sa 24 (4 24=96), broj 7 sa 15 (7 15=105), broj 11 sa 10 (11 10=110). Zatim dodajte ove brojeve (96+105+110=301). Dobijamo rezultat 4/15+7/24+11/36=301/360.

Izvori:

  • kako pronaći najmanji broj

Cijeli brojevi su različiti matematički brojevi koji imaju mnoge primjene u svakodnevnom životu. Nenegativni cijeli brojevi se koriste kada se označava broj objekata, negativni brojevi - u porukama o vremenskoj prognozi, itd. GCD i LCM su prirodne karakteristike cijelih brojeva povezanih s operacijama dijeljenja.

Instrukcije

GCD je lako izračunati korištenjem Euklidovog algoritma ili binarne metode. Prema Euklidovom algoritmu za određivanje gcd brojeva a i b, od kojih jedan nije nula, postoji niz brojeva r_1 > r_2 > r_3 > ... > r_n, u kojem je r_1 jednako ostatku dijeljenja prvi broj po drugi. A ostali članovi niza jednaki su ostatcima od dijeljenja prethodnog člana s prethodnim, a pretposljednji element se dijeli s posljednjim bez ostatka.

Matematički, niz se može predstaviti kao:
a = b*k_0 + r_1
b = r_1*k_1 + r_2
r_1 = r_2*k_2 + r_3

r_(n - 1) = r_n*k_n,
gdje je k_i cjelobrojni faktor.
GCD (a, b) = r_n.

Primjer.
Pronađite GCD (36, 120). Prema Euklidskom algoritmu, od 120 oduzmite broj koji je višekratnik 36, u ovom slučaju to je 120 – 36*3 = 12. Sada od 120 oduzmite broj koji je višekratnik 12, dobićete 120 – 12* 10 = 0. Dakle, GCD (36, 120) = 12.

Binarni algoritam za pronalaženje GCD zasniva se na teoriji pomaka. Prema ovoj metodi, gcd dva broja ima sljedeća svojstva:
GCD (a, b) = 2*GCD (a/2, b/2) za par a i b
GCD (a, b) = GCD (a/2, b) za parno a i neparno b (suprotno vrijedi za GCD (a, b) = GCD (a, b/2))
GCD (a, b) = GCD ((a - b)/2, b) za neparan a > b
GCD (a, b) = GCD ((b - a)/2, a) za neparan b > a
Dakle, gcd (36, 120) = 2*gcd (18, 60) = 4*gcd (9, 30) = 4* gcd (9, 15) = 4*gcd ((15 - 9)/2=3 , 9) = 4*3 = 12.

Najmanji zajednički višekratnik (LCM) dva cijela broja je najmanji cijeli broj koji je djeljiv sa oba originalna broja bez ostavljanja ostatka.
LCM se može izračunati pomoću GCD: LCM (a, b) = |a*b|/GCD (a, b).

Drugi način za izračunavanje LCM je kanonska faktorizacija brojeva u proste faktore:
a = r_1^k_1*…*r_n^k_n
b = r_1^m_1*…*r_n^m_n,
gdje su r_i prosti brojevi, a k_i i m_i cijeli brojevi ≥ 0.
LCM je predstavljen u obliku istih prostih faktora, pri čemu se kao stepen uzima maksimum od dva broja.

Primjer.
Pronađite LCM (16, 20):
16 = 2^4*3^0*5^0
20 = 2^2*3^0*5^1
LCM (16, 20) = 2^4*3^0*5^1 = 16*5 = 80.


Materijal predstavljen u nastavku je logičan nastavak teorije iz članka pod naslovom LCM - najmanji zajednički višekratnik, definicija, primjeri, veza između LCM i GCD. Ovdje ćemo razgovarati o pronalaženje najmanjeg zajedničkog višekratnika (LCM), a posebnu pažnju ćemo posvetiti rješavanju primjera. Prvo ćemo pokazati kako se LCM dva broja izračunava pomoću GCD ovih brojeva. Zatim ćemo pogledati pronalaženje najmanjeg zajedničkog višekratnika rastavljanjem brojeva u proste faktore. Nakon toga ćemo se fokusirati na pronalaženje LCM od tri ili više brojeva, a također ćemo obratiti pažnju na izračunavanje LCM negativnih brojeva.

Navigacija po stranici.

Izračunavanje najmanjeg zajedničkog višekratnika (LCM) putem GCD

Jedan od načina da se pronađe najmanji zajednički višekratnik je zasnovan na odnosu između LCM i GCD. Postojeća veza između LCM i GCD nam omogućava da izračunamo najmanji zajednički višekratnik dva pozitivna cijela broja kroz poznati najveći zajednički djelitelj. Odgovarajuća formula je LCM(a, b)=a b:GCD(a, b) . Pogledajmo primjere pronalaženja LCM-a pomoću date formule.

Primjer.

Pronađite najmanji zajednički višekratnik dva broja 126 i 70.

Rješenje.

U ovom primjeru a=126, b=70. Koristimo vezu između LCM i GCD, izraženu formulom LCM(a, b)=a b:GCD(a, b). Odnosno, prvo moramo pronaći najveći zajednički djelitelj brojeva 70 i 126, nakon čega možemo izračunati LCM ovih brojeva koristeći napisanu formulu.

Nađimo GCD(126, 70) koristeći Euklidov algoritam: 126=70·1+56, 70=56·1+14, 56=14·4, dakle, GCD(126, 70)=14.

Sada nalazimo traženi najmanji zajednički višekratnik: GCD(126, 70)=126·70:GCD(126, 70)= 126·70:14=630.

odgovor:

LCM(126, 70)=630 .

Primjer.

Čemu je LCM(68, 34) jednako?

Rješenje.

Jer 68 je djeljivo sa 34, tada je GCD(68, 34)=34. Sada izračunavamo najmanji zajednički višekratnik: GCD(68, 34)=68·34:GCD(68, 34)= 68·34:34=68.

odgovor:

LCM(68, 34)=68 .

Imajte na umu da prethodni primjer odgovara sljedećem pravilu za pronalaženje LCM-a za pozitivne cijele brojeve a i b: ako je broj a djeljiv sa b, tada je najmanji zajednički višekratnik ovih brojeva a.

Pronalaženje LCM-a rastavljanjem brojeva u proste faktore

Drugi način za pronalaženje najmanjeg zajedničkog višekratnika je baziran na faktoringu brojeva u proste faktore. Ako sastavite proizvod od svih prostih faktora datih brojeva, a zatim iz ovog proizvoda isključite sve uobičajene proste faktore prisutne u dekompozicijama datih brojeva, tada će rezultirajući proizvod biti jednak najmanjem zajedničkom višekratniku datih brojeva .

Navedeno pravilo za pronalaženje LCM proizlazi iz jednakosti LCM(a, b)=a b:GCD(a, b). Zaista, proizvod brojeva a i b jednak je proizvodu svih faktora uključenih u proširenje brojeva a i b. Zauzvrat, GCD(a, b) je jednak proizvodu svih prostih faktora koji su istovremeno prisutni u proširenjima brojeva a i b (kao što je opisano u odjeljku o pronalaženju GCD pomoću proširenja brojeva u proste faktore).

Dajemo primjer. Javite nam da je 75=3·5·5 i 210=2·3·5·7. Sastavimo proizvod od svih faktora ovih proširenja: 2·3·3·5·5·5·7 . Sada iz ovog proizvoda isključujemo sve faktore prisutne u proširenju broja 75 i proširenju broja 210 (ovi faktori su 3 i 5), tada će proizvod dobiti oblik 2·3·5·5·7 . Vrijednost ovog proizvoda jednaka je najmanjem zajedničkom višekratniku 75 i 210, tj. NOC(75, 210)= 2·3·5·5·7=1,050.

Primjer.

Faktorite brojeve 441 i 700 u proste faktore i pronađite najmanji zajednički višekratnik ovih brojeva.

Rješenje.

Razložimo brojeve 441 i 700 u proste faktore:

Dobijamo 441=3·3·7·7 i 700=2·2·5·5·7.

Sada napravimo proizvod od svih faktora koji su uključeni u proširenje ovih brojeva: 2·2·3·3·5·5·7·7·7. Izuzmimo iz ovog proizvoda sve faktore koji su istovremeno prisutni u oba proširenja (postoji samo jedan takav faktor - to je broj 7): 2·2·3·3·5·5·7·7. dakle, LCM(441, 700)=2·2·3·3·5·5·7·7=44 100.

odgovor:

NOC(441, 700)= 44 100 .

Pravilo za pronalaženje LCM koristeći faktorizaciju brojeva u proste faktore može se formulisati malo drugačije. Ako se faktori koji nedostaju iz proširenja broja b dodaju faktorima iz proširenja broja a, tada će vrijednost rezultirajućeg proizvoda biti jednaka najmanjem zajedničkom višekratniku brojeva a i b.

Na primjer, uzmimo iste brojeve 75 i 210, njihove dekompozicije na proste faktore su sljedeće: 75=3·5·5 i 210=2·3·5·7. Faktorima 3, 5 i 5 iz proširenja broja 75 dodamo faktore koji nedostaju 2 i 7 iz proširenja broja 210, dobijemo proizvod 2·3·5·5·7, čija je vrijednost jednako LCM(75, 210).

Primjer.

Pronađite najmanji zajednički višekratnik brojeva 84 i 648.

Rješenje.

Prvo dobijamo dekompozicije brojeva 84 i 648 na proste faktore. Izgledaju kao 84=2·2·3·7 i 648=2·2·2·3·3·3·3. Faktorima 2, 2, 3 i 7 iz proširenja broja 84 dodamo faktore koji nedostaju 2, 3, 3 i 3 iz proširenja broja 648, dobijemo proizvod 2 2 2 3 3 3 3 7, što je jednako 4 536 . Dakle, željeni najmanji zajednički višekratnik od 84 i 648 je 4,536.

odgovor:

LCM(84, 648)=4,536 .

Pronalaženje LCM od tri ili više brojeva

Najmanji zajednički višekratnik tri ili više brojeva može se naći uzastopnim pronalaženjem LCM dva broja. Podsjetimo se odgovarajuće teoreme, koja daje način da se pronađe LCM od tri ili više brojeva.

Teorema.

Neka su dati pozitivni cijeli brojevi a 1 , a 2 , …, a k, najmanji zajednički višekratnik m k ovih brojeva nalazi se sekvencijalnim izračunavanjem m 2 = LCM(a 1 , a 2) , m 3 = LCM(m 2 , a 3) , … , m k = LCM(m k−1 , a k) .

Razmotrimo primjenu ove teoreme na primjeru pronalaženja najmanjeg zajedničkog višekratnika četiri broja.

Primjer.

Pronađite LCM četiri broja 140, 9, 54 i 250.

Rješenje.

U ovom primjeru, a 1 =140, a 2 =9, a 3 =54, a 4 =250.

Prvo nađemo m 2 = LOC(a 1, a 2) = LOC(140, 9). Da bismo to uradili, koristeći Euklidov algoritam, odredimo GCD(140, 9), imamo 140=9·15+5, 9=5·1+4, 5=4·1+1, 4=1·4, dakle, GCD(140, 9)=1 , odakle GCD(140, 9)=140 9:GCD(140, 9)= 140·9:1=1,260. To jest, m 2 =1 260.

Sada pronalazimo m 3 = LOC (m 2 , a 3) = LOC (1 260, 54). Izračunajmo ga kroz GCD(1 260, 54), koji takođe određujemo pomoću Euklidovog algoritma: 1 260=54·23+18, 54=18·3. Tada je gcd(1,260, 54)=18, od čega je gcd(1,260, 54)= 1,260·54:gcd(1,260, 54)= 1,260·54:18=3,780. Odnosno, m 3 =3 780.

Ostaje samo pronaći m 4 = LOC(m 3, a 4) = LOC(3 780, 250). Da bismo to uradili, nalazimo GCD(3,780, 250) koristeći Euklidov algoritam: 3,780=250·15+30, 250=30·8+10, 30=10·3. Dakle, GCM(3,780, 250)=10, odakle je GCM(3,780, 250)= 3 780 250: GCD(3 780, 250)= 3,780·250:10=94,500. To jest, m 4 =94,500.

Dakle, najmanji zajednički višekratnik od originalna četiri broja je 94.500.

odgovor:

LCM(140, 9, 54, 250)=94.500.

U mnogim slučajevima, zgodno je pronaći najmanji zajednički umnožak tri ili više brojeva korištenjem prostih faktorizacija datih brojeva. U tom slučaju morate se pridržavati sljedećeg pravila. Najmanji zajednički umnožak nekoliko brojeva jednak je umnošku koji je sastavljen na sljedeći način: faktori koji nedostaju iz proširenja drugog broja dodaju se svim faktorima iz proširenja prvog broja, faktori koji nedostaju iz proširenja broja treći broj se dodaje rezultujućim faktorima, i tako dalje.

Pogledajmo primjer pronalaženja najmanjeg zajedničkog višekratnika pomoću faktorizacije.

Primjer.

Pronađite najmanji zajednički višekratnik od pet brojeva 84, 6, 48, 7, 143.

Rješenje.

Prvo, dobijamo dekompozicije ovih brojeva na proste faktore: 84=2·2·3·7, 6=2·3, 48=2·2·2·2·3, 7 (7 je prost broj, poklapa se sa njegovom dekompozicijom na proste faktore) i 143=11·13.

Da biste pronašli LCM ovih brojeva, faktorima prvog broja 84 (to su 2, 2, 3 i 7), morate dodati faktore koji nedostaju iz proširenja drugog broja 6. Dekompozicija broja 6 ne sadrži faktore koji nedostaju, jer su i 2 i 3 već prisutni u dekompoziciji prvog broja 84. Zatim, faktorima 2, 2, 3 i 7 dodajemo faktore koji nedostaju 2 i 2 iz proširenja trećeg broja 48, dobijamo skup faktora 2, 2, 2, 2, 3 i 7. Neće biti potrebe za dodavanjem množitelja ovom skupu u sljedećem koraku, pošto je 7 već sadržano u njemu. Konačno, faktorima 2, 2, 2, 2, 3 i 7 dodajemo faktore 11 i 13 koji nedostaju iz proširenja broja 143. Dobijamo proizvod 2·2·2·2·3·7·11·13, što je jednako 48,048.

Podijeli: