Электронная конфигурация ионов. Электронные конфигурации атомов элементов малых периодов

Заполнение орбиталей в не возбужденном атоме осуществляется таким образом, чтобы энергия атома была минимальной (принцип минимума энергии). Сначала заполняются орбитали первого энергетического уровня, затем второго, причем сначала заполняется орбиталь s-подуровня и лишь затем орбитали p-подуровня. В 1925 г. швейцарский физик В. Паули установил фундаментальный квантово-механический принцип естествознания (принцип Паули, называемый также принципом запрета или принципом исключения). В соответствии с принципом Паули:

в атоме не может быть двух электронов, имеющих одинаковый набор всех четырех квантовых чисел.

Электронную конфигурацию атома передают формулой, в которой указывают заполненные орбитали комбинацией цифры, равной главному квантовому числу, и буквы, соответствующей орбитальному квантовому числу. Верхним индексом указывают число электронов на Данных орбиталях.

Водород и гелий

Электронная конфигурация атома водорода 1s 1 , а гелия 1s 2 . Атом водорода имеет один неспаренный электрон, а атом гелия - два спаренных электрона. Спаренные электроны имеют одинаковые значения всех квантовых чисел, кроме спинового. Атом водорода может отдать свой электрон и превратиться в положительно заряженный ион - катион Н + (протон), не имеющий электронов (электронная конфигурация 1s 0). Атом водорода может присоединить один электрон и превратиться в отрицательно заряженный ион Н - (гидрид-ион) с электронной конфигурацией 1s 2 .

Литий

Три электрона в атоме лития распределяются следующим образом: 1s 2 1s 1 . В образовании химической связи участвуют электроны только внешнего энергетического уровня, называемые валентными. У атома лития валентным является электрон 2s-подуровня, а два электрона 1s-подуровня - внутренние электроны. Атом лития достаточно легко теряет свой валентный электрон, переходя в ион Li + , имеющий конфигурацию 1s 2 2s 0 . Обратите внимание, что гидрид-ион, атом гелия и катион лития имеют одинаковое число электронов. Такие частицы называются изоэлектронными. Они имеют сходную электронную конфигурацию, но разный заряд ядра. Атом гелия весьма инертен в химическом отношении, что связано с особой устойчивостью электронной конфигурации 1s 2 . Незаполненные электронами орбитали называют вакантными. В атоме лития три орбитали 2p-подуровня вакантные.

Бериллий

Электронная конфигурация атома бериллия - 1s 2 2s 2 . При возбуждении атома электроны с более низкого энергетического подуровня переходят на вакантные орбитали более высокого энергетического подуровня. Процесс возбуждения атома бериллия можно передать следующей схемой:

1s 2 2s 2 (основное состояние) + → 1s 2 2s 1 2p 1 (возбужденное состояние).

Сравнение основного и возбужденного состояний атома бериллия показывает, что они различаются числом неспаренных электронов. В основном состоянии атома бериллия неспаренных электронов нет, в возбужденном их два. Несмотря на то что при возбуждении атома в принципе любые электроны с более низких по энергии орбиталей могут переходить на более высокие орбитали, для рассмотрения химических процессов существенными являются только переходы между энергетическими подуровнями с близкой энергией.

Это объясняется следующим. При образовании химической связи всегда выделяется энергия, т. е. совокупность двух атомов переходит в энергетически более выгодное состояние. Процесс возбуждения требует затрат энергии. При распаривании электронов в пределах одного энергетического уровня затраты на возбуждение компенсируются за счет образования химической связи. При распаривании электронов в пределах разных уровней затраты на возбуждение столь велики, что не могут быть компенсированы образованием химической связи. В отсутствие партнера по возможной химической реакции возбужденный атом выделяет квант энергии и возвращается в основное состояние - такой процесс называется релаксацией.

Бор

Электронные конфигурации атомов элементов 3-го периода Периодической системы элементов будут в определенной степени аналогичны приведенным выше (нижним индексом указан атомный номер):

11 Na 3s 1
12 Mg 3s 2
13 Al 3s 2 3p 1
14 Si 2s 2 2p2
15 P 2s 2 3p 3

Однако аналогия не является полной, так как третий энергетический уровень расщепляется на три подуровня и у всех перечисленных элементов имеются вакантные d-орбитали, на которые могут при возбуждении переходить электроны, увеличивая мультиплетность. Особо это важно для таких элементов, как фосфор , сера и хлор .

Максимальное число неспаренных электронов в атоме фосфора может достигать пяти:

Этим объясняется возможность существования соединений, в которых валентность фосфора равна 5. Атом азота , имеющий конфигурацию валентных электронов в основном состоянии такую же, как и атом фосфора , образовать пять ковалентных связей не может.

Аналогичная ситуация возникает при сравнении валентных возможностей кислорода и серы , фтора и хлора . Распаривание электронов в атоме серы приводит к появлению шести неспаренных электронов:

3s 2 3p 4 (основное состояние) → 3s 1 3p 3 3d 2 (возбужденное состояние).

Это отвечает шести валентному состоянию, которое для кислорода недостижимо. Максимальная валентность азота (4) и кислорода (3) требует более детального объяснения, которое будет приведено позднее.

Максимальная валентность хлора равна 7, что соответствует конфигурации возбужденного состояния атома 3s 1 3p 3 d 3 .

Наличие вакантных Зd-орбиталей у всех элементов третьего периода объясняется тем, что, начиная с 3-го энергетического уровня, происходит частичное перекрывание подуровней разных уровней при заполнении электронами. Так, 3d-подуровень начинает заполняться только после того, как будет заполнен 4s-подуровень. Запас энергии электронов на атомных орбиталях разных подуровней и, следовательно, порядок их заполнения, возрастает в следующем порядке:

Раньше заполняются орбитали, для которых сумма первых двух квантовых чисел (n + l) меньше; при равенстве этих сумм сначала заполняются орбитали с меньшим главным квантовым числом.

Эту закономерность сформулировал В. М. Клечковский в 1951 г.

Элементы, в атомах которых происходит заполнение электронами s-подуровня, называются s-элементами. К ним относятся по два первых элемента каждого периода: водород , Однако уже у следующего d-элемента - хрома - наблюдается некоторое «отклонение» в расположении электронов по энергетическим уровням в основном состоянии: вместо ожидаемых четырех неспаренных электронов на 3d-подуровне в атоме хрома имеются пять неспаренных электронов на 3d-подуровне и один неспаренный электрон на s-подуровне: 24 Cr 4s 1 3d 5 .

Явление перехода одного s-электрона на d-подуровень часто называют «проскоком» электрона. Это можно объяснить тем, что орбитали заполняемого электронами d-подуровня становятся ближе к ядру вследствие усиления электростатического притяжения между электронами и ядром. Вследствие этого состояние 4s 1 3d 5 становится энергетически более выгодным, чем 4s 2 3d 4 . Таким образом, наполовину заполненный d-подуровень (d 5) обладает повышенной стабильностью по сравнению с иными возможными вариантами распределения электронов. Электронная конфигурация, отвечающая существованию максимально возможного числа распаренных электронов, достижимая у предшествующих d-элементов только в результате возбуждения, характерна для основного состояния атома хрома. Электронная конфигурация d 5 характерна и для атома марганца : 4s 2 3d 5 . У следующих d-элементов происходит заполнение каждой энергетической ячейки d-подуровня вторым электроном: 26 Fe 4s 2 3d 6 ; 27 Co 4s 2 3d 7 ; 28 Ni 4s 2 3d 8 .

У атома меди достижимым становится состояние полностью заполненного d-подуровня (d 10) за счет перехода одного электрона с 4s-под-уровня на 3d-подуровень: 29 Cu 4s 1 3d 10 . Последний элемент первого ряда d-элементов имеет электронную конфигурацию 30 Zn 4s 23 d 10 .

Общая тенденция, проявляющаяся в устойчивости d 5 и d 10 конфигурации, наблюдается и у элементов ниже лежащих периодов. Молибден имеет электронную конфигурацию, аналогичную хрому : 42 Mo 5s 1 4d 5 , а серебро - меди : 47 Ag5s 0 d 10 . Более того, конфигурация d 10 достигается уже у палладия за счет перехода обоих электронов с 5s-орбитали на 4d-орбиталь: 46Pd 5s 0 d 10 . Существуют и другие отклонения от монотонного заполнения d-, а также f-орбиталей.


Расположение электронов по энергетическим уровням и орбиталям называется электронной конфигурацией. Конфигурация может быть изображена в виде так называемых электронных формул, в которых цифрой впереди указан номер энергетического уровня, затем буквой обозначен подуровень, а вверху справа от буквы - число электронов на данном подуровне. Сумма последних чисел соответствует величине положительного заряда ядра атома. Например, электронные формулы серы и кальция будут иметь следующий вид: S (+ 16) - ls22s22p63s23p\ Са (+ 20) - ls22s22p63s23p64s2. Заполнение электронных уровней осуществляется в соответствии с принципом наименьшей энергии: наиболее устойчивому состоянию электрона в атоме отвечает состояние с минимальным значением энергии. Поэтому вначале заполняются слои с наименьшими значениями энергии. Советский ученый В. Клечковский установил, что энергия электрона возрастает по мере увеличения суммы главного и орбитального квантовых чисел (п + /)> поэтому заполнение электронных слоев происходит в порядке увеличения суммы главного и орбитального квантовых чисел. Если для двух подуровней суммы (п -f1) равны, то сначала идет заполнение подуровней с наименьшим п и наибольшим l9 а затем подуровней с большим п и меньшим L Пусть, к примеру, сумма (п + /) « 5. Этой сумме соответствуют следующие комбинации ли I: п = 3; / 2; п *» 4; 1-1; л = / - 0. Исходя из этого, вначале должно идти заполнение d-подуровня третьего энергетического уровня, далее должен заполняться 4р-подуровень и лишь после этого s-подуровень пятого энергетического уровня. Все вышеразобранное определяет следующий порядок заполнения электронов в атомах: Пример 1 Изобразите электронную формулу атома натрия. Решение Исходя из положения в периодической системе, устанавливают, что натрий является элементом третьего периода. Это свидетельствует о том, что электроны в атоме натрия располагаются на трех энергетических уровнях. По порядковому номеру элемента определяют суммарное количество электронов на этих трех уровнях - одиннадцать. На первом энергетическом уровне (лс1, / = 0; s-подуро-вень) максимальное число электронов равно// « 2п2, N = 2. Распределение электронов на s-подуровне I энергетического уровня отображают записью - Is2, На II энергетическом уровне п = 2, I « 0 (s-подуровень) и I = 1 (р-подуровень) максимальное число электронов равно восьми. Так как на S-подуровне располагается максимальное 2ё, на р-подуровне будет 6ё. Распределение электронов на II энергетическом уровне отображают записью - 2s22p6. На третьем энергетическом уровне возможны S-, р- и d-подуровни. У атома натрия на III энергетическом уровне располагается только один электрон, который, согласно принципу наименьшей энергии, займет Зв-подуровень. Объединяя записи распределения электронов на каждом слое в одну, получают электронную формулу атома натрия: ls22s22p63s1. Положительный заряд атома натрия (+11) компенсируется суммарным количеством электронов (11). Кроме того, структура электронных оболочек изображается с помощью энергетических или квантовых ячеек (орбиталей) - это так называемые графические электронные формулы. Каждая такая ячейка обозначается прямоугольником Q, электрон t> направление стрелки характеризует спин электрона. По принципу Паули в ячейке (орбита-ли) размещается один (неспаренный) или два (спаренных) электрона. Электронную структуру атома натрия можно представить схемой: При заполнении квантовых ячеек необходимо знать правило Гунда: устойчивому состоянию атома соответствует такое распределение электронов в пределах энергетического подуровня (р, d, f), при котором абсолютное значение суммарного спина атома максимально. Так, если два электрона займут одну орбиталь\]j\ \ \, то их суммарный спин будет равен нулю. Заполнение электронами двух орбиталей 1 т 111 I даст суммарный спин, равный единице. Исходя из принципа Гунда, распределение электронов по квантовым ячейкам, например, для атомов 6С и 7N будет следующим Вопросы и задачи для самостоятельного решения 1. Перечислите все основные теоретические положения, необходимые для заполнения электронов в атомах. 2. Покажите справедливость принципа наименьшей энергии на примере заполнения электронов в атомах кальция и скандия, стронция, иттрия и индия. 3. Какая из графических электронных формул атома фосфора (невозбужденное состояние) является правильной? Ответ мотивируйте с привлечением правила Гунда. 4. Напишите все квантовые числа для электронов атомов: а) натрия, кремния; б) фосфора, хлора; в) серы, аргона. 5. Составьте электронные формулы атомов s-элемента первого и третьего периодов. 6. Составьте электронную формулу атома р-элемента пятого периода, внешний энергетический уровень которого имеет вид 5s25p5. Каковы его химические свойства? 7. Изобразите распределение электронов по орбита-лям в атомах кремния, фтора, криптона. 8. Составьте электронную формулу элемента, в атоме которого энергетическое состояние двух электронов внешнего уровня описывается следующими квантовыми числами: п - 5; 0; т1 = 0; та = + 1/2; та « -1/2. 9. Внешние и предпоследние энергетические уровни атомов имеют следующий вид: а) 3d24s2; б) 4d105s1; в) 5s25p6. Составьте электронные формулы атомов элементов. Укажите р- и d-элементы. 10. Составьте электронные формулы атомов d-злемен-тов, у которых на d-подуровне 5 электронов. 11. Изобразите распределение электронов по квантовым ячейкам в атомах калия, хлора, неона. 12. Наружный электронный слой элемента выражается формулой 3s23p4. Определите порядковый номер и название элемента. 13. Напишите электронные конфигурации следующих ионов: 14. Содержат ли атомы О, Mg, Ti электроны М-уровня? 15. Какие частицы атомов являются изоэлектронны-ми, т. е. содержат одинаковое число электронов: 16. Сколько электронных уровней у атомов в состоянии S2", S4+, S6+? 17. Сколько свободных d-орбиталей в атомах Sc, Ti, V? Напишите электронные формулы атомов этих элементов. 18. Укажите порядковый номер элемента, у которого: а) заканчивается заполнение электронами 4с1-подуров-ня; б) начинается заполнение электронами 4р-подуровня. 19. Укажите особенности электронных конфигураций атомов меди и хрома. Какое число 4в-электронов содержат атомы этих элементов в устойчивом состоянии? 20. Сколько вакантных Зр-орбиталей имеет в стационарном и возбужденном состоянии атом кремния?

Лекция 2. Электронная конфигурация элемента

В конце прошлой лекции нами на основании правил Клечковского был построен порядок заполнения электронами энергетических подуровней

1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d10 5p6 6s2 5d1 4f14 5d9 6p6 7s2 6d1 5f14 6d9 7p6 …

Распределение электронов атома по энергетическим подуровням называется электронной конфигурацией. В первую очередь, при взгляде на ряд заполнения бросается в глаза некая периодичность-закономерность.

Заполнение электронами энергетических орбиталей в основном состоянии атома подчиняется принципу наименьшей энергии: вначале заполняются более выгодные низколежащие орбитали, а затем последовательно более высоколежащие орбитали согласно порядку заполнения.

Проанализируем последовательность заполнения.

Если в составе атома присутствует ровно 1 электрон, он попадает на самую низколежащую 1s -АО (АО – атомная орбиталь). Следовательно, возникающая электронная конфигурация может быть представлена записью 1s1 или графически (См. ниже – стрелочка в квадратике).

Нетрудно понять, что если электронов в атоме больше одного, они последовательно занимают сначала 1s, а затем 2s и, наконец, переходят на 2p-подуровень. Однако уже для шести электронов (атом углерода в основном состоянии) возникают две возможности: заполнение 2p-подуровня двумя электронами с одинаковым спином или с противоположным.

Приведем простую аналогию: предположим, что атомные орбитали являются своеобразными «комнатами» для «жильцов», в роли которых выступают электроны. Из практики хорошо известно, что жильцы предпочитают по возможности занимать каждый отдельную комнату, а не тесниться в одной.

Аналогичное поведение характерно и для электронов, что находит отражение в правиле Гунда:

Правило Гунда : устойчивому состоянию атома соответствует такое распределение электронов в пределах энергетического подуровня, при котором суммарный спин максимален.

Состояние атома с минимальной энергией называется основным, а все остальные – возбужденными состояниями атома.

Лекция 2. Электронная конфигурация

Атомы элементов I и II периодов

1 электрон

2 электрона

3 электрона

4 электрона

5 электронов

6 электронов

7 электронов

8 электронов

9 электронов

10Ne

10 электронов

Элемент всего e-

электронная конфигурация

распределение электронов

Тогда, на основании правила Гунда, для азота основное состояние предполагает наличие трех неспаренных p -электронов (электронная конфигурация …2p3 ). В атомах кислорода, фтора и неона происходит последовательное спаривание электронов и заполнение 2p-подуровня.

Обратим внимание, что третий период Периодической системы начинает атом натрия,

конфигурация которого (11 Na … 3s1 ) очень похожа на конфигурацию лития (3 Li … 2s1 )

за тем исключением, что главное квантовое число n равно трем, а не двум.

Заполнение электронами энергетических подуровней в атомах элементов III периода в точности аналогично наблюдавшемуся для элементов II периода: у атома магния завершается заполнение 3s-подуровня, затем от алюминия до аргона электроны последовательно размещаются на 3p-подуровне согласно правилу Гунда: сначала на АО размещаются отдельные электроны (Al, Si, P), затем происходит их спаривание.

Атомы элементов III периода

11Na

12Mg

13Al

14Si

17Cl

18Ar

сокращенная

распределение e-

Лекция 2. Электронная конфигурация

Четвертый период Периодической системы начинается с заполнения электронами 4s-подуровня в атомах калия и кальция. Как следует из порядка заполнения, затем наступает очередь 3d -орбиталей.

Таким образом, можно заключить, что заполнение электронами d -АО «опаздывает» на 1 период: вIV периоде заполняется 3(!) d -подуровень).

Итак, от Sc до Zn происходит заполнение электронами 3d -подуровня (10 электронов), затем от Ga до Kr заполняется 4p -подуровень.

Атомы элементов IV периода

20Ca

21Sc

1s2 2s2 2p6 3s2 3p6 4s2 3d1

4s2 3d1

1s2 2s2 2p6 3s2 3p6 4s2 3d2

22Ti

4s2 3d2

30Zn

1s2 2s2 2p6 3s2 3p6 4s2 3d10

4s2 3d10

31Ga

1s 2s 2p 3s 3p 4s 3d

36Kr

1s 2s 2p 3s 3p 4s 3d

сокращенная

распределение e-

Заполнение электронами энергетических подуровней в атомах элементов V периода в точности аналогично наблюдавшемуся для элементов IV периода

(разобрать самостоятельно)

В шестом периоде сначала заполняется электронами 6s-подуровень (атомы55 Cs и

56 Ba), а затем один электрон располагается на 5d -орбитали лантана (57 La 6s2 5d1 ).

У следующих 14 элементов (с 58 по 71) заполняется 4f -подуровень, т.е. заполнение f- орбиталей «опаздывает» на 2 периода, при этом электрон на 5d -подуровне сохраняется. Например, следует записать электронную конфигурацию церия

58 Ce 6s2 5d 1 4 f 1

Начиная с 72-элемента (72 Hf) и до 80 (80 Hg) происходит «дозаполнение» 5d -подуровня.

Следовательно, электронные конфигурация гафния и ртути имеют вид

72 Hf 6s2 5d 1 4 f 14 5d 1 или допустима запись72 Hf 6s2 4 f 14 5d 2 80 Hg 6s2 5d 1 4 f 14 5d 9 или80 Hg 6s2 4 f 14 5d 10

Лекция 2. Электронная конфигурация

Аналогичным образом происходит заполнение электронами энергетических подуровней в атомах элементов VII периода.

Определение квантовых чисел из электронной конфигурации

Что такое квантовые числа, как они появились и зачем нужны – см. Лекция 1.

Дано: запись электронной конфигурации «3p 4 »

Главное квантовое число n – первая цифра в записи, т.е. «3». n = 3 «3 p4 », главное квантовое число;

Побочное (орбитальное, азимутальное) квантовое число l закодировано буквенным обозначением подуровня. Букваp соответствует числуl = 1.

форма облака

l = 1 «3p 4 »,

«гантеля»

Распределение электронов в пределах подуровня согласно принципу Паули и правилу Гунда

m Є [-1;+1] – орбитали одинаковы (вырождены) по энергииn = 3, l = 1, m Є [-1;+1] (m = -1); s = + ½

n = 3, l = 1, m Є [-1;+1] (m = 0); s = + ½n = 3, l = 1, m Є [-1;+1] (m = +1); s = + ½ n = 3, l = 1, m Є [-1;+1] (m = -1); s = - ½

Валентный уровень и валентные электроны

Валентным уровнем называется набор энергетических подуровней, которые участвуют в образовании химических связей с другими атомами.

Валентными называются электроны, располагающиеся на валентном уровне.

Элементы ПСХЭ делятся на 4 группы

s -элементы . Валентные электроны ns x . Два s -элемента находятся в начале каждого периода.

p -элементы . Валентные электроны ns 2 np x . Шесть p -элементов располагаются в конце каждого периода (кроме первого и седьмого).

Лекция 2. Электронная конфигурация

d -элементы. Валентные электроны ns 2 (n-1)d x . Десять d -элементов образуют побочные подгруппы, начиная с IV периода и находятся междуs- и p- элементами.

f -элементы. Валентные электроны ns 2 (n-1)d 1 (n-2)f x . Четырнадцать f -элементов образуют ряды лантаноидов (4f ) и актиноидов (5f ), которые расположены под таблицей.

Электронные аналоги – это частицы, для которых характерны сходные электронные конфигурации, т.е. распределение электронов по подуровням.

Например

H 1s1 Li … 2s1 Na … 3s1 K … 4s1

Электронные аналоги обладают сходными электронными конфигурациями, поэтому их химические свойства похожи – и они располагаются в Периодической системе элементов в одной подгруппе.

Электронный «провал» (или электронный «проскок»)

Квантовая механика предсказывает, что наименьшей энергией обладает такое состояние частицы, когда все уровни заполнены электронами либо полностью, либо наполовину.

Поэтому для элементов подгруппы хрома (Cr, Mo, W, Sg) иэлементов подгруппы меди (Cu, Ag, Au) происходит перемещение 1 электрона сs - на d- подуровень.

24 Cr 4s2 3d4 24 Cr 4s1 3d5 29 Cu 4s2 3d9 29 Cu 4s1 3d10

Это явление получило название электронный «провал», его следует запомнить.

Подобное явление характерно также и для f -элементов, однако их химия выходит за рамки нашего курса.

Обратите внимание: для p-элементов электронный провал НЕ наблюдается!

Подводя итоги, следует заключить, что количество электронов в атоме определяется составом его ядра, а их распределение (электронная конфигурация) – наборами

Лекция 2. Электронная конфигурация

квантовых чисел. В свою очередь, электронная конфигурация определяет химические свойства элемента.

Поэтому, очевидно, что Свойства простых веществ, а также свойства соединений

элементов находятся в периодической зависимости от величины заряда ядра

атома (порядкового номера).

Периодический закон

Основные свойства атомов элементов

1. Радиус атома – расстояние от центра ядра до внешнего энергетического уровня. В

периоде по мере увеличения заряда ядра радиус атома уменьшается; в группе,

наоборот, по мере числа энергетических уровней, радиус атома растет.

Следовательно, в ряду O2- , F- , Ne, Na+ , Mg2+ - радиус частицы уменьшается, хотя их конфигурация одинакова 1s2 2s2 2p6 .

Для неметаллов говорят о ковалентном радиусе, для металлов – о металлическом радиусе, для ионов – об ионном радиусе.

2. Потенциал ионизации – это энергия, которую нужно истратить на отрыв от атома 1

электрона. По принципу наименьшей энергии в первую очередь отрывается последний по заполнению электрон (для s и p -элементов) и электрон внешнего энергетического уровня (дляd и f -элементов)

В периоде по мере роста заряда ядра потенциал ионизации растет – в начале периода находится щелочной металл с низким потенциалом ионизации, в конце периода – инертный газ. В группе потенциалы ионизации ослабевают.

Энергия ионизации, эВ

3. Сродство к электрону – энергия, выделяющаяся при присоединении к атому электрона, т.е. при образовании аниона.

4. Электроотрицательность (ЭО) – это способность атомов притягивать к себе электронную плотность. В отличие от потенциала ионизации, за которым стоит конкретная измеряемая физическая величина, ЭО – это некоторая величина, которая может быть только рассчитана , измерить её нельзя. Иными словами, ЭО придумали люди, для того, чтобы с её помощью объяснять те или иные явления.

Для наших учебных целей требуется запомнить качественный порядок изменения

электроотрицательности: F > O > N > Cl > … > H > … > металлы.

ЭО – способность атома смещать к себе электронную плотность, – очевидно,

возрастает в периоде (так как увеличивается заряд ядра – сила притяжения электрона и уменьшается радиус атома) и, напротив, ослабевает в группе.

Нетрудно понять, что раз период начинается электроположительным металлом,

а заканчивается типичным неметаллом VII группы (инертные газы в расчет не принимаем), то степень изменения ЭО в периоде больше, чем в группе.

Лекция 2. Электронная конфигурация

5. Степень окисления – это условный заряд атома в химическом соединении,

вычисленный в приближении, что все связи образованы ионами. Минимальная степень окисления определяется тем, сколько электронов атом способен принять на

отображают последовательность соединения атомов друг с другом. Рассмотрим по отдельности каждую пару атомов и обозначим стрелочкой смещение электронов к тому атому из пары, ЭО которого больше (б). Следовательно, электроны сместились – и образовались заряды – положительные и отрицательные:

на конце каждой стрелочки заряд (-1), соответствующий добавлению 1 электрона;

на основании стрелочки заряд (+1), соответствующий удалению 1 электрона.

Получившиеся заряды и есть степень окисления того или иного атома.

H +1

H +1

На этом на сегодня все, спасибо за внимание.

Литература

1. С.Г. Барам, М.А. Ильин. Химия в Летней школе. Учеб. пособие / Новосиб. гос.

ун-т, Новосибирск, 2012. 48 с.

2. А.В. Мануйлов, В.И. Родионов. Основы химии для детей и взрослых. – М.:

ЗАО Издательство Центрполиграф, 2014. – 416 с. – см. с. 29-85. http://www.hemi.nsu.ru/

Электронная конфигурация атома – показывает распределение ē по энерг. уровням и подуровням.

1s 1 ←число ē с данной формой облака

↖ форма электронного облака

энерг.уровня

Графические электронные формулы (изображения электронной структуры атома) –

показывает распределение ē по энерг. уровням, подуровням и орбиталям.

I период: +1 Н

Где - ē, ↓ - ē с антипараллельными спинами, орбиталь.

При записи графической электронной формулы следует помнить правило Паули и правило Хундда « Если в пределах одного подуровня имеется несколько свободных орбиталей, то ē размещаются каждый на отдельной орбитали и лишь при отсутствии свободных орбиталей объединяются в пары».

(Работа с электронными и графическими электронными формулами).

Напр., H +1 1s 1 ; He +2 1s 2 ; Li +3 1s 2 2s 1 ; Na +11 1s 2 2s 2 2p 6 3s 1 ; Ar +18 1s 2 2s 2 2p 6 3s 2 3p 6 ;

I период: водород и гелий – s-элементы , у них заполняется электронами s-орбиталь.

II период: Li и Be – s-элементы

B, С, N, O, F, Ne – р-элементы

В зависимости от того, какой подуровень атома заполняется электронами последним, все элементы делят на 4 электронных семейства или блока:

1) s-элементы у них заполняется ē-ми s-подуровень внешнего слоя атома; к ним относятся водород, гелий и эл-ты гл.п/гр. I и IIгрупп.

2) р-элементы – у них заполняется электронамир-подуровень внешнего уровня атома; к ним относят элементы гл.п/гр. III - VIIIгрупп.

3) d-элементы – у них заполняется электронами d-подуровень предвнешнего уровня атома; к ним относятся эл-ты побоч.п/гр. . I- VIII групп,т.е. эл-ты вставных декад больших периодов, распложенные между s- и р-элементами, их также называют переходными элементами.

4) f-элементы - у них заполняется электронами f-подуровень третьего снаружи уровня атома; к ним относятся лантаноиды (4f-элементы) и актиноиды (5f-элементы).

У атомов меди и хрома происходит «провал» ē с 4s- на 3d-подуровень, что объясняется большей энергетической устойчивостью образующихся при этом электронных конфигураций 3d 5 и 3d 10:

29 Cu 1s 2 2s 2 2p 6 3s 2 3p 6 4s 1 3d 10 24 Cr 1s 2 2s 2 2p 6 3s 2 3p 6 4s 1 3d 5

Экспериментально доказано, что состояния атомов, при которых p-, d-, f-орбитали заполнены наполовину (p 3 , d 5 , f 7), целиком (p 6 , d 10 , f 14) или свободны, обладают повышенной устойчивостью. Этим объясняются переходы – «провалы» - электронов между близкорасположенными орбиталями. Те же отклонения наблюдаются у аналога хрома – молибдена, а также у элементов подгруппы меди – серебра и золота. Уникален в этом отношении палладий, у атома которого 5s-электронывообще отсутствуют и который имеет след. Конфигурацию: 46 Pd 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 4р 6 5s 0 4d 10 .

Вопросы для самоконтроля

1. Что такое электронное облако?

2. Чем отличается 1s-орбиталь от 2s-орбитали?

3. Что такое главное квантовое число? Как оно соотносится с номером периода?

4. Что такое подуровень и как это понятие соотносится с номером периода?

5. Составить электронные конфигурации атомов элементов 4-6 периода ПСХЭ.

6. Составить электронную конфигурацию атомов магния и неона.

7. Определить какому атому принадлежит электронная конфигурация 1S 2 2S 2 2p 6 3S 1 , 1S 2 2S 2 2p 6 3S 2 , 1S 2 2S 2 2p 4 , 1S 2 2S 1

ПЛАН ЗАНЯТИЯ № 7

Дисциплина: Химия.

Тема:

Цель занятия: Изучить механизмы образования ионной и ковалентной связи, рассмотреть ионные, атомные и молекулярные кристаллические решетки.

Планируемые результаты

Предметные: владение основополагающими химическими понятиями: химическая связь, ионы, кристаллические решетки, уверенное пользование химической терминологией и символикой; сформированность умения давать количественные оценки и производить расчеты по химическим формулам и уравнениям;

Метапредметные: использование различных видов познавательной деятельности и основных интеллектуальных операций: составление электронных конфигураций атомов химических элементов.

Личностные: умение использовать достижения современной химической науки и химических технологий для повышения собственного интеллектуального развития в выбранной профессиональной деятельности;

Норма времени: 2 часа

Вид занятия: Лекция.

План занятия:

1. Катионы, их образование из атомов в результате процесса окисления. Анионы, их образование из атомов в результате процесса восстановления. Ионная связь, как связь между катионами и анионами за счет электростатического притяжения.

2. Классификация ионов: по составу, знаку заряда, наличию гидратной оболочки.

3. Ионные кристаллические решетки. Свойства веществ с ионным типом кристаллической решетки.

4. Механизм образования ковалентной связи (обменный и донорно-акцепторный).

5. Электроотрицательность. Ковалентные полярная и неполярная связи. Кратность ковалентной связи.

6. Молекулярные и атомные кристаллические решетки. Свойства веществ с молекулярными и атомными кристаллическими решетками.

Оснащение: Модели кристаллических решеток, учебник, периодическая система химических элементов Д.И.Менделеева.

Литература:

1. Химия 11 класс: учеб. для общеобразоват. организаций Г.Е. Рудзитис, Ф.Г. Фельдман. – М.:Просвещение, 2014. -208 с.: ил..

2. Химия для профессий и специальностей технического профиля: учебник для студ. учреждений сред. проф. образования / О.С.Габриелян, И.Г. Остроумов. – 5 - изд., стер. – М.: Издательский центр «Академия», 2017. – 272с., с цв. ил.

Преподаватель: Тубальцева Ю.Н.

Тема 7. Ионная и ковалентная химическая связь.

1) Катионы, их образование из атомов в результате процесса окисления. Анионы, их образование из атомов в результате процесса восстановления. Ионная связь, как связь между катионами и анионами за счет электростатического притяжения.

2) Классификация ионов: по составу, знаку заряда, наличию гидратной оболочки.

3) Ионные кристаллические решетки. Свойства веществ с ионным типом кристаллической решетки.

4) Механизм образования ковалентной связи (обменный и донорно-акцепторный).

5) Электроотрицательность. Ковалентные полярная и неполярная связи. Кратность ковалентной связи.

6) Молекулярные и атомные кристаллические решетки. Свойства веществ с молекулярными и атомными кристаллическими решетками.

Катионы, их образование из атомов в результате процесса окисления. Анионы, их образование из атомов в результате процесса восстановления. Ионная связь, как связь между катионами и анионами за счет электростатического притяжения.

Химическая связь - это взаимодействие атомов, обусловливающее устойчивость химической частицы или кристалла как целого. Химическая связь образуется за счет электростатического взаимодействия между заряженными частицами: катионами и анионами, ядрами и электронами. При сближении атомов начинают действовать силы притяжения между ядром одного атома и электронами другого, а также силы отталкивания между ядрами и между электронами. На некотором расстоянии эти силы уравновешивают друг друга, и образуется устойчивая химическая частица.

При образовании химической связи может произойти существенное перераспределение электронной плотности атомов в соединении по сравнению со свободными атомами. В предельном случае это приводит к образованию заряженных частиц - ионов (от греческого "ион" - идущий).

Взаимодействие ионов:

Если атом теряет один или несколько электронов, то он превращается в положительный ион - катион (в переводе с греческого - "идущий вниз). Так образуются катионы водорода Н + , лития Li + , бария Ва 2+ . Приобретая электроны, атомы превращаются в отрицательные ионы - анионы (от греческого "анион" - идущий вверх). Примерами анионов являются фторид ион F − , сульфид-ион S 2− .

Катионы и анионы способны притягиваться друг к другу. При этом возникает химическая связь, и образуются химические соединения. Такой тип химической связи называется ионной связью:

Ионная связь, как правило, возникает между атомами типичных металлов и типичных неметаллов. Характерным свойством атомов металлов является то, что они легко отдают свои валентные электроны, тогда как атомы неметаллов способны легко их присоединять.

Рассмотрим возникновение ионной связи, например, между атомами натрия и атомами хлора в хлориде натрия NaCl.

Отрыв электрона от атома натрия приводит к образованию положительно заряженного иона – катиона натрия Na + .

Присоединение электрона к атому хлора приводит к образованию отрицательно заряженного иона – аниона хлора Cl - .

Между образовавшимися ионами Na + и Cl - , имеющими противоположный заряд, возникает электростатическое притяжение, в результате которого образуется соединение – хлорид натрия с ионным типом химической связи.

Ионная связь – это химическая связь, которая осуществляется за счет электростатического взаимодействия противоположно заряженных ионов.

Таким образом, процесс образования ионной связи сводится к переходу электронов от атомов натрия к атомам хлора с образованием противоположно заряженных ионов, имеющих завершенные электронные конфигурации внешних слоев.

1. Атомы металлов, отдавая внешние электроны, превращаются в положительные ионы:

где n - число электронов внешнего слоя атома, соответствующее номеру группы химического элемента.

2. Атомы неметаллов, принимая электроны, недостающие до завершения внешнего электронного слоя , превращаются в отрицательные ионы:

3. Между разноимённо заряженными ионами возникает связь, которая называется ионной.

2. Классификация ионов: по составу, знаку заряда, наличию гидратной оболочки.

Классификация ионов:

1. По знаку заряда: катионы (положительные, K+, Ca2+, H+) и анионы (отрицательные, S2-, Cl-, I-).
2. По составу: сложные ( , ) и простые (Na+, F-)


©2015-2019 сайт
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2017-12-12

Задача 1 . Напишите электронные конфигурации следующих элементов: N , Si , F е, Кr , Те, W .

Решение. Энергия атомных орбиталей увеличивается в следующем порядке:

1s 2s 2p 3s 3p 4s 3d 4p 5s 4d 5p 6s 4f 5d 6p 7s 5f 6d .

На каждой s -оболочке (одна орбиталь) может находиться не более двух электронов, на p -оболочке (три орбитали) - не более шести, на d -оболочке (пять орбиталей) - не более 10 и на f -оболочке (семь орбиталей) - не более 14.

В основном состоянии атома электроны занимают орбитали с наименьшей энергией. Число электронов равно заряду ядра (атом в целом нейтрален) и порядковому номеру элемента. Например, в атоме азота - 7 электронов, два из которых находятся на 1s -орбитали, два - на 2s -орбитали, и оставшиеся три электрона - на 2p -орбиталях. Электронная конфигурация атома азота:

7 N : 1s 2 2s 2 2p 3 . Электронные конфигурации остальных элементов:

14 Si: 1s 2 2s 2 2p 6 3s 2 3p 2 ,

26 F е: 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 6 ,

36 Кr: 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 3p 6 ,

52 Те: 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 3p 6 5s 2 4d 10 5p 4 ,

74 Те: 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 3p 6 5s 2 4d 10 5p 6 6s 2 4f 14 5d 4 .

Задача 2 . Какой инертный газ и ионы каких элементов имеют одинаковую электронную конфигурацию с частицей, возникающей в результате удаления из атома кальция всех валентных электронов?

Решение. Электронная оболочка атома кальция имеет струк­туру 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 . При удалении двух валентных электронов образуется ион Са 2+ с конфигурацией 1s 2 2s 2 2р 6 Зs 2 Зр 6 . Такую же электронную конфигурацию имеют атом Ar и ионы S 2- , Сl — , К + , Sc 3+ и др.

Задача 3 . Могут ли электроны иона Аl 3+ находиться на следующих орбиталях: а) 2р; б) 1р; в) 3d ?

Решение. Электронная конфигурация атома алюминия: 1s 2 2s 2 2p 6 3s 2 3p 1 . Ион Al 3+ образуется при удалении трех валентных электронов из атома алюминия и имеет электронную конфи­гурацию 1s 2 2s 2 2p 6 .

а) на 2р-орбитали электроны уже находятся;

б) в соответствии с ограничениями, накладываемыми на квантовое число l (l = 0, 1,…n -1), при n = 1 возможно только значение l = 0, следовательно, 1p -орбиталь не существует;

в) на Зd -орбитали электроны могут находиться, если ион - в возбужденном состоянии.

Задача 4. Напишите электронную конфигурацию атома неона в первом возбужденном состоянии.

Решение. Электронная конфигурация атома неона в основном состоянии – 1s 2 2s 2 2p 6 . Первое возбужденное состояние получается при переходе одного электрона с высшей занятой орбитам (2р) на низшую свободную орбиталь (3s ). Электронная конфигурация атома неона в первом возбужденном состоянии – 1s 2 2s 2 2p 5 3s 1 .

Задача 5 . Каков состав ядер изотопов 12 C и 13 C , 14 N и 15 N ?

Решение. Число протонов в ядре равно порядковому номеру элемента и одинаково для всех изотопов данного элемента. Число нейтронов равно массовому числу (указываемому слева вверху от номера элемента) за вычетом числа протонов. Разные изотопы одного и того же элемента имеют разные числа нейтронов.

Состав указанных ядер:

12 С: 6р + 6n ; 13 С: 6р + 7n ; 14 N : 7p + 7n ; 15 N : 7p + 8n .

Поделиться: