Строение атома углерода — Гипермаркет знаний. Валентные состояния атома углерода

Рассматривают как химию соединений углерода, но, отдавая дань уважения истории, по-прежнему продолжают называть ее органической химией. Поэтому так важно более подробно рассмотреть строение атома этого элемента, характер и пространственное направление образуемых им химических связей.

Валентность химического элемента чаще всего определяется числом неспаренных электронов. Атом углерода, как видно из электронно-графической формулы, имеет два неспаренных электрона, поэтому с их участием могут образоваться две электронные пары, осуществляющие две ковалентные связи. Однако в органических соединениях углерод не двух-, а всегда четырехвалентен. Это можно объяснить тем, что в возбужденном (получившем дополнительную энергию) атоме происходит распаривание 2«-электронов и переход одного из них на 2р-орбиталь:

Такой атом имеет четыре неспаренных электрона и может принимать участие в создании четырех ковалентных связей.

Для образования ковалентной связи необходимо, чтобы ор-биталь одного атома перекрывалась с орбиталью другого. При этом чем больше перекрывание, тем прочнее связь.

В молекуле водорода Н 2 образование ковалентной связи происходит за счет перекрывания s-орбиталей (рис. 3).

Расстояние между ядрами атомов водорода, или длина связи, составляет 7,4 * 10 -2 нм, а ее прочность - 435 кДж/моль.

Для сравнения: в молекуле фтора F 2 ковалентная связь образуется за счет перекрывания двух р-орбиталей.

Длина связи фтор-фтор равна 14,2 10 -2 нм, а прочность (энергия) связи - 154 кДж/моль.

Химические связи, образующиеся в результате перекрывания электронных орбиталей вдоль линии связи, называются а-связями (сигма-связями).

Линия связи - прямая, соединяющая ядра атомов. Для в-орбиталей возможен лишь единственный способ перекрывания - с образованием а-связей.

р-Орбитали могут перекрываться с образованием а-связей, а также могут перекрываться в двух областях, образуя ковалентную связь другого вида - за счет «бокового» перекрывания:

Химические связи, образующиеся в результате «бокового» перекрывания электронных орбиталей вне линии связи, т. е. в двух областях, называются п-связями (пи-связями).

Рассмотренный вид связи характерен для молекул этилена С2Н4, ацетилена С2Н2. Но об этом более подробно вы узнаете из следующего параграфа.

1. Запишите электронную формулу атома углерода. Объясните смысл каждого символа в ней.

Каковы электронные формулы атомов бора, бериллия и лития?

Составьте электронно-графические формулы, соответствующие атомам этих элементов.

2. Запишите электронные формулы:

а) атома натрия и катиона Nа + ;

б) атома магния и катиона Мg 2+ ;

в) атома фтора и аниона F - ;

г) атома кислорода и аниона О 2- ;

д) атома водорода и ионов Н + и Н - .

Составьте электронно-графические формулы распределения электронов по орбиталям в этих частицах.

3. Атому какого химического элемента соответствует электронная формула 1s 2 2s 2 2р 6 ?

Какие катионы и анионы имеют такую же электронную формулу? Составьте электронно-графическую формулу атома и этих ионов.

4. Сравните длины связей в молекулах водорода и фтора. Чем вызвано их различие?

5. Молекулы азота и фтора двухатомны. Сравните числа и характер химических связей между атомами в них.

Содержание урока конспект урока опорный каркас презентация урока акселеративные методы интерактивные технологии Практика задачи и упражнения самопроверка практикумы, тренинги, кейсы, квесты домашние задания дискуссионные вопросы риторические вопросы от учеников Иллюстрации аудио-, видеоклипы и мультимедиа фотографии, картинки графики, таблицы, схемы юмор, анекдоты, приколы, комиксы притчи, поговорки, кроссворды, цитаты Дополнения рефераты статьи фишки для любознательных шпаргалки учебники основные и дополнительные словарь терминов прочие Совершенствование учебников и уроков исправление ошибок в учебнике обновление фрагмента в учебнике элементы новаторства на уроке замена устаревших знаний новыми Только для учителей идеальные уроки календарный план на год методические рекомендации программы обсуждения Интегрированные уроки

Углерод способен образовывать несколько аллотропных модификаций. Это алмаз (наиболее инертная аллотропная модификация), графит, фуллерен и карбин.

Древесный уголь и сажа представляют собой аморфный углерод. Углерод в таком состоянии не имеет упорядоченной структуры и фактически состоит из мельчайших фрагментов слоев графита. Аморфный углерод, обработанный горячим водяным паром, называют активированным углем. 1 грамм активированного угля из-за наличия в нем множества пор имеет общую поверхность более трехсот квадратных метров! Благодаря своей способности поглощать различные вещества активированный уголь находит широкое применение как наполнитель фильтров, а также как энтеросорбент при различных видах отравлений.

С химической точки зрения аморфный углерод является наиболее активной его формой, графит проявляет среднюю активность, а алмаз является крайне инертным веществом. По этой причине, рассматриваемые ниже химические свойства углерода следует прежде всего относить к аморфному углероду.

Восстановительные свойства углерода

Как восстановитель углерод реагирует с такими неметаллами как, например, кислород, галогены, сера.

В зависимости от избытка или недостатка кислорода при горении угля возможно образование угарного газа CO или углекислого газа CO 2:

При взаимодействии углерода со фтором образуется тетрафторид углерода:

При нагревании углерода с серой образуется сероуглерод CS 2:

Углерод способен восстанавливать металлы после алюминия в ряду активности из их оксидов. Например:

Также углерод реагирует и с оксидами активных металлов, однако в этом случае наблюдается, как правило, не восстановление металла, а образование его карбида:

Взаимодействие углерода с оксидами неметаллов

Углерод вступает в реакцию сопропорционирования с углекислым газом CO 2:

Одним из наиболее важных с промышленной точки зрения процессов является так называемая паровая конверсия угля . Процесс проводят, пропуская водяной пар через раскаленный уголь. При этом протекает следующая реакция:

При высокой температуре углерод способен восстанавливать даже такое инертное соединение как диоксид кремния. При этом в зависимости от условия возможно образование кремния или карбида кремния (карборунда ):

Также углерод как восстановитель реагирует с кислотами окислителями, в частности, концентрированными серной и азотной кислотами:

Окислительные свойства углерода

Химический элемент углерод не отличается высокой электроотрицательностью, поэтому образуемые им простые вещества редко проявляют окислительные свойства по отношению к другим неметаллам.

Примером таких реакций является взаимодействие аморфного углерода с водородом при нагревании в присутствии катализатора:

а также с кремнием при температуре 1200-1300 о С:

Окислительные свойства углерод проявляет по отношению к металлам. Углерод способен реагировать с активными металлами и некоторыми металлами средней активности. Реакции протекают при нагревании:

Карбиды активных металлов гидролизуются водой:

а также растворами кислот-неокислителей:

При этом образуются углеводороды, содержащие углерод в той же степени окисления, что и в исходном карбиде.

Химические свойства кремния

Кремний может существовать, как и углерод в кристаллическом и аморфном состоянии и, также, как и в случае углерода, аморфный кремний существенно более химически активен, чем кристаллический.

Иногда аморфный и кристаллический кремний, называют его аллотропными модификациями, что, строго говоря, не совсем верно. Аморфный кремний представляет собой по сути конгломерат беспорядочно расположенных друг относительно друга мельчайших частиц кристаллического кремния.

Взаимодействие кремния с простыми веществами

неметаллами

При обычных условиях кремний ввиду своей инертности реагирует только со фтором:

С хлором, бромом и йодом кремний реагирует только при нагревании. При этом характерно, что в зависимости от активности галогена, требуется и соответственно различная температура:

Так с хлором реакция протекает при 340-420 о С:

С бромом – 620-700 о С:

С йодом – 750-810 о С:

Реакция кремния с кислородом протекает, однако требует очень сильного нагревания (1200-1300 о С) ввиду того, что прочная оксидная пленка затрудняет взаимодействие:

При температуре 1200-1500 о С кремний медленно взаимодействует с углеродом в виде графита с образованием карборунда SiC – вещества с атомной кристаллической решеткой подобной алмазу и почти не уступающего ему в прочности:

С водородом кремний не реагирует.

металлами

Ввиду своей низкой электроотрицательности кремний может проявлять окислительные свойства лишь по отношению к металлам. Из металлов кремний реагирует с активными (щелочными и щелочноземельными), а также многими металлами средней активности. В результате такого взаимодействия образуются силициды:

Взаимодействие кремния со сложными веществами

С водой кремний не реагирует даже при кипячении, однако аморфный кремний взаимодействует с перегретым водяным паром при температуре около 400-500 о С. При этом образуется водород и диоксид кремния:

Из всех кислот кремний (в аморфном состоянии) реагирует только с концентрированной плавиковой кислотой:

Кремний растворяется в концентрированных растворах щелочей. Реакция сопровождается выделением водорода.

В состоянии соединений углерод входит в состав так называемых органических веществ, т. е. множества веществ, находящихся в теле всякого растения и животного. Он находится в виде углекислого газа в воде и воздухе, а в виде солей углекислоты и органических остатков в почве и массе земной коры. Разнообразие веществ, составляющих тело животных и растений, известно каждому. Воск и масло, скипидар и смола, хлопчатая бумага и белок, клеточная ткань растений и мускульная ткань животных, винная кислота и крахмал - все эти и множество иных веществ, входящих в ткани и соки растений и животных, представляют соединения углеродистые. Область соединений углерода так велика, что составляет особую отрасль химии, т. е. химии углеродистых или, лучше, углеводородистых соединений».

Эти слова из «Основ химии» Д. И. Менделеева служат как бы развернутым эпиграфом к нашему рассказу о жизненно важном элементе - углероде. Впрочем, есть здесь один тезис, с которым, с точки зрения современной науки о веществе, можно и поспорить, но об этом ниже.

Вероятно, пальцев на руках хватит, чтобы пересчитать химические элементы, которым не была посвящена хотя бы одна научная книга. Но самостоятельная научно-популярная книга - не какая-нибудь брошюрка на 20 неполных страницах с обложкой из оберточной бумаги, а вполне солидный том объемом почти в 500 страниц - есть в активе только одного элемента - углерода.

И вообще литература по углероду - богатейшая. Это, во-первых, все без исключения книги и статьи химиков- органиков; во-вторых, почти все, что касается полимеров; в-третьих, бесчисленные издания, связанные с горючими ископаемыми; в-четвертых, значительная часть медикобиологической литературы...

Поэтому не будем пытаться объять необъятное (ведь не случайно авторы популярной книги об элементе № 6 назвали ее «Неисчерпаемый»!, а сконцентрируем внимание лишь на главном из главного - попытаемся увидеть углерод с трех точек зрения.

Углерод - один из немногочисленных элементов «без роду, без племени». История общения человека с этим веществом уходит во времена доисторические. Имя первооткрывателя углерода неизвестно, неизвестно и то, какая из форм элементного углерода - алмаз или графит - была открыта раньше. И то и другое случилось слишком давно. Определенно утверждать можно лишь одно: до алмаза и до графита было открыто вещество, которое еще несколько десятилетий назад считали третьей, аморфной формой элементного углерода - уголь. Но в действительности уголь, даже древесный, это не чистый углерод. В нем есть и водород, и кислород, и следы других элементов. Правда, их можно удалить, но и тогда углерод угля не станет самостоятельной модификацией элементного углерода. Это было установлено лишь во второй четверти нашего века. Структурный анализ показал, что аморфный углерод - это по существу тот же графит. А значит, никакой он не аморфный, а кристаллический; только кристаллы его очень мелкие и больше в них дефектов. После этого стали считать, что углерод на Земле существует лишь в двух элементарных формах - в виде графита и алмаза.

Вам никогда не приходилось задумываться о причинах резкого «водораздела» свойств, который проходит во втором коротком периоде менделеевской таблицы по линии, отделяющей углерод от следующего за ним азота? Азот , кислород , фтор при обычных условиях газообразны. Углерод - в любой форме - твердое тело. Температура плавления азота - минус 210,5°С, а углерода (в виде графита под давлением свыше 100 атм) - около плюс 4000°С...

Дмитрий Иванович Менделеев первым предположил, что эта разница объясняется полимерным строением молекул углерода. Он писал: «Если бы углерод образовывал молекулу C 2 , как и O 2 , то был бы газом». И далее: «Способность атомов угля соединяться между собой и давать сложные молекулы проявляется во всех углеродистых соединениях. Ни в одном из элементов такая способность к усложнению не развита в такой мере, как в углероде. Поныне нет основания для определения меры полимеризации угольной, графитной, алмазной молекулы, только можно думать, что в них содержится С п, где n есть большая величина».

Углерод и его полимеры

Это предположение подтвердилось в наше время. И графит, и алмаз - полимеры, состоящие из одинаковых, только углеродных атомов.

По меткому замечанию профессора Ю.В. Ходакова, «если исходить из природы преодолеваемых сил, профессию гранильщика алмазов можно было бы отнести к химическим профессиям». Действительно, гранильщику приходится преодолевать не сравнительно слабые силы межмолекулярного взаимодействия, а силы химической связи, которыми объединены в молекулу алмаза углеродные атомы. Любой кристалл алмаза, даже огромный, шестисотграммовый «Куллинан» - это по существу одна молекула, молекула в высшей степени регулярного, почти идеально построенного трехмерного полимера.

Иное дело графит. Здесь полимерная упорядоченность распространяется только в двух направлениях - по плоскости, а не в пространстве. В куске графита эти плоскости образуют достаточно плотную пачку, слои которой соединены между собой не химическими силами, а более слабыми силами межмолекулярного взаимодействия. Вот почему так просто - даже от соприкосновения с бумагой - расслаивается графит. В то же время разорвать графитовую пластинку в поперечном направлении весьма сложно - здесь противодействует химическая связь.

Именно особенности молекулярного строения объясняют огромную разницу в свойствах графита и алмаза. Графит отлично проводит тепло и электричество, алмаз - изолятор. Графит совершенно не пропускает света - алмаз прозрачен. Какими бы способами ни окисляли алмаз, продуктом окисления будет только CO 2 . А окисляя графит, можно при желании получить несколько промежуточных продуктов, в частности графитовую (переменного состава) и меллитовую C 6 (COOH) 6 кислоты. Кислород как бы вклинивается между слоями графитовой пачки и окисляет лишь некоторые углеродные атомы. В кристалле алмаза слабых мест нет, и поэтому возможно или полное окисление или полное неокисление - третьего не дано...

Итак, есть «пространственный» полимер элементного углерода, есть «плоскостной». В принципе давно уже допускалось существование и «одномерного» - линейного полимера углерода, но в природе он не был найден.

Не был найден до поры до времени. Через несколько лет после синтеза линейный полимер углерода был найден в метеоритном кратере, на территории ФРГ. А получили его первыми советские химики В. В. Коршак, А. М. Сладков, В. И. Касаточкин и Ю.П. Кудрявцев. Линейный полимер углерода назвали карбином. Внешне он выглядит как черный мелкокристаллический порошок, обладает полупроводниковыми свойствами, причем под действием света электропроводность карбина сильно увеличивается. Открылись у карбина и вовсе неожиданные свойства. Оказалось, например, что кровь при контакте с ним не образует сгустков - тромбов, поэтому волокно с покрытием из карбина стали применять при изготовлении неотторгаемых организмом искусственных кровеносных сосудов.

По словам первооткрывателей карбина, самым сложным для них было определить, какими же связями соединены в цепочку углеродные атомы. В нем могли быть чередующиеся одинарные и тройные связи (-C = C-C=C -С=), а могли быть только двойные (=C=C=C=C=)... А могло быть и то и другое одновременно. Лишь через несколько лет Коршаку и Сладкову удалось доказать, что двойных связей в карбине нет. Однако, поскольку теория допускала существование углеродного линейного полимера только с двойными связями, была предпринята попытка получить эту разновидность - по существу, четвертую модификацию элементного углерода.

Углерод в минералах

Это вещество было получено в Институте элементоорганических соединений АН СССР. Новый линейный полимер углерода назвали поликумуленом. А сейчас известно не меньше восьми линейных полимеров углерода, отличающихся один от другого строением кристаллической решетки. В зарубежной литературе все их называют карбинами.

Этот элемент всегда четырехвалентен, но, поскольку в периоде он находится как раз посередине, степень его окисления в разных обстоятельствах бывает то +4, то - 4. В реакциях с неметаллами он электроположителен, с металлами - наоборот. Даже в тех случаях, когда связь не ионная, а ковалентная, углерод остается верен себе - его формальная валентность остается по-прежнему равной четырем.

Весьма немногочисленны соединения, в которых углерод хотя бы формально проявляет валентность, отличную от четырех. Общеизвестно лишь одно такое соединение - CO, угарный газ, в котором углерод кажется двухвалентным. Именно кажется, потому что в действительности здесь более сложный тип связи. Атомы углерода и кислорода соединены 3-ковалентной поляризованной связью, и структурную формулу этого соединения пишут так: O+=C".

В 1900 г. М. Гомберг получил органическое соединение трифенилметил (C 6 H 5) 3 C. Казалось, что атом углерода здесь трехвалентен. Но позже выяснилось, что и на этот раз необычная валентность - сугубо формальная. Трифенилметил и его аналоги - это свободные радикалы, только в отличие от большинства радикалов достаточно стабильные.

Исторически сложилось так, что лишь очень немногие соединения углерода остались «под крышей» неорганической химии. Это окислы углерода, карбиды - его соединения с металлами, а также бором и кремнием, карбонаты - соли слабейшей угольной кислоты, сероуглерод CS 2 , цианистые соединения. Приходится утешаться тем, что, как это часто бывает (или бывало) на производстве, недоработку по номенклатуре компенсирует «вал». Действительно, наибольшая часть углерода земной коры содержится не в организмах растений и животных, не в угле, нефти и всей прочей органике, вместе взятой, а всего в двух неорганических соединениях - известняке CaCO 3 и доломите MgCa(CO 3) 2 . Углерод входит в состав еще нескольких десятков минералов, достаточно вспомнить о мраморе CaCO 3 (с добавками), малахите Cu 2 (OH) 2 CO 3 , минерале цинка смитсоните ZnCO 3 ... Есть углерод и в магматических породах, и в кристаллических сланцах.

Очень редки минералы, в состав которых входят карбиды. Как правило, это вещества особенно глубинного происхождения; поэтому ученые предполагают, что в ядре земного шара есть углерод.

Для химической промышленности углерод и его неорганические соединения представляют значительный интерес - чаще как сырье, реже как конструкционные материалы.

Многие аппараты химических производств, например теплообменники, изготавливают из графита. И это естественно: графит обладает большой термостойкостью и химической стойкостью и при этом прекрасно проводит тепло. Кстати, благодаря этим же свойствам графит стал важным материалом реактивной техники. Из графита сделаны рули, работающие непосредственно в пламени сопловых аппаратов. В воздухе воспламенить графит практически невозможно (даже в чистом кислороде сделать это непросто), а чтобы испарить графит, нужна температура, намного более высокая, чем развивающаяся даже в ракетном двигателе. И, кроме того, при нормальном давлении графит, как и гранит, не плавится.

Без графита трудно представить современное электрохимическое производство. Графитовые электроды используются не только электрометаллургами, но и химиками. Достаточно вспомнить, что в электролизерах, применяемых для получения каустической соды и хлора, аноды - графитовые.

Использование углерода

Об использовании соединений углерода в химической промышленности написаны многие книги. Карбонат кальция, известняк, служит сырьем в производстве извести, цемента, карбида кальция. Другой минерал - доломит - «праотец» большой группы доломитовых огнеупоров. Карбонат и гидрокарбонат натрия - кальцинированная и питьевая сода. Одним из основных потребителей кальцинированной соды была и остается стекольная промышленность, на нужды которой идет примерно треть мирового производства Na 2 CO 3 .

И наконец, немного о карбидах. Обычно, когда говорят карбид, имеют в виду карбид кальция - источник ацетилена, а следовательно, многочисленных продуктов органического синтеза. Но карбид кальция, хотя и самое известное, но далеко не единственное очень важное и нужное вещество этой группы. Карбид бора B 4 C - важный материал атомной

техники , карбид кремния SiC или карборунд - важнейший абразивный материал. Карбидам многих металлов свойственны высокая химическая стойкость и исключительная твердость; карборунд, к примеру, лишь немного уступает алмазу. Его твердость по шкале Mooca равна 9,5-9,75 (алмаза - 10). Но карборунд дешевле алмаза. Его получают в электрических печах при температуре около 2000°С из смеси кокса и кварцевого песка.

По словам известного советского ученого академика И.Л. Кнунянца, органическую химию можно рассматривать как своеобразный мост, перекинутый наукой от неживой природы к высшей ее форме - жизни. А всего полтора столетия назад лучшие химики того времени сами считали и учили своих последователей, что органическая химия это наука о веществах, образующихся при участии и под руководством некоей странной «материи» - жизненной силы. Но скоро эту силу отправили на свалку естествознания. Синтезы нескольких органических веществ - мочевины, уксусной кислоты, жиров, сахароподобных веществ - сделали ее попросту ненужной.

Появилось классическое определение К. Шорлеммера, не потерявшее смысла и 100 лет спустя: «Органическая химия есть химия углеводородов и их производных, то есть продуктов, образующихся при замене водорода другими атомами или группами атомов».

Итак, органика - это химия даже не одного элемента, а лишь одного класса соединений этого элемента. Зато какого класса! Класса, поделившегося не только на группы и подгруппы - на самостоятельные науки. Из органики вышли, от органики отпочковались биохимия, химия синтетических полимеров, химия биологически активных и лекарственных соединений...

Сейчас известны миллионы органических соединений (соединений углерода!) и около ста тысяч соединений всех остальных элементов, вместе взятых.

Общеизвестно, что на углеродной основе построена жизнь. Но почему же именно углерод - одиннадцатый по распространенности на Земле элемент - взял на себя труднейшую задачу быть основой всего живого?

Ответ на этот вопрос неоднозначен. Во-первых, «ни в одном из элементов такой способности к усложнению не развито в такой мере, как в углероде». Во-вторых, углерод способен соединяться с большинством элементов, причем самыми разнообразными способами. В-третьих, связь атомов углерода между собой, так же как и с атомами водорода, кислорода, азота, серы, фосфора и прочих элементов, входящих в состав органических веществ, может разрушаться под воздействием природных факторов. Поэтому углерод непрерывно круговращается в природе: из атмосферы - в растения, из растений - в животные организмы, из живого - в мертвое,

из мертвого - в живое...

Четыре валентности атома углерода - как четыре руки. А если соединились два таких атома, то «рук» становится уже шесть. Или - четыре, если на образование пары затрачено по два электрона (двойная связь). Или - всего две, если связь, как в ацетилене, тройная. Но эти связи (их называют ненасыщенными) подобны бомбе в кармане или джину в бутылке. Они скрыты до поры до времени, но в нужный момент вырываются на волю, чтобы взять свое в бурной, азартной игре химических взаимодействий и превращений. Самые разнообразные конструкции образуются в результате этих «игрищ», если в них участвует углерод. В редакции «Детской энциклопедии» подсчитали, что из 20 атомов углерода и 42 атомов водорода можно получить 366 319 различных углеводородов, 366 319 веществ состава С 20 Н42. А если в «игре» не шесть десятков участников, а несколько тысяч; если среди них представители не двух «команд», а, скажем, восьми!

Где углерод, там многообразие. Где углерод, там сложности. И самые разные по молекулярной архитектуре конструкции. Простенькие цепочки, как в бутане CH 3 -CH 2 -CH 2 -CH 3 или полиэтилене -CH 2 -CH 2 -CH 2 - CH 2 -, и разветвленные структуры простейшая из них - изобутан.

Содержание статьи

УГЛЕРОД, С (carboneum), неметаллический химический элемент IVA группы (C, Si, Ge, Sn, Pb) периодической системы элементов. Встречается в природе в виде кристаллов алмаза (рис. 1), графита или фуллерена и других форм и входит в состав органических (уголь, нефть, организмы животных и растений и др.) и неорганических веществ (известняк, пищевая сода и др.).

Углерод широко распространен, но содержание его в земной коре всего 0,19%.


Углерод широко используется в виде простых веществ. Кроме драгоценных алмазов, являющихся предметом ювелирных украшений, большое значение имеют промышленные алмазы – для изготовления шлифовального и режущего инструмента.

Древесный уголь и другие аморфные формы углерода применяются для обесцвечивания, очистки, адсорбции газов, в областях техники, где требуются адсорбенты с развитой поверхностью. Карбиды, соединения углерода с металлами, а также с бором и кремнием (например, Al 4 C 3 , SiC, B 4 C) отличаются высокой твердостью и используются для изготовления абразивного и режущего инструмента. Углерод входит в состав сталей и сплавов в элементном состоянии и в виде карбидов. Насыщение поверхности стальных отливок углеродом при высокой температуре (цементация) значительно увеличивает поверхностную твердость и износостойкость. См. также СПЛАВЫ .

В природе существует множество различных форм графита; некоторые получены искусственно; имеются аморфные формы (например, кокс и древесный уголь). Сажа, костяной уголь, ламповая сажа, ацетиленовая сажа образуются при сжигании углеводородов при недостатке кислорода. Так называемый белый углерод получается сублимацией пиролитического графита при пониженном давлении – это мельчайшие прозрачные кристаллики графитовых листочков с заостренными кромками.

Историческая справка.

Графит, алмаз и аморфный углерод известны с древности. Издавна известно, что графитом можно маркировать другой материал, и само название «графит», происходящее от греческого слова, означающего «писать», предложено А.Вернером в 1789. Однако история графита запутана, часто за него принимали вещества, обладающие сходными внешними физическими свойствами, например молибденит (сульфид молибдена), одно время считавшийся графитом. Среди других названий графита известны «черный свинец», «карбидное железо», «серебристый свинец». В 1779 К.Шееле установил, что графит можно окислить воздухом с образованием углекислого газа.

Впервые алмазы нашли применение в Индии, а в Бразилии драгоценные камни приобрели коммерческое значение в 1725; месторождения в Южной Африке были открыты в 1867. В 20 в. основными производителями алмазов являются ЮАР, Заир, Ботсвана, Намибия, Ангола, Сьерра-Леоне, Танзания и Россия. Искусственные алмазы, технология которых была создана в 1970, производятся для промышленных целей.

Аллотропия.

Если структурные единицы вещества (атомы для одноатомных элементов или молекулы для полиатомных элементов и соединений) способны соединяться друг с другом в более чем одной кристаллической форме, это явление называется аллотропией. У углерода три аллотропические модификации – алмаз, графит и фуллерен. В алмазе каждый атом углерода имеет 4 тетраэдрически расположенных соседа, образуя кубическую структуру (рис. 1,а ). Такая структура отвечает максимальной ковалентности связи, и все 4 электрона каждого атома углерода образуют высокопрочные связи С–С, т.е. в структуре отсутствуют электроны проводимости. Поэтому алмаз отличается отсутствием проводимости, низкой теплопроводностью, высокой твердостью; он самый твердый из известных веществ (рис. 2). На разрыв связи С–С (длина связи 1,54 Å, отсюда ковалентный радиус 1,54/2 = 0,77 Å) в тетраэдрической структуре требуются большие затраты энергии, поэтому алмаз, наряду с исключительной твердостью, характеризуется высокой температурой плавления (3550° C).

Другой аллотропической формой углерода является графит, сильно отличающийся от алмаза по свойствам. Графит – мягкое черное вещество из легко слоящихся кристалликов, отличающееся хорошей электропроводностью (электрическое сопротивление 0,0014 Ом·см). Поэтому графит применяется в дуговых лампах и печах (рис. 3), в которых необходимо создавать высокие температуры. Графит высокой чистоты применяют в ядерных реакторах в качестве замедлителя нейтронов. Температура плавления его при повышенном давлении равна 3527° C. При обычном давлении графит сублимируется (переходит из твердого состояния в газ) при 3780° C.

Структура графита (рис. 1,б ) представляет собой систему конденсированных гексагональных колец с длиной связи 1,42 Å (значительно короче, чем в алмазе), но при этом каждый атом углерода имеет три (а не четыре, как в алмазе) ковалентные связи с тремя соседями, а четвертая связь (3,4 Å) слишком длинна для ковалентной связи и слабо связывает параллельно уложенные слои графита между собой. Именно четвертый электрон углерода определяет тепло- и электропроводность графита – эта более длинная и менее прочная связь формирует меньшую компактность графита, что отражается в меньшей твердости его в сравнении с алмазом (плотность графита 2,26 г/см 3 , алмаза – 3,51 г/см 3). По той же причине графит скользкий на ощупь и легко отделяет чешуйки вещества, что и используется для изготовления смазки и грифелей карандашей. Свинцовый блеск грифеля объясняется в основном наличием графита.

Волокна углерода имеют высокую прочность и могут использоваться для изготовления искусственного шелка или другой пряжи с высоким содержанием углерода.

При высоких давлении и температуре в присутствии катализатора, например железа, графит может превращаться в алмаз. Этот процесс реализован для промышленного получения искусственных алмазов. Кристаллы алмаза растут на поверхности катализатора. Равновесие графит алмаз существует при 15 000 атм и 300 K или при 4000 атм и 1500 K. Искусственные алмазы можно получать и из углеводородов.

К аморфным формам углерода, не образующим кристаллов, относят древесный уголь, получаемый нагревом дерева без доступа воздуха, ламповую и газовую сажу, образующуюся при низкотемпературном сжигании углеводородов при недостатке воздуха и конденсируемую на холодной поверхности, костяной уголь – примесь к фосфату кальция в процессе деструкции костной ткани, а также каменный уголь (природное вещество с примесями) и кокс, сухой остаток, получаемый при коксовании топлив методом сухой перегонки каменного угля или нефтяных остатков (битуминозных углей), т.е. нагреванием без доступа воздуха. Кокс применяется для выплавки чугуна, в черной и цветной металлургии. При коксовании образуются также газообразные продукты – коксовый газ (H 2 , CH 4 , CO и др.) и химические продукты, являющиеся сырьем для получения бензина, красок, удобрений, лекарственных препаратов, пластмасс и т.д. Схема основного аппарата для производства кокса – коксовой печи – приведена на рис. 3.

Различные виды угля и сажи отличаются развитой поверхностью и поэтому используются как адсорбенты для очистки газа, жидкостей, а также как катализаторы. Для получения различных форм углерода применяют специальные методы химической технологии. Искусственный графит получают прокаливанием антрацита или нефтяного кокса между углеродными электродами при 2260° С (процесс Ачесона) и используют в производстве смазочных материалов и электродов, в частности для электролитического получения металлов.

Строение атома углерода.

Ядро наиболее стабильного изотопа углерода массой 12 (распространенность 98,9%) имеет 6 протонов и 6 нейтронов (12 нуклонов), расположенных тремя квартетами, каждый содержит 2 протона и два нейтрона аналогично ядру гелия. Другой стабильный изотоп углерода – 13 C (ок. 1,1%), а в следовых количествах существует в природе нестабильный изотоп 14 C с периодом полураспада 5730 лет, обладающий b -излучением. В нормальном углеродном цикле живой материи участвуют все три изотопа в виде СO 2 . После смерти живого организма расход углерода прекращается и можно датировать С-содержащие объекты, измеряя уровень радиоактивности 14 С. Снижение b -излучения 14 CO 2 пропорционально времени, прошедшему с момента смерти. В 1960 У.Либби за исследования с радиоактивным углеродом был удостоен Нобелевской премии.

В основном состоянии 6 электронов углерода образуют электронную конфигурацию 1s 2 2s 2 2p x 1 2p y 1 2p z 0 . Четыре электрона второго уровня являются валентными, что соответствует положению углерода в IVA группе периодической системы (см . ПЕРИОДИЧЕСКАЯ СИСТЕМА ЭЛЕМЕНТОВ) . Поскольку для отрыва электрона от атома в газовой фазе требуется большая энергия (ок. 1070 кДж/моль), углерод не образует ионные связи с другими элементами, так как для этого необходим был бы отрыв электрона с образованием положительного иона. Имея электроотрицательность, равную 2,5, углерод не проявляет и сильного сродства к электрону, соответственно не являясь активным акцептором электронов. Поэтому он не склонен к образованию частицы с отрицательным зарядом. Но с частично ионным характером связи некоторые соединения углерода существуют, например, карбиды. В соединениях углерод проявляет степень окисления 4. Чтобы четыре электрона смогли участвовать в образовании связей, необходимо распаривание 2s -электронов и перескок одного из этих электронов на 2p z -орбиталь; при этом образуются 4 тетраэдрические связи с углом между ними 109°. В соединениях валентные электроны углерода лишь частично оттянуты от него, поэтому углерод образует прочные ковалентные связи между соседними атомами типа С–С с помощью общей электронной пары. Энергия разрыва такой связи равна 335 кДж/моль, тогда как для связи Si–Si она составляет всего 210 кДж/моль, поэтому длинные цепочки –Si–Si– неустойчивы. Ковалентный характер связи сохраняется даже в соединениях высокореакционноспособных галогенов с углеродом, CF 4 и CCl 4 . Углеродные атомы способны предоставлять на образование связи более одного электрона от каждого атома углерода; так образуются двойная С=С и тройная СєС связи. Другие элементы также образуют связи между своими атомами, но только углерод способен образовывать длинные цепи. Поэтому для углерода известны тысячи соединений, называемых углеводородами, в которых углерод связан с водородом и другими углеродными атомами, образуя длинные цепи или кольцевые структуры. См . ХИМИЯ ОРГАНИЧЕСКАЯ.

В этих соединениях возможно замещение водорода на другие атомы, наиболее часто на кислород, азот и галогены с образованием множества органических соединений. Важное значение среди них занимают фторуглеводороды – углеводороды, в которых водород замещен на фтор. Такие соединения чрезвычайно инертны, и их используют как пластичные и смазочные материалы (фторуглероды, т.е. углеводороды, в которых все атомы водорода замещены на атомы фтора) и как низкотемпературные хладагенты (хладоны, или фреоны, – фторхлоруглеводороды).

В 1980-х годах физиками США был обнаружены очень интересные соединения углерода, в которых атомы углерода соединены в 5- или 6-угольники, образующие молекулу С 60 по форме полого шара, имеющего совершенную симметрию футбольного мяча. Поскольку такая конструкция лежит в основе «геодезического купола», изобретенного американским архитектором и инженером Бакминстером Фуллером, новый класс соединений был назван «бакминстерфуллеренами» или «фуллеренами» (а также более коротко – «фазиболами» или «бакиболами»). Фуллерены – третья модификация чистого углерода (кроме алмаза и графита), состоящая из 60 или 70 (и даже более) атомов, – была получена действием лазерного излучения на мельчайшие частички углерода. Фуллерены более сложной формы состоят из нескольких сотен атомов углерода. Диаметр молекулы С 60 ~ 1нм. В центре такой молекулы достаточно пространства для помещения большого атома урана.

Стандартная атомная масса.

В 1961 Международные союзы теоретической и прикладной химии (ИЮПАК) и по физике приняли за единицу атомной массы массу изотопа углерода 12 C, упразднив существовавшую до того кислородную шкалу атомных масс. Атомная масса углерода в этой системе равна 12,011, так как она является средней для трех природных изотопов углерода с учетом их распространенности в природе. См . АТОМНАЯ МАССА.

Химические свойства углерода и некоторых его соединений.

Некоторые физические и химические свойства углерода приведены в статье ЭЛЕМЕНТЫ ХИМИЧЕСКИЕ. Реакционная способность углерода зависит от его модификации, температуры и дисперсности. При низких температурах все формы углерода достаточно инертны, но при нагревании окисляются кислородом воздуха, образуя оксиды:

Мелкодисперсный углерод в избытке кислорода способен взрываться при нагревании или от искры. Кроме прямого окисления существуют более современные методы получения оксидов.

Субоксид углерода

C 3 O 2 образуется при дегидратации малоновой кислоты над P 4 O 10:

C 3 O 2 имеет неприятный запах, легко гидролизуется, вновь образуя малоновую кислоту.

Монооксид углерода(II) СО образуется при окислении любой модификации углерода в условиях недостатка кислорода. Реакция экзотермична, выделяется 111,6 кДж/моль. Кокс при температуре белого каления реагирует с водой: C + H 2 O = CO + H 2 ; образующаяся газовая смесь называется «водяной газ» и является газообразным топливом. СO образуется также при неполном сгорании нефтепродуктов, в заметных количествах содержится в автомобильных выхлопах, получается при термической диссоциации муравьиной кислоты:

Степень окисления углерода в СО равна +2, а поскольку углерод более устойчив в степени окисления +4, то СО легко окисляется кислородом до CO 2: CO + O 2 → CO 2 , эта реакция сильно экзотермична (283 кДж/моль). СО применяют в промышленности в смеси с H 2 и другими горючими газами в качестве топлива или газообразного восстановителя. При нагревании до 500° C CO в заметной степени образует С и CO 2 , но при 1000° C равновесие устанавливается при малых концентрациях СO 2 . CO реагирует с хлором, образуя фосген – COCl 2 , аналогично протекают реакции с другими галогенами, в реакции с серой получается сульфид карбонила COS, с металлами (M) СO образует карбонилы различного состава M(CO) x , являющиеся комплексными соединениями. Карбонил железа образуется при взаимодействии гемоглобина крови с CO, препятствуя реакции гемоглобина с кислородом, так как карбонил железа – более прочное соединение. В результате блокируется функция гемоглобина как переносчика кислорода к клеткам, которые при этом погибают (и в первую очередь поражаются клетки мозга). (Отсюда еще одно название СО – «угарный газ»). Уже 1% (об.) СO в воздухе опасен для человека, если он находится в такой атмосфере более 10 мин. Некоторые физические свойства СО приведены в таблице.

Диоксид углерода, или оксид углерода(IV) CO 2 образуется при сгорании элементного углерода в избытке кислорода c выделением тепла (395 кДж/моль). CO 2 (тривиальное название – «углекислый газ») образуется также при полном окислении СО, нефтепродуктов, бензина, масел и др. органических соединений. При растворении карбонатов в воде в результате гидролиза также выделяется СО 2:

Такой реакцией часто пользуются в лабораторной практике для получения CO 2 . Этот газ можно получить и при прокаливании бикарбонатов металлов:

при газофазном взаимодействии перегретого пара с СО:

при сжигании углеводородов и их кислородпроизводных, например:

Аналогично окисляются пищевые продукты в живом организме с выделением тепловой и других видов энергии. При этом окисление протекает в мягких условиях через промежуточные стадии, но конечные продукты те же – СO 2 и H 2 O, как, например, при разложении сахаров под действием ферментов, в частности при ферментации глюкозы:

Многотоннажное производство углекислого газа и оксидов металлов осуществляется в промышленности термическим разложением карбонатов:

CaO в больших количествах используется в технологии производства цемента. Термическая стабильность карбонатов и затраты теплоты на их разложение по этой схеме возрастают в ряду CaCO 3 (см. также ПОЖАРНАЯ ПРОФИЛАКТИКА И ПРОТИВОПОЖАРНАЯ ЗАЩИТА).

Электронное строение оксидов углерода.

Электронное строение любого оксида углерода можно описать тремя равновероятными схемами с различным расположением электронных пар – тремя резонансными формами:

Все оксиды углерода имеют линейное строение.

Угольная кислота.

При взаимодействии СO 2 с водой образуется угольная кислота H 2 CO 3 . В насыщенном растворе CO 2 (0,034 моль/л) только часть молекул образует H 2 CO 3 , а бóльшая часть CO 2 находится в гидратированном состоянии CO 2 ЧH 2 O.

Карбонаты.

Карбонаты образуются при взаимодействии оксидов металлов с CO 2 , например, Na 2 O + CO 2 Na 2 CO 3 .

За исключением карбонатов щелочных металлов, остальные практически нерастворимы в воде, а карбонат кальция частично растворим в угольной кислоте или растворе CO 2 в воде под давлением:

Эти процессы происходят в подземных водах, протекающих через пласт известняка. В условиях низкого давления и испарения из грунтовых вод, содержащих Ca(HCO 3) 2 , осаждается CaCO 3 . Так происходит рост сталактитов и сталагмитов в пещерах. Окраска этих интересных геологических образований объясняется присутствием в водах примесей ионов железа, меди, марганца и хрома. Углекислый газ реагирует с гидроксидами металлов и их растворами с образованием гидрокарбонатов, например:

CS 2 + 2Cl 2 ® CCl 4 + 2S

Тетрахлорид CCl 4 – негорючее вещество, используется в качестве растворителя в процессах сухой чистки, но не рекомендуется применять его как пламегаситель, так как при высокой температуре происходит образование ядовитого фосгена (газообразное отравляющее вещество). Сам ССl 4 также ядовит и при вдыхании в заметных количествах может вызвать отравление печени. СCl 4 образуется и по фотохимической реакции между метаном СH 4 и Сl 2 ; при этом возможно образование продуктов неполного хлорирования метана – CHCl 3 , CH 2 Cl 2 и CH 3 Cl. Аналогично протекают реакции и с другими галогенами.

Реакции графита.

Графит как модификация углерода, отличающаяся большими расстояниями между слоями гексагональных колец, вступает в необычные реакции, например, щелочные металлы, галогены и некоторые соли (FeCl 3) проникают между слоями, образуя соединения типа KC 8 , KC 16 (называемые соединениями внедрения, включения или клатратами). Сильные окислители типа KClO 3 в кислой среде (серной или азотной кислоты) образуют вещества с большим объемом кристаллической решетки (до 6 Å между слоями), что объясняется внедрением кислородных атомов и образованием соединений, на поверхности которых в результате окисления образуются карбоксильные группы (–СООН) – соединения типа оксидированного графита или меллитовой (бензолгексакарбоновой) кислоты С 6 (COOH) 6 . В этих соединениях отношение С:O может изменяться от 6:1 до 6:2,5.

Карбиды.

Углерод образует с металлами, бором и кремнием разнообразные соединения, называемые карбидами. Наиболее активные металлы (IA–IIIA подгрупп) образуют солеподобные карбиды, например Na 2 C 2 , CaC 2 , Mg 4 C 3 , Al 4 C 3 . В промышленности карбид кальция получают из кокса и известняка по следующим реакциям:

Карбиды неэлектропроводны, почти бесцветны, гидролизуются с образованием углеводородов, например

CaC 2 + 2H 2 O = C 2 H 2 + Ca(OH) 2

Образующийся по реакции ацетилен C 2 H 2 служит исходным сырьем в производстве многих органических веществ. Этот процесс интересен, так как он представляет переход от сырья неорганической природы к синтезу органических соединений. Карбиды, образующие при гидролизе ацетилен, называются ацетиленидами. В карбидах кремния и бора (SiC и B 4 C) связь между атомами ковалентная. Переходные металлы (элементы B-подгрупп) при нагревании с углеродом тоже образуют карбиды переменного состава в трещинах на поверхности металла; связь в них близка к металлической. Некоторые карбиды такого типа, например WC, W 2 C, TiC и SiC, отличаются высокой твердостью и тугоплавкостью, обладают хорошей электропроводностью. Например, NbC, TaC и HfC – наиболее тугоплавкие вещества (т.пл. = 4000–4200° С), карбид диниобия Nb 2 C – сверхпроводник при 9,18 К, TiC и W 2 C по твердости близки алмазу, а твердость B 4 C (структурного аналога алмаза) составляет 9,5 по шкале Мооса (см . рис. 2). Инертные карбиды образуются, если радиус переходного металла

Азотпроизводные углерода.

К этой группе относится мочевина NH 2 CONH 2 – азотное удобрение, применяемое в виде раствора. Мочевину получают из NH 3 и CO 2 при нагревании под давлением:

Дициан (CN) 2 по многим свойствам подобен галогенам и его часто называют псевдогалоген. Дициан получают мягким окислением цианид-иона кислородом, пероксидом водорода или ионом Cu 2+ : 2CN – ® (CN) 2 + 2e.

Цианид-ион, являясь донором электронов, легко образует комплексные соединения с ионами переходных металлов. Подобно СО, цианид-ион является ядом, связывая жизненно важные соединения железа в живом организме. Цианидные комплексные ионы имеют общую формулу –0,5x , где х – координационное число металла (комплексообразователя), эмпирически равно удвоенному значению степени окисления иона металла. Примерами таких комплексных ионов являются (строение некоторых ионов приведено ниже) тетрацианоникелат(II)-ион 2– , гексацианоферрат(III) 3– , дицианоаргентат – :

Карбонилы.

Монооксид углерода способен непосредственно реагировать со многими металлами или ионами металлов, образуя комплексные соединения, называемые карбонилами, например Ni(CO) 4 , Fe(CO) 5 , Fe 2 (CO) 9 , 3 , Mo(CO) 6 , 2 . Связь в этих соединениях аналогична связи в описанных выше цианокомплексах. Ni(CO) 4 – летучее вещество, используется для отделения никеля от других металлов. Ухудшение структуры чугуна и стали в конструкциях часто связано с образованием карбонилов. Водород может входить в состав карбонилов, образуя карбонилгидриды, такие, как H 2 Fe(CO) 4 и HCo(CO) 4 , проявляющие кислотные свойства и реагирующие со щелочью:

H 2 Fe(CO) 4 + NaOH → NaHFe(CO) 4 + H 2 O

Известны также карбонилгалогениды, например Fe(CO)X 2 , Fe(CO) 2 X 2 , Co(CO)I 2 , Pt(CO)Cl 2 , где Х – любой галоген .

Углеводороды.

Известно огромное количество соединений углерода с водородом

Характеристика элемента

6 С 1s 2 2s 2 2p 2



Изотопы: 12 С (98,892 %); 13 С (1,108%); 14 С (радиоактивный)



Кларк в земной коре 0,48 % по массе. Формы нахождения:


в свободном виде (каменный уголь, алмазы);


в составе карбонатов (СаСO 3 , МgСO 3 и др.);


в составе горючих ископаемых (уголь, нефть, газ);


в виде СO 2 - в атмосфере (0,03 % по объему);


в Мировом океане - в виде анионов НСO 3 - ;


в составе живой материи (-18 % углерода).


Химия соединений углерода - это, в основном, органическая химия. В курсе неорганической химии изучаются следующие С-содержащие вещества: свободный углерод, оксиды (СО и СO 2), угольная кислота, карбонаты и гидрокарбонаты.

Свободный углерод. Аллотропия.

В свободном состоянии углерод образует 3 аллотропные модификации: алмаз, графит и искусственно получаемый карбин. Эти видоизменения углерода различаются кристаллохимическим строением и физическими характеристиками.

Алмаз

В кристалле алмаза каждый атом углерода связан прочными ковалентными связями с четырьмя другими, размещенными вокруг него на одинаковых расстояниях.


Все атомы углерода находятся в состоянии sp 3 -гибридизации. Атомная кристаллическая решетка алмаза имеет тетраэдрическое строение.


Алмаз - бесцветное, прозрачное, сильно преломляющее свет вещество. Отличается самой большой твердостью среди всех известных веществ. Алмаз хрупкий, тугоплавкий, плохо проводит тепло и электрический ток. Небольшие расстояния между соседними атомами углерода (0,154 нм) обусловливают довольно большую плотность алмаза (3,5 г/см 3).

Графит

В кристаллической решетке графита каждый атом углерода находится в состоянии sp 2 -гибридизации и образует три прочные ковалентные связи с атомами углерода, расположенными в том же слое. В образовании этих связей участвуют по три электрона каждого атома, углерода, а четвертые валентные электроны образуют л-связи и являются относительно свободными (подвижными). Они обусловливают электро- и теплопроводность графита.


Длина ковалентной связи между соседними атомами углерода в одной плоскости равна 0,152 нм, а расстояние между атомами С в различных слоях больше в 2,5 раза, поэтому связи между ними слабые.


Графит - непрозрачное, мягкое, жирное на ощупь вещество серо-черного цвета с металлическим блеском; хорошо проводит тепло и электрический ток. Графит имеет меньшую плотность по сравнению с алмазом, легко расщепляется на тонкие чешуйки.


Разупорядоченная структура мелкокристаллического графита лежит в основе строения различных форм аморфного углерода, важнейшими из которых являются кокс, бурые и каменные угли, сажа, активированный (активный) уголь.

Карбин

Эту аллотропную модификацию углерода получают каталитическим окислением (дегидрополиконденсацией) ацетилена. Карбин - цепочечный полимер, имеющий две формы:


С=С-С=С-... и...=С=С=С=


Карбин обладает полупроводниковыми свойствами.

Химические свойства углерода

При обычной температуре обе модификации углерода (алмаз и графит) химически инертны. Мелкокристаллические формы графита - кокс, сажа, активированный уголь - более реакционноспособны, но, как правило, после их предварительного нагревания до высокой температуры.

С - активный восстановитель:

1. Взаимодействие с кислородом


С + O 2 = СO 2 + 393,5 кДж (в избытке O 2)


2С + O 2 = 2СО + 221 кДж (при недостатке O 2)


Сжигание угля - один из важнейших источников энергии.


2. Взаимодействие с фтором и серой.


С + 2F 2 = CF 4 тетрафторид углерода


С + 2S = CS 2 сероуглерод


3. Кокс - один из важнейших восстановителей, используемых в промышленности. В металлургии с его помощью получают металлы из оксидов, например:


ЗС + Fe 2 O 3 = 2Fe + ЗСО


С + ZnO = Zn + СО


4. При взаимодействии углерода с оксидами щелочных и щелочноземельных металлов восстановленный металл, соединяясь с углеродом, образует карбид. Например: ЗС + СаО = СаС 2 + СО карбид кальция


5. Кокс применяется также для получения кремния:


2С + SiO 2 = Si + 2СО


6. При избытке кокса образуется карбид кремния (карборунд) SiC.


Получение «водяного газа» (газификация твердого топлива)


Пропусканием водяного пара через раскаленный уголь получают горючую смесь СО и Н 2 , называемую водяным газом:


С + Н 2 О = СО + Н 2


7. Реакции с окисляющими кислотами.


Активированный или древесный уголь при нагревании восстанавливает анионы NO 3 - и SO 4 2- из концентрированных кислот:


С + 4HNO 3 = СO 2 + 4NO 2 + 2Н 2 О


С + 2H 2 SO 4 = СO 2 + 2SO 2 + 2Н 2 О


8. Реакции с расплавленными нитратами щелочных металлов


В расплавах KNO 3 и NaNO 3 измельченный уголь интенсивно сгорает с образованием ослепительного пламени:


5С + 4KNO 3 = 2К 2 СO 3 + ЗСO 2 + 2N 2

С - малоактивный окислитель:

1. Образование солеобразных карбидов с активными металлами.


Значительное ослабление неметаллических свойств у углерода выражается в том, что функции его как окислителя проявляются в гораздо меньшей степени, чем восстановительные функции.


2. Только в реакциях с активными металлами атомы углерода переходят в отрицательно заряженные ионы С -4 и (С=С) 2- , образуя солеобразные карбиды:


ЗС + 4Al = Аl 4 С 3 карбид алюминия


2С + Са = СаС 2 карбид кальция


3. Карбиды ионного типа - очень нестойкие соединения, они легко разлагаются под действием кислот и воды, что свидетельствует о неустойчивости отрицательно заряженных анионов углерода:


Аl 4 С 3 + 12Н 2 О = ЗСН 4 + 4Аl(ОН) 3


СаС 2 + 2Н 2 О = С 2 Н 2 + Са(ОН) 2


4. Образование ковалентных соединений с металлами


В расплавах смесей углерода с переходными металлами образуются карбиды преимущественно с ковалентный типом связи. Молекулы их имеют переменный состав, а вещества в целом близки к сплавам. Такие карбиды отличаются высокой устойчивостью, они химически инертны по отношению к воде, кислотам, щелочам и многим другим реагентам.


5. Взаимодействие с водородом


При высоких Т и Р, в присутствии никелевого катализатора, углерод соединяется с водородом:


С + 2НН 2 → СНН 4


Реакция очень обратима и не имеет практического значения.

Поделиться: