Технология получения полиэтилена высокого и низкого давления. Исходное сырье для получения полиэтилена

Изделия из полиэтилена (ПЭ) наряду с другими полимерными материалами нашли широкое распространение в мире как отличный заменитель таких традиционных материалов, как металлы, дерево, стекло, натуральные волокна, текстильной промышленности и других отраслях. Трубы из полипропилена стремительно вытесняют металлические трубы в коммунальном хозяйстве и промышленности. В связи с этим, мировое производство полипропилена растет очень быстрыми темпами.
Полиэтилен различных марок (LLDPE, LDPE, HDPE)продолжает удерживать лидирующие позиции среди крупнотоннажных пластиков . В 2012 мировое производство полимеров составило 211 млн. т, причем 38% или 80 млн.т. приходилось на ПЭ различных марок. Ожидается, что в 2015 году мировое производство ПЭ достигнет 105 млн.т.
Рисунок 1. Соотношение различных видов полимеров в мировом производстве, 2012г.

Можно считать ПЭ наиболее популярным полимерным материалом в первую очередь ввиду его сравнительной простоты, надежности и сравнительно низкой стоимости его изготовления. Так для производства 1 т ПЭ во всех современных технологиях требуется не больше 1,005 - 1,015 т этилена и 400-800 кВтч электроэнергии. В большинстве областей, где применяются пластики нет необходимости использования других материалов. По той же причине, второй наиболее популярный материал - полипропилен (25%).
Полипропилен и полиэтилен вместе можно назвать и наиболее «универсальными» пластиками. Посвоим характеристиками и тот и другой не являются лидерами. По оптическим свойствам все другие материалы оставляют за собой поликарбонаты, по механическим характеристикам - полиамиды, по электроизоляционным свойствам - ПВХ, а для продуктов выдувного формования идеально подходит ПЭТФ.Не являясь идеальным материалом по всем параметрам, ПЭ во всех областях показывает умеренный второй-третий результат, что дает ему возможность применяться для всех целей, а сочетание этих свойств с гораздо более низкой ценой и делает ПЭ наиболее востребованным полимерным материалом во всем мире.
Впервые ПЭ был получен в 1873 году, его отцом можно считать великого русского химика Александра Михайловича Бутлерова, который первым изучал реакции полимеризации алкенов. Другим отцом можно считать и его преемника, русского химика Гаврилу Гавриловича Густевсона, продолжавшего изучение реакций полимеризации. На западе первооткрывателем полиэтилена принято считать немецкого химика Ганса фон Пехмана, получившего ПЭ более продвинутым способом в 1899г, тогда его принято было называть «полиметилен».
Как и многие подобные открытия, ПЭ сильно опередил свое время, поэтому оказался не заслужено забыт более чем на 30 лет. Это можно понять, никто в начале века не мог предполагать, что непонятная желеобразная субсанция совершит настоящую технологическую революцию, серьезно ослабив позиции традиционных материалов.
Первой промышленной технологией получения ПЭ стала в 1935 г. газофазная технология английской компании ICI (ImperialChemicalIndustries ). Уже после этого в Европе и США стали появляться первые установки по производству ПЭ. Первоначально основным назначением этого полиэтилена стало производство проводов, благодаря хорошим электроизоляционным свойствам полиэтилена. Новые провода с полиэтиленовой изоляцией вытеснили резиновые и были широко распространены вплоть до того как их вытеснили провода из ПВХ. Однако настоящему триумфу ПЭ способствовало само время. Послевоенные годы характеризовались небывалом ростом покупательской способности граждан, повышенным спросом на продукты питания и товары легкой промышленности. Появились первые супермаркеты. Тогда-то полиэтиленовый пакет стал набирать огромную популярность во всем мире.
Примечательно, что одной из двух установок производства ПЭ, работающих на ОАО «Казаньоргсинтез» является как раз установка английской фирмы ICI , образца 1935 года ,она работает по настоящее время, являясь самой старой установкой, работающей в России.
Для уяснения различий технологий производства, важно понимание видового состава производимой продукции полиэтилена. Четко различают полиэтилены высокого давления и низкой плотности и полиэтилены низкого давления и высокой плотности.
Полиэтилен высокого давления ПЭВД/ LDPE
Полиэтилен высокого давления (ПЭВД) он же полиэтилен низкой плотности (ПЭНП), в англоязычном наименовании LDPE (Low-Density PE) получают при высокой температуре 200-260 0 С и давлении 150-300 Мпа в присутствии инициатора полимеризации (кислород или чаще органический пероксид). Эго плотность лежит в пределах 0,9 - 0,93 г/см 3 .
Полиэтилен низкого давления ПЭНД/ HDPE
Полиэтилен низкого давления (ПЭНД) он же полиэтилен высокой плотности (ПЭВП), в англоязычной наименовании HDPE (High-Density PE) получают при температуре 120-1500С, давлении ниже 0.1-2МПа в присутствии катализатора Циглера-Натта (смесь TiCl 4 и AlCl 3 ).
Таблица 1 . Сравнительные показатели различных видов полиэтилена.

Показатель ПЭВД ПЭСД ПЭНД
Общее число групп СН 3 на 1000 атомов углерода: 21,6 5 1,5
Число концевых групп СН 3 на 1000 атомов углерода: 4,5 2 1,5
Этильные ответвления 14,4 1 1
Общее количество двойных связей на 1000 атомов углерода 0,4—0,6 0,4—0,7 1,1-1,5
в том числе:
винильных двойных связей (R-CH=CH 2), % 17 43 87
винилиденовых двойных связей , % 71 32 7
транс-виниленовых двойных связей (R-CH=CH-R"), % 12 25 6
Степень кристалличности, % 50-65 75-85 80-90
Плотность, г/см³ 0,9-0,93 0,93-0,94 0,94-0,96

Иногда различают также полиэтилен среднего давления (ПЭСД), однако его принято относить к ПЭНД, т.к. эти продукты имеют одинаковую плотность и вес, а давление в процессе полимеризации при так называемых низком и среднем давлениях чаще всего одно и тоже. Нередко, особенно часто в зарубежной литературе, различного линейные продукты ПЭ высокого давления принято выделять отдельно, как это сделано на рисунке 1, однако в целом не будет ошибкой считать их вкупе с другими продуктами ПЭВД.
В ОАО «НИИТЭХИМ» исторически сложилась практика считать производство ПЭ как суммы производств ПЭВД и ПЭНД, относя ЛПЭВД к ПЭВД. Такой подход логичен, удобен и полностью обоснован. Таким же образом производство разделяет и Росстат, разделяя, продукты полимеризации этилена плотностью не менее 0,94 (имется в виду ПЭНД) и продукты полимеризации этилена плотностью менее 0,94 г/см 3 (ПЭВД).
Главное различие между ПЭВД и ПЭНД - плотность. При этом необходимо четко представлять что практически всегда применяется сополимер. Бутен-1, Гексен-1, октен-1 или другие. Чистыйгомоплимер сильно отличается от привычных нам современных полиэтиленов и имеет очень ограниченное применения ввиду очень высокой плотности и низкой текучести.
Существуют и другие более специальные виды полиэтилена. Так выделяют линейный ПЭ низкой плотности - ЛПЭНП или LLDPE , который применяется в основном для производства тары и упаковки.
Бимодальный ПЭ это полиэтилен, который синтезируется по двуреакторной каскадной технологии, т.е. там две крупных фракции с разной молекулярной массой - низкомолекулярная отвечает за текучесть, высокомолекулярная - за физико-механические характеристики.
Сшитый ПЭ (PE-X или XLPE, ПЭ-С) — полимер этилена с поперечно сшитыми молекулами (PE — PolyEthylene, X — Cross-linked). Сшивка представляет собой трехмерную сетку за счет образования поперечных связей.Металлоценовый ПЭ - полимер этилена, полученный с помощью катализаторов с единым центром полимеризации. Обычно обозначается mLLDPE , mMDPE или mHDPE .
Наиболее важный сополимер этилена - сэвилен , в зарубежной периодике принято название EVA - этиленвинилацетат.
Рисунок 2 . Структура потребления ПЭВД, ПЭНД, сэвилена, а также общее потребление ПЭ по секторам в России в 2014г. На рисунке 2 представлено соотношение ПЭНД, ПЭВД и наиболее важного из этиленовых сополимеров - сэвилена в структуре потребления в России. Из рисунка видно, что основными секторами потребления ПЭ в 2014 году были производители тары и упаковки, пленки, труб, изделий бытового и хозяйственного назначения на их долю приходилось более 86% всего объема потребляемого ПЭ.
При этом, разные виды ПЭ по-разному востребованы в секторах потребления. Так, например, сектор производства труб из ПЭ полностью представлен только ПЭНД (HDPE). Для производства труб используются ПЭНД марок ПЭ-100, ПЭ-100+.
Обратная картина видна в случае производства пленки. Если только 6% ПЭНД используется для производства пленки, то доля ПЭВД составляет уже 43%, что делает полиэтилен высокого давления и низкой плотности, наиболее подходящим для этого сектора потребления. То же касается и производства листового ПЭ, а также производства кабеля. В производстве тары и упаковки ПЭНД и ВЭВД представлены практически одинаково (30 и 28%). 13% ПЭНД идет на производство изделий бытового и хозяйственного назначения, в то время как ПЭВД на эту цель идет около 18%.
Соплолимер этилена и винилацетата - сэвилен представлен не так массово как ПЭНД и ПЭВД, его доля в общем производстве ПЭ составляет лишь 0,65%. При этом в два раза больше сэвилена приходит на российский рынок через импорт. Сэвилен идет на производство изделий бытового и хозяйственного назначения - 42%, тары и упаковки - 32%, пленки 15% и кабеля 6%.
Среди основных лицензиаров технологий производства полиолефинов давно наметилась тенденция консолидации и глобализации производителей. Количество участников рынка технологий сокращается, в конечном итоге, только крупнейшие игроки имеют возможность разработать собственную технологию. Основные лицензиары технологий производства представлены в таблице 2 .
Таблица 2 . Лицензиары технологий и основные технологии производства ПЭ.

Название Владелец Тип полимеризации Продукция
UNIPOL PE UnionCarbide Газовая фаза ЛПЭВД, ПЭНД
INNOVENE BP Chemicals Газовая фаза ЛПЭВД, ПЭНД
Innovene G BP Chem. Газовая фаза ЛПЭВД, ПЭНД
EXXPOL Exxon-Mobil Газовая фаза ЛПЭВД, ПЭНД
COMPACT (Stamylex) DSM Раствор ЛПЭВД, ПЭНД
SPHERILENE Basell Газовая фаза, каскадный ЛПЭВД, ПЭНД
HOSTALEN Basell Газовая фаза, каскадный ПЭНД
LUPOTECH T Basell В массе ПЭВД, сэвилен
ENERGX EastmanChemical Газовая фаза ЛПЭВД, ПЭНД
SCLAIRTECH NOVA Chemicals Газовая фаза ЛПЭВД, ПЭНД
BORSTAR PE Borealis Суспензия, каскадный ЛПЭВД, ПЭНД
PHILLIPS Phillips Суспензия ЛПЭВД, ПЭНД
CX Mitsui Chemicals Газовая фаза, каскадный ПЭНД

Лидирующими игроками на мировом рынке по существующим мощностям в мире являются Dow и Carbide , чья технология Unipol является самой популярной технологией в мире. Другой не менее популярной технологией является Innovene , принадлежащая BP . В результате слияния «Dow» и «UnionCarbide» в 2000 году под контроль Dow попал 50-процентный пакет акций компании Univation, которым владел UnionCarbide.
Все технологии производства можно разделить по принципу работы реактора синтеза полиэтилена . Технологии Unipol , Innovene , Exxpol , Spherilene , Hostalen , Sclairtech и CX (Mitsui ) основаны на газофазной реакции полимеризации этилена и сополимера. Реакция происходит при 70-110 0 С, давлении 15-30 бар в присутствии катализаторов Циглера-Натта.
Технологии Hostalen - Basell и CX - MitsuiChemicals предусматривают также второй реактор полимеризации по каскадной схеме. В этом реализуется возможность получения бимодального ПЭ высокой плотности, путем смешения двух крупных фракции с разной молекулярной массой - низкомолекулярной, отвечающей за текучесть, и высокомолекулярная - за физико-механические характеристики. Газофазный синтез полиэтилена отличается низкими капитальными и оперативными затратами и позволяет производить как ПЭВД, так и ПЭНД в широком диапазоне. Именно поэтому газофазные технологии наиболее популярны в России и в мире.
DSM предлагает технологию получения ПЭ, используя синтез в растворе. Она производит LLDPE, используя собственную технологию COMPACT Solution (Stamylex) в комбинации с катализаторами Ziegler. Технология COMPACT - очень гибкий процесс производства полимеров высокого качества. Синтез в растворе производится при температуре 150-300 0 и давлении 30-130 бар в присутствии катализаторов Циглера-Натта или металлоценового катализатора. В качестве растворителя используют октен. В случае использования второго жидкофазного реактора также возможно получение бимодального ПЭ. Технология отличается более высокими, по сравнению с газофазным синтезом капитальными затратами и оперативными расходами. Среди крупных производителей линейного полиэтилена технологию COMPACT применяют LG Chemicals, HyundaiPetrochemicalCo.
BorstarPE - Borealis и Philips предлагают технологию получения ПЭ низкой плотности в суспензии изобутана, при этом реакция происходит при 85-100 0 С, давлении 4,2 , после чего полученную смесь разделяют и дегазируют при 80-85 0 С. Применяют при этом специальный петлевой (slurryloop )реактор. Возможно применение каскадной схемы получения бимодального ПЭ, при использовании второго реактора.
Рисунок 3. Типы установок производства ПЭ. Принципы реактора в схемах.

Из Рисунков 3,4 видно, что нет универсального метода получения всех видов ПЭ. Каждый метод получения ПЭ перекрывает только часть продукции полиэтилена. Наиболее широкий ряд продукции можно получить в газофазном реакторе, Unipol, Innovene, Exxpol, Spherilene, Hostalen, Sclairtech иCX (Mitsui), однако каждая из этих технологий, в свою очередь, также имеет собственные ограничения. Наиболее полный перечень продуктов может предложить технология Unipol/UnipolII, однако даже у этой технологии есть существенные ограничения, касающиеся главным образом продуктов ПЭ высокой плотности с малым индексом текучести. Такие продукты применяются для изготовления продукции ПЭНД выдувного формования, пленок и труб, в этих случаях необходим бимодальный ПЭ, для производства которого, в свою очередь, применяют каскадный реактор, состоящих из двух последовательных реакторов с разными условиями полимеризации.

Рисунок 4. Принципы производства и виды производимой продукции.

Рисунок 5. Соответствие методов производства и видов производимой продукции ПЭ.

Каскадный реактор может быть реализован как для газофазного (Spherilene иHostalen, оба Basell), так и для суспезионного(Philips)способа полимеризации. Однако установки с двумя реакторами отличаются гораздо большими капитальными затратами и более сложны в обслуживании.
Для видов полиэтилена высокого давления, предназначенного для экструзионного формования необходим высокий индекс текучести. Такая продукция применяется для труб из полиэтилена. Так цифры в наиболее известных трубных марках ПЭ 60, ПЭ 80, ПЭ 100, ПЭ 100+ соответствуют своему индексу текучести.

Производство полиэтилена, наиболее востребованного полимера, основано на реакции полимеризации газа этилена. Это термопластичный полимер, класса органических полифенолов. Его популярность объясняется целым комплексом технологических свойств, позволяющих производить из него множество изделий бытового назначения и изделий для разных сфер промышленного производства. Немаловажным фактором востребованности данного материала является его низкая стоимость по сравнению с аналогами, использующимися в этих же сферах.

Краткий анализ бизнеса:
Затраты на организацию бизнеса: 150 — 250 тысяч долларов
Актуально для городов с населением: без ограничений
Ситуация в отрасли: низкая конкуренция
Сложность организации бизнеса: 4/5
Окупаемость: 12 — 14 месяцев

Основные виды полиэтилена

  • ПНД – полиэтилен низкого давления, или ПВП – высокой плотности;
  • ПВД – высокого давления, или ПНП – низкой плотности;
  • ПСД – среднего давления, или ПСП – средней плотности.

Кроме этих видов полимеров, есть и другие: сшитый – PEX, вспененный и хлорсульфированный (ХСП) полиэтилены.

Полиэтилен – один из самых широко применяемых современных материалов в производстве:

  • упаковочных, термоусадочных, сельскохозяйственных и других видов пленки;
  • водопроводных, газовых и других видов труб;
  • различных синтетических волокон;
  • емкостей для разного рода жидкостей;
  • большого ассортимента стройматериалов;
  • санитарно-технических изделий;
  • посуды и предметов домашнего обихода;
  • изоляционных материалов для электрических кабелей;
  • деталей для автомобилей, станков, различного оборудования, инструментов и другой техники;
  • протезов для стоматологии и других видов эндопротезирования;
  • пенополиэтилена.

Широкий спектр потребительских свойств полиэтилена обусловлен целым комплексом химических, физико-механических и диэлектрических характеристик этого материала. Поэтому он востребован в радиоэлектротехнической, кабельной, химической, строительной, медицинской и многих других отраслях.

Специальные разновидности этого материала, такие как вспененный полиэтилен, сшитый, сверхмолекулярный, хлорсульфированный – эффективно используются в производстве строительных материалов. Хотя сам полиэтилен не конструкционный по структуре, но армирование стекловолокном дает возможность использовать его в конструкционных композитных изделиях.

Полиэтилен используется и как вторсырье. Его отходы отлично перерабатываются для дальнейшего применения.

Технология производства полиэтилена

Полиэтиленовый полимер получают в результате химической реакции полимеризации этилена в различно созданных условиях и в присутствии определенных катализаторов. В зависимости от условий протекания реакции – температуры, давления и катализаторов, полиэтилен приобретает кардинально отличающиеся характеристики.

Чаще всего практическую ценность имеют три вида полиэтилена – низкого, среднего и высокого давления. Поэтому стоит рассмотреть технологию получения именно этих материалов. Надо заметить, что полиэтилен среднего давления считается всего лишь разновидностью ПНД и технология их производства ничем не отличается.

Производство полиэтилена низкого давления

ПНД производится из очищенного газа этилена. Процесс идет при температуре 100-150°C при давлении до 4 МПа. В реакции полимеризации обязательно должен присутствовать катализатор: или триэтилаллюминий или четыреххлористый титан. Процесс может быть непрерывным или кратковременным, с перерывами.

Существует ряд технологий производства полиэтилена, отличающихся по типу используемых конструкций, размеру реактора, способу очистки полимера от катализатора. Весь технологический процесс разбит на три этапа:

  • полимеризация полиэтилена;
  • очистка его от катализатора;
  • просушка.

Необходимое условие для нормального протекания реакции полимеризации – постоянная температура, которая поддерживается с помощью подаваемого этилена и его объемов. Процесс полимеризации с участием катализатора имеет свои недостатки – происходит неизбежное загрязнение полученного продукта остатками катализатора.

Он не только окрашивает полиэтилен в неприемлемый коричневый цвет, но и ухудшает его химические свойства. Для устранения этого недостатка катализатор разрушается, а потом растворяется и отфильтровывается. Отмывается полученный полимер в специальной центрифуге, в которую добавляют метиловый спирт.

После промывки он отжимается, к нему добавляют вещества, повышающие его прочность и внешний вид. Для улучшения внешних качеств добавляют воск, который придает полиэтилену блеск. Далее продукт полимеризации попадает в сушильные аппараты и в цеха грануляции. Основные марки полиэтилена производятся в порошкообразном виде, композиционные марки – в виде гранул.

Производство полиэтилена высокого давления

ПВД производится при температуре не менее 200 °C, при давлении от 150 до 300 МПа, в качестве активатора реакции выступает кислород. Оборудование для получения полимера – автоклавные и трубчатые реакторы.

Трубчатый реактор – это длинный резервуар в виде трубы, в котором и происходит реакция полимеризации под высоким давлением. Полимер, в виде расплава выводится из реактора и поступает в отделитель промежуточного давления, где он изолируется от непрореагировавшего этилена. Затем, согласно технологической схеме он поступает на экструдер и выходит из него в виде гранул, и направляется на дополнительную обработку. Эта технология является наиболее востребованной среди производителей.

Автоклавные реакторы – цилиндрические, вертикально расположенные агрегаты, в которых идет реакция полимеризации этилена с инициатором реакции. Реакторы отличаются условиями протекания реакций, в том числе условиями теплоотвода. Концентрации инициаторов и параметров реакционной массы.

Различия протекания химических реакций. Разные виды оборудования и другие различия обусловливают структурные особенности получаемого продукта полимеризации.

Несмотря на тип реактора, схема производства ПВД для них одинаковая:

  • подача в приемник реактора сырья и инициатора;
  • разогрев ингредиентов и повышение параметров давления;
  • промежуточная подача сырья и инициатора;
  • изоляция непрореагировавшего этилена и его сбор для повторного использования;
  • охлаждение полученного полимера, сброс давления;
  • грануляция конечного продукта, промывка, сушка, упаковка.

Вспененный полиэтилен, или ППЭ – это полимер, отличающийся пористой структурой и имеющий высокие эксплуатационные и технические характеристики. Он широко используется как термоизоляционный материал в строительстве и в приборостроительном машиностроении, а также как упаковочный материал и в других сферах.

Технология производства этого полимера отличается определенной сложностью. Для ее полного цикла необходимо специальное оборудование: смесители, загрузчики, охлаждающие устройства, насосы высокого давления. Но самым главным оборудованием в производстве вспененного полиэтилена являются экструдеры. В качестве сырья используется ПВД, в качестве вспенивающих агентов – фреоны и алкановые смеси, например, бутан.

В зависимости от особенностей технологии производства, различают два вида ППЭ – сшитый и несшитый. Процесс вспенивания идет под определенным давлением и с высокой температурой. Этапы технологического процесса:

  • смешивание;
  • продавливание смеси через экструдер;
  • сшивание пленок;
  • вспенивание;
  • получение заготовок в виде плит, пленки и других полуфабрикатов.
  • Для того, чтобы избежать затрат на крупномасштабное производство полимеров, можно воспользоваться их вторичной переработкой. Из вторсырья производится высококачественный гранулированный полимерный продукт, который по своим характеристикам ничем не уступающий первично полученному полимерному продукту.

    Сырье подвергается дроблению. Затем, оно моется и сушится в центрифуге. Очищенная сырьевая масса проходит операцию агломерации и идет на гранулирование. Это – конечный продукт вторичной переработки полиэтилена.

    Оборудование для производства полиэтилена различается в соответствии с назначением и видом перерабатываемого сырья. Технологическая цепочка представлена следующим оборудованием:

    • один или несколько экструдеров-грануляторов;
    • машина для резки;
    • загрузчики, работающие на основе вакуума;
    • насосы, оснащенные фильтрами для расплавов;
    • вибросита;
    • ванны для охлаждения;
    • транспортеры;
    • бункера для подачи сырьевой массы;
    • мельницы.

    Покупка нового основного оборудования для производства полиэтилена может стать в пределах 120-200 тысяч долларов.Новое отечественное оборудование будет стоить меньше в два раза.

    Как организовать завод по производству полиэтилена

    Всякий производственный бизнес начинается с разработки бизнес-плана.

    Составление бизнес-плана

    Цель бизнес-плана – предоставление общей информации об авторе проекта, описание продукции, которую он собирается производить. Также должна быть раскрыты задачи проекта, в подробностях должна быть описана технология производства продукции.

    Если эта технология является новой, то в бизнес-плане должны быть представлены заключения соответствующих органов об ее безопасности для окружающей среды и здоровья людей.

    Помещение

    Промышленное производство, каковым является выпуск полиэтилена, следует размещать в производственной зоне населенного пункта. Для производственного помещения существуют определенные санитарные и технические требования. Площадь помещения не должна быть меньше 100 кв. метров, высота его не должна быть ниже 10 метров. В производственных цехах должна быть противопожарная защита и хорошая вентиляция.

    Оформление документов

    Прежде всего, необходимо зарегистрировать свое предприятие. Это может быть ИП или ООО . Также необходимо получить разрешительные документы в таких инстанциях:

    • городская администрация;
    • пожарная, экологическая и санитарно-эпидемиологическая службы;
    • электронадзор.

    Расчет затрат

    Сначала производится расчет доходов от производства продукции:

    • сколько затрачивается в среднем на производство определенного объема продукции;
    • какова ее рыночная стоимость;
    • каков размер дохода.
    • стоимость разрешительных документов;
    • подготовка помещения;
    • закупка оборудования;
    • закупка сырья.

    Ежемесячные расходы:

    • оплата труда работникам;
    • оплата аренды помещения;
    • налоги и коммунальные услуги.

    Рентабельность бизнеса

    При стабильной работе предприятия и при хорошем стартовом капитале на приобретение оборудования, этот бизнес окупается через 12-14 месяцев. Через год стабильной работы, затраты на оборудование могут полностью окупиться и завод станет приносить чистую прибыль.

    В истории науки некоторые открытия происходили случайно, а востребованные сегодня материалы часто являлись побочным продуктом какого-либо опыта. Совершенно случайно были открыты анилиновые красители для ткани, давшие впоследствии экономический и технический прорыв в легкой промышленности. Похожая история произошла и с полиэтиленом.

    Открытие материала

    Первый случай получения полиэтилена произошел в 1898 году. В ходе разогревания диамезотана химик немецкого происхождения Ганс фон Пехман обнаружил не дне пробирки странный осадок. Материал был достаточно плотным и напоминал воск, коллеги ученого назвали его полиметиллином. Дальше случайности у этой группы ученых дело не пошло, результат был почти забыт, интереса ни у кого не возникло. Но все же идея повисла в воздухе, требуя прагматичного подхода. Так и случилось, через тридцать с лишком лет полиэтилен был вновь открыт как случайный продукт неудачного эксперимента.

    Англичане подхватывают и выигрывают

    Современный материал полиэтилен появился на свет в лаборатории английской компании Imperial Chemical Industries. Э. Фоссет и Р. Джибсон проводили эксперименты с участием газов высокого и низкого давления и заметили, что один из узлов техники, в которой проводились опыты, покрылся неизвестным восковидным веществом. Заинтересовавшись побочным эффектом, они совершили несколько попыток получить вещество, но безуспешно.

    Синтезировать полимер удалось М. Перрину, сотруднику той же компании, через два года. Именно он создал технологию, послужившую основой для промышленного производства полиэтилена. В дальнейшем свойства и качества материала изменялись лишь с помощью применения различных катализаторов. Массовое производство полиэтилена началось в 1938 году, а запатентован он был в 1936 году.

    Сырье

    Полиэтилен - это твердый полимер белого цвета. Относится к классу органических соединений. Из чего делают полиэтилен? Сырьем для его получения является газ этилен. Газ полимеризуют при высоком и низком давлении, на выходе получают гранулы сырья для дальнейшего использования. Для некоторых технологических процессов полиэтилен производится в виде порошка.

    Основные виды

    На сегодняшний день полимер выпускается двух основных марок ПВД и ПНП. Материал, изготовленный при среднем давлении относительного новое изобретение, но в перспективе количество выпускаемого продукта будет неизменно расти в связи с улучшающимися характеристиками и широким полем для применения.

    Для коммерческого использования производят следующие виды материала (классы):

    • Низкой плотности или другое название - высокого давления (ПЭВД, ПВД).
    • Высокой плотности, или низкого давления (ПЭНП, ПНП).
    • Линейный полиэтилен, или полиэтилен среднего давления.

    Также существуют другие виды полиэтилена, каждый из которых имеет свои свойства и сферу применения. В гранулированный полимер в процессе производства добавляются различные красители, позволяющие получить черный полиэтилен, красный или любого другого цвета.

    ПВД

    Производством полиэтилена занимается химическая промышленность. Газ этилен - основной элемент (из чего делают полиэтилен), но не единственный, требующийся для получения материала.

    • Температура нагревания составляет до 120 °С.
    • Режим давления до 4 МПа.
    • Стимулятор процесса - катализатор (Циглера-Натта, смесь хлорида титана с мелаллоорганическим соединением).

    Процесс сопровождается выпадением полиэтилена в виде хлопьев, которые потом проходят процесс отделения от раствора с последующей грануляцией.

    Этот вид полиэтилена характеризуется более высокой плотностью, устойчивостью к нагреванию и разрыву. Сферой применения являются различные виды упаковочных пленок, в том числе для фасовки горячих материалов/продуктов. Из гранулированного сырья этого типа полимера изготавливают детали для крупногабаритных машин методом литья, изоляционные материалы, трубы повышенной прочности, товары народного потребления и пр.

    Полиэтилен низкого давления

    Производство ПНП имеет три способа. Большинство предприятий использует метод «суспензионной полимеризации». Процесс получения ПНП происходит с участием суспензии и постоянном перемешивании исходного сырья, для запуска процесса требуется катализатор.

    Вторым по распространенности способом производства является полимеризация в растворе под воздействием температуры и участии катализатора. Метод не слишком эффективен, поскольку в процессе полимеризации катализатор вступает в реакцию, и конечный полимер теряет часть своих качеств.

    Последним из способов производства ПНП является газофазная полимеризация, она почти ушла в прошлое, но иногда встречается на отдельных предприятиях. Процесс происходит с помощью смешивания газовых фаз сырья под воздействием диффузии. Конечный полимер получается с неоднородной структурой и плотностью, что сказывается на качестве готового продукта.

    Производство происходит при следующем режиме:

    • Температура поддерживается на уровне от 120°C до 150°C.
    • Давление не должно превышать 2 МПа.
    • Катализаторы процесса полимеризации (Циглера-Натта, смесь хлорида титана с мелаллоорганическим соединением).

    Материал такого способа изготовления характеризуется жесткостью, высокой плотностью, малой эластичностью. Поэтому сферой его применения является промышленность. Технический полиэтилен применяется для изготовления крупногабаритных емкостей с повышенными характеристикам прочности. Востребован в строительной сфере, химической промышленности, для производства ТНП он почти не применяется.

    Свойства

    Полиэтилен устойчив к воздействию воды, ко многим видам растворителей, кислотам не вступает в реакцию с солями. При горении выделяется запах парафина, наблюдается свечение голубого оттенка, огонь слабый. Разложение происходит при воздействии азотной кислоты, хлора и фтора в газообразном или жидком состоянии. При старении, которое происходит на воздухе, в материале образуются поперечные связи между цепями молекул, что делает материал хрупким, крошащимся.

    Потребительские качества

    Полиэтилен - уникальный материал, привычный в быту и производстве. Вряд ли рядовой потребитель, сможет определить с каким количеством предметов из него он сталкивается ежедневно. В мировом выпуске полимеров полиэтилен занимает львиную долю рынка - 31% от общего валового продукта.

    В зависимости от того, из чего сделан полиэтилен и технологии производства, определяются его качества. Этот материал соединяет порой противоположные показатели: гибкость и прочность, пластичность и твердость, сильное растяжение и устойчивость к разрыву, устойчивость к агрессивным средам и биологическим агентам. В быту мы используем пакеты различной плотности, одноразовую посуду, полиэтиленовые крышки, детали бытовых приборов и многое другое.

    Области применения

    Применение изделий из полиэтилена не имеет ограничений, любая отрасль промышленности или человеческой деятельности сопровождается этим материалом:

    • Наибольшее распространение полимер получил в изготовлении упаковочных материалов. На эту часть применения приходится около 35% всего производимого сырья. Такое использование оправдано грязеооталкивающими свойствами, отсутствием среды для возникновения грибкового поражения и жизнедеятельности микроорганизмов. Одна из удачных находок - рукав полиэтиленовый, имеющий широкое применение. Варьируя по собственному усмотрению длину, пользователь ограничен лишь шириной упаковки.
    • Помня, из чего сделан полиэтилен, становится понятным, почему он получил распространение как один из лучших изоляционных материалов. Одним из его востребованных в этой сфере качеств стало отсутствие электропроводимости. Также незаменимы его свойства водоотталкивания, что нашло применение в производстве гидроизоляционных материалов.
    • Устойчивость к разрушительной силе воды, как растворителя, позволяет изготавливать трубы из полиэтилена для бытовых и промышленных потребителей.
    • В строительной отрасли используются шумоизолирующие качества полиэтилена, его низкая теплопроводность. Эти свойства пригодились при изготовлении на его основе материалов для утепления жилых и промышленных объектов. Полиэтилен технический используется для изоляции тепловых трасс, в машиностроении и пр.
    • Не менее устойчив материал к агрессивным средам химической промышленности, трубы из полиэтилена применяются в лабораториях и химических производствах.
    • В медицине полиэтилен полезен в виде перевязочных материалов, протезов конечностей, используют его в стоматологии и т.д.

    Способы переработки

    В зависимости от того каким способом было переработано гранулированное сырье, будет зависеть какой марки полиэтилен будет получен. Распространенные способы:

    • Экструзия (выдавливание). Применяется для упаковочных и других видов пленок, листового материала для строительства и отделки, изготовления кабелей, производится рукав полиэтиленовый и прочие изделия.
    • Литье, способом. В основном используется для изготовления упаковочных материалов, боксов и т.д.
    • Экструзионно-выдувной, ротационный. С помощью этого способа получают объемные емкости, крупногабаритную тару, сосуды.
    • Армирование. По определенной технологии в формируемую массу полиэтилена закладываются усиливающие элементы (металл), что позволяет получить строительный материал повышенной прочности, но с меньшей стоимостью.

    Из чего делают полиэтилен, кроме основных составляющих веществ? Обязательным является катализатор процесса и добавки, меняющие свойства, качества готового материала.

    Вторичная переработка

    Стойкость полиэтилена - это его плюс в качестве потребительского товара и его минус, как одного из главных загрязняющих окружающую среду факторов. На сегодняшний день важным становится переработка отходов - рециклинг. Все марки полиэтилена могут быть утилизированы и повторно превращены в гранулированное сырье, из которого можно делать множество востребованных товаров народного и промышленного потребления.

    Полиэтиленовые крышки, пакеты, бутылки будут разлагаться на свалке не одну сотню лет, а накопленные отходы отравляют природные жизненно важные ресурсы. Мировая практика демонстрирует рост количества перерабатывающих полиэтилен предприятий. Собирая фактически мусор, в таких компаниях проводят его санацию, дробят. Таким образом, происходит экономия ресурсов, охрана окружающей среды и производство востребованной продукции.


    Производство полимерной пленки сопровождается опасными выбросами в атмосферу и классифицируется как вредное. И при его организации следует учитывать специальные требования.

    Основные требования

    Предприятие следует располагать в промышленной зоне. Помещение должно отапливаться и иметь принудительную систему вентиляции. Водоснабжение обязательно, его потребление может возрасти при использовании специальных устройств переработки.

    Для бесперебойной работы линии понадобится трехфазное электроподключение (380 В) и заземление всех элементов цепи. Обязательно наличие системы пожарной безопасности и плана эвакуации. Расстановка оборудования и организация рабочих мест должны соответствовать нормативам ГОСТ .

    Характеристика цеха

    Общая площадь цеха должна составлять не менее 300 квадратных метров , а высота потолков – минимум 8 м. Для внутренней отделки необходимо использовать негорючие материалы.

    Помещение следует разделить на 3 отсека:

    • производственный цех;
    • складские помещения, которые должны быть паро- и гидроизолированы;
    • выставочный зал.

    Оборудование для производства полиэтиленовой пленки

    Налаживая полиэтиленовое производство, необходимо приобрести ( указана в долларах):

    • Экструдер 60000-300000
    • Флексопечатную машину 30000-50000
    • Специальный станок для изготовления упаковочных зажимов 20000-40000
    • Пакетоделательную многофункциональную машину 8000-10000

    Как можно сократить расходы

    Покупка Б/У линии поможет сэкономить на вложениях до 50%. В таком случае затраты в долларах будут следующими:

    • Экструдер 6000-8000
    • Флексопечатная машина 3000-6000
    • Станок для изготовления пластиковых зажимов для упаковки 10000-20000
    • Пакетоделательная машина 4000

    Какое оборудование выбрать — Б/У или новое

    Новое оборудование обладает рядом достоинств:

    • гарантия производителя;
    • долговечность;
    • реализация в будущем.

    Но его главный недостаток – высокая цена, которую начинающий бизнесмен не готов заплатить. В таком случае приобретение оборудования Б/У является оптимальным вариантом.

    Но выбор такой линии необходимо перепоручить опытному специалисту , чтобы не купить сильно изношенную или некачественную технику.

    Сырье для производства полиэтиленовой пленки

    Производят из гранул полимера, используя 2 вида полиэтилена с разным давлением:

    • высоким (ПВД) для фасовки и хранения пищевой продукции;
    • низким (ПНД) для сыпучих товаров.

    Выгоднее всего покупать южнокорейский гранулят , стоимость тонны вещества составляет 340 евро. Но можно использовать и отечественное сырье, его цена колеблется в диапазоне 420-750 дол. Чтобы еще удешевить производство, можно перейти на вторичный гранулят.


    Технология производства полиэтиленовой пленки

    Полученный пласт охлаждается, раскатывается валиком и с помощью автомата разрезается на равные части.

    Нанесение рисунка происходит с помощью валиков, к которым через специальный дозатор подается краска.

    Готовое полотно поступает в пакетоделочную машину, где формируется шаблон изделия. Пресс делает отверстия под ручки, а специальный станок запаивает края. Далее происходит расфасовка изделий и контроль качества.

    Подбор персонала

    Для продуктивной работы достаточно принять в штат 6 человек: директора, бухгалтера, технолога и 3 рабочих.

    Технология производства пленки достаточно проста , обслуживать машины несложно. Поэтому изготовление полиэтилена можно поручить и новичкам, предварительно обучив их всему.

    Рентабельность предприятия

    Начальные вложения составят около 38000 дол. на покупку Б/У оборудования и оформление документов. А ежемесячные расходы в долларах будут следующими:

    • аренда помещение 600;
    • отопление, электроэнергия 200;
    • коммунальные услуги 160;
    • зарплата сотрудников 2700;
    • налоги 450.

    Общая сумма составит 3810 долларов.

    Производственная мощность линии позволяет производить 70 пакетов в 60 секунд. Что при оптовой цене товара в 0,01 дол. позволит получить ежемесячный доход в 6000 дол.

    А чистая прибыль составит около 2200 долларов. С учетом первоначальных вложений предприятие должно окупить себя за 1,5 года.

    Производство полиэтилена – весьма . Но представленные расчеты основывались на идеальных условиях спроса.

    В действительности прибыль будет зависеть от возможностей сбыта и инфляции.




    Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

    Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

    Размещено на http://www.allbest.ru/

    Введение

    Средний рост потребления ПЭ в Украине за последние 3 года составил 31% от всех видов полимеров. Действующее производство полиэтилена в Украине сосредоточено на ЗАО "Лукор" (г. Калуш Ивано-Франковской обл.). Ежегодно этим предприятием производится 70 тыс. тонн полиэтилена. Это показывает, что такой товар как полиэтилен является актуальным и потребляемым и сегодня. Основная часть изготовленного полиэтилена (50-60%) используется в производстве пленок и листов. Оставшаяся часть идет на изделия, полученные способом литья под давлением, покрытия, изоляционные материалы для кабельной промышленности, экструзионные изделия, изделия, полученные выдуванием и трубы. Но это лишь поверхностный обзор применения полиэтилена, который в данной работе будет рассмотрен подробнее.

    Целью данной курсовой работы является:

    · рассмотрение и анализирование научно-технической литературы, обретение навыков работы с ней;

    · изучение основных материально-технических процессов технологии производства полиэтилена низкой плотности;

    · рассмотрение сырьевой базы из которой он изготавливается, в том числе и всевозможные добавки, водимые в полиэтилен;

    · исследование ассортимента полиэтилена, использование продукции, изготовленной из него и анализ положения полиэтилена на современном украинском рынке;

    · рассмотрение основных методов оценки качества полиэтилена.

    1. Ассортимент

    Полиэтилен высокого давления (ПЭВД) представляет собой твердое эластичное вещество матового или перламутрового белого цвета, на ощупь напоминающий парафин; он не имеет запаха, не ядовит, горюч (продолжает гореть по вынесению из пламени). Полиэтилен, изготавливаемый при высоком давлении имеет разветвленную структуру и низкую плотность Полиэтилен относится к группе термопластичных полимеров. На рис. 1 изображена гранула полиэтилена.

    Рис. 1 Гранула ПЭВД

    Полиэтилен используется при наложении полиэтиленовой изоляции и оболочки на электрические кабели. Возможно выпрессовывание полиэтилена в смеси с порошкообразными веществами для получения пористого полиэтилена.

    Благодаря химической инертности, легкости и прочности, в бутылях, флаконах из полиэтилена можно хранить сильнодействующие химические вещества (серную кислоту, плавиковую кислоту и т.п.), а также пищевые продукты (молоко, жиры, соки), парфюмерные изделия, лекарства.

    Трубопроводы из полиэтилена значительно легче и дешевле. Трубы изготавливают диаметром от 0,012-0,15 м и до 1-1,5 м. Длина труб может достигаться 120 м. Гибкость и эластичность труб позволяет наматывать их на барабаны, что очень удобно при их транспортировании и прокладке. Трубы из полиэтилена совершенно не подвержены коррозии, не лопаются при замерзании в них воды. В химической промышленности используются при транспортировании коррозионных жидкостей. Фитинги, задвижки, вентили, подкладки и другая соединительная арматура также изготавливаются из полиэтилена.

    Полиэтиленом покрывают дерево, бумагу, картон. Он наносится из горячих расплавов полиэтилена на бумагу и придает ей глянец, блеск печати, хорошую гибкость при низкой температуре. Из полиэтилена вырабатываются волокна, из которых могут изготавливаться морские канаты, фильтрующие сетки, полотна, обивочные ткани для автомобилей. В текстильной промышленности полиэтилен используется для пропитки тканей с целью создания водоотталкивающего материала, улучшения сопротивления разрыву, повышения прочности швов.

    Из полиэтилена изготавливают медицинские инструменты, он применяется в пластической хирургии и протезной технике.

    Основное литье под давлением не только отдельных деталей машины, но и корпусов к приборам и других фигурных изделий.

    Значительная часть производимого полиэтилена (около 50%) перерабатывается в пленки толщиной 0,01-0,1 мм, используемые в качестве упаковочного материала, для хранения веществ легкоувлажняющихся или, наоборот, высыхающих, например удобрений, хлопка, силикагеля, пищевых продуктов (мяса, рыбы, хлеба, соли, муки, кофе, овощей, фруктов и т.д.), а также различных изделий, аппаратов, инструментов с целью защиты их от коррозии.

    Благодаря отличным электроизоляционным свойствам, полиэтилен стал незаменимым материалом для изоляции телевизионных, телефонных и телеграфных кабелей.

    Добавление низкомолекулярного полиэтилена к чернилам, лакам и краскам придает им повышенную стойкость к истиранию. В резиновой промышленности полиэтилен широко применяется в качестве смазок, отлично совмещающихся с каучуками разных типов.

    Полиэтилен, как товарный продукт, выпускается в чистом виде и с добавками (различного рода термо- и светостабилизаторы, добавками против слипаемости пленки и др.). Они вводятся в полиэтилен в процессе переработки в небольших количествах (десятые доли процента). Добавки улучшают качества готового полиэтилена.

    Так, в кабельной промышленности применяется полиэтилен, содержащий 0,5 и 2% сажи. Полиэтилен, используемый для изготовления труб питьевого и хозяйственного водоснабжения, содержит 2% сажи (технического углерода), а для дренажных труб до 35% сажи. Полиэтилен при наполнении его тальком, мелом, каолином и другими веществами (до 30-40% по массе) используются в качестве конструктивных материалов для производства канализационных и дренажных труб, некоррозионной и огнестойкой арматуры, а также для изделий культурно-бытового назначения, игрушек, посуды и т.п.

    В зависимости от свойств и назначения полиэтилен выпускается различных марок, указанных в таблице 1.

    Таблица 1. Марки полиэтилена, области их применения и способ переработки

    Область применения

    Способ переработки

    Изоляция проводов и кабелей, оболочки кабелей

    Технические изделия

    Трубы и арматура к ним:

    трубы напорные

    трубы безнапорные фитинги

    Пленки и пленочные изделия:

    специального назначения

    общего назначения (технические изделия, пленки для сельского хозяйства и др.)

    для изготовления мешков под удобрения и других целей в сельском хозяйстве

    для упаковки пищевых продуктов

    Формовочные изделия:

    с хорошими эластическими свойствами

    с глянцевой поверхностью

    общего назначения

    открытого типа, контактирующие с пищевыми продуктами

    общего назначения

    сосуды и бутыли для дезинфицирующих средств с большим сопротивлением

    Заливочные компоненты (для заполнения деталей электрооборудования)

    Покрытие бумаги, ткани и др.

    Покрытие для упаковки пищевых продуктов

    Экструзия

    Прессование

    Экструзия

    Экструзия

    Выдувание

    Экструзия

    10203-003 10103-002 10702-020 10403-003

    10003-002 10303-003

    10103-002 10403-003

    10203-003 15303-003

    10603-007 17603-006

    10702-020 15602-008

    10903-020 17902-017

    16902-020 15802-020

    10802-020 11303-040

    11502-070 11602-070

    10203-006 17702-010

    17602-006 10603-007

    10802-020 15802-020

    10903-020 17702-020

    12002-200 18202-055

    11903-080 12203-200

    12103-200 12303-200

    10702-020 11303-040

    11102-020 11502-070

    10702-020 11303-040

    11702-010 18109-035

    17902-017 11303-040

    10203-003 11502-070

    12402-700 16802-070

    12502-200 18302-120

    11502-070 16802-070

    11802-070 18302-120

    11502-070 16802-070

    Обозначение базовых марок состоит из названия материала "полиэтилена" и восьми цифр. Первая цифра "1" указывает на то, что процесс полимеризации этилена протекает при высоком давлении в трубчатых реакторах и реакторах с перемешивающим устройством в присутствии катализатора. Две следующие цифры обозначают порядковый номер базовой марки. Пятая цифра условно определяет группу плотности марки полиэтилена. Следующие три цифры, написанные через дефис, указывают десятикратное значение показателя текучести расплава.

    После марки полиэтилена указывается сорт.

    2. Исходное сырье для получения полиэтилена

    2.1 Основное сырье

    Этилен. Этилен -- химическое соединение, описываемое формулой С2H4, бесцветный газ со слабым запахом. Является простейшим алкеном (олефином). Содержит двойную связь и поэтому относится к ненасыщенным соединениям, обладает высокой реакционной способностью. В природе этилен практически не встречается. В незначительных количествах образуется в тканях растений и животных как промежуточный продукт обмена веществ. Играет чрезвычайно важную роль в промышленности, самое производимое органическое соединение в мире.

    В настоящее время основным источником получения этилена является пиролиз газообразных и жидких предельных углеводородов: этана, пропана и бензинов прямой перегонки нефти.

    Свойства этилена:

    Химическая формула Н2С=СН2

    Молекулярная масса 28,05

    Состояние - газообразное

    Температура плавления 103,8 К (-169,2°С)

    Температура кипения 169,3 К (-103,7°С)

    Плотность при нормальных условиях 1,26 кг/м 3

    Плотность жидкого этилена при 163,2 К (-109,8°С) - 610 кг/м 3

    Температура воспламеняемости 728 К (455°С)

    Чистота этилена. Для полимеризации этилен должен быть тщательно очищен от примесей. Примеси к этилену делятся на две основные группы - инертные и активные. Инертная примесь, присутствующая в заметном количестве, например 5-10%, снижает концентрацию этилена на значительную величину, если учесть малую сжимаемость этилена.

    Активные примеси к этилену, например соединения винильного типа, обычно сополимеризуются с этиленом, изменяют свойства образующегося полимера и влияют на скорость полимеризации.

    В зависимости от содержания примесей техническими условиями предусматривается выпуск трех марок сжиженного этилена: А, Б и В. Этилен марки А и Б используется для производства полиэтилена и окиси этилена. Этилен марки В - для производства других органических продуктов. Этилен сжиженный должен соответствовать требованиям и нормам.

    Катализаторы (инициаторы). В качестве катализаторов полимеризации этилена используют главным образом молекулярный кислород и органические перекиси. Из перекисей в промышленности наибольшее применение нашли перекись ди-трет-бутила, трет-бутилпербензоата и др. Эффект действия инициатора зависит от степени и скорости его разложения при данной температуре и от способности образовавшихся радикалов вступать в реакции с мономером.

    Другим фактором, характеризующим инициатор, является содержание активного кислорода, т.е. теоретический процент активного кислорода в чистой перекиси.

    В сухом виде перекиси взрывоопасны, растворы их в органических растворителях более стабильны и менее взрывоопасны. Хранение инициаторов должно проводиться в определенных температурных условиях.

    Ниже описаны основные свойства наиболее распространенных перекисных инициаторов.

    Перекись ди-трет-бутила (С8Н18О2)

    Температура применения 513-553 К (240-280°С)

    Молекулярная масса 146,2

    Жидкость, плотность 793 кг/м 3

    Температура кипения при 0,1 МПа - 463 К (190°С)

    Перекись нерастворима в воде, растворима в большинствеорганических растворителей

    Температура хранения 298 К (20°С).

    Трет-бутилпербензоат (С11Н14О3)

    Температура применения 453-513 К (180-240°С)

    Молекулярная масса 194

    Жидкость, плотность при 293 К (20°С) - 1040 кг/м 3

    Температура кипения при 0,1 МПа - 397 К (124°С)

    Температура хранения 293 К (20°С).

    2.2 Вспомогательное сырье

    Наполнители - преимущественно твердые неорганические или органические вещества, природного (минерального и растительного) и синтетического происхождения, которые вводятся в пластическую массу для придания ей соответствующих свойств.

    Добавляют наполнители для улучшения свойств полиэтилена (физико-механических, теплофизических, электрофизических, оптических, эстетических, технологических и др.). А дешевые наполнители снижают себестоимость полиэтилена, например при утилизации полимеров и пластмасс, которые используют как наполнители.

    Основные виды наполнителей, а также придаваемые ими свойства, представлены в таблице 2.

    Таблица 2. Примеры наполнителей со специальными свойствами

    Композиты

    Примеры наполнителей

    Абразивные

    Антифрикционные

    Биоразлагаемые

    Высокогорючие

    Электроизоляционные

    Электропроводимые

    Эстетические

    Звуко- и теплоизоляционные

    Конструкционные

    Магнитные

    Негорючие

    Самозатухающие

    Теплостойкие

    Теплоаккумулирующие

    Фрикционные

    Химически стойкие

    BN, SiC, алмаз, кварц, корунд

    MoS2, NbSe2, TiSe2, WS2, WSe2, графит

    Крахмал, хитозан

    Al, Mg, нитраты, перманганаты, порох

    Al2O3, асбест, кварц, слюда, стекло, тальк

    Металлы (Al, Bi, Cd, Cu, Fe, Ni, Sn и др.) и их сплавы, графит

    Деревянная тирса, мраморная крошка

    Стекловата, полиамидное волокно

    Металлические и керамические ферритные порошки

    Al(OH)3, Ca(OH)2, Mg(OH)2, бораты натрия и цинка

    Асбест, графит, углеродные волокна

    Воск, стеариновая кислота, парафин, стеклосферы

    BaSO4, асбест

    Асбест, графит, политетрафторэтилен, тальк, технический уголь.

    Пластификаторы - малолетучие, большей частью жидкие вещества, придающие смеси повышенную пластичность, в результате чего облегчается формование изделий, предотвращается появление хрупкости материала при низких температурах, увеличивается его гибкость и эластичность. При увеличении содержания пластификатора прочность полимера на растяжение и сжатие уменьшается, но зато резко увеличивается прочность на удар и способность к удлинению. Наиболее распространенными пластификаторами являются бутилкаучук, дибутилфталат, трикрезилфосфат, камфора, стеарат алюминия, олеиновая кислота, глицерин и др.

    Красители применяютсядля придания изделию желаемой окраски.

    Отвердители (например уротропин, известь, магнезию) вводят в состав пластической массы для ускорения перехода полимера в твердое неплавкое состояние, в котором они не плавятся и не растворяются. При этом у полимера образуется трехмерная структура.

    Стабилизаторы, способствуют замедлению процесса старения и, как следствие - длительному сохранению полиэтилена своих первоначальных свойств. Стабилизаторы не влияют на первоначальные свойства полиэтилена.

    Порообразователи - для получения пенно- и порополиэтиленов.

    Связующие вещества связывают в монолитный материал другие компоненты смеси и обуславливают основные свойства полимера. В качестве связующих веществ чаще применяются синтетические смолы.

    Смазывающие вещества позволяют улучшить физико-механические свойства полиэтилена, а именно повысить однородность расплава, увеличить его текучесть и относительное удлинение при разрыве. В пластическую массу в качестве смазывающих веществ добавляют стеариновую кислоту, окиси цинка, стеарат бария и др.

    3. Производство полиэтилена

    3.1 Теоретические основы процесса полимеризации этилена

    Полимеризация этилена при высоком давлении протекает по радикальноцепному механизму, который состоит из стадий инициирования, роста цепей и обрыва цепей.

    Инициирование процесса состоит в образовании активных радика

    Началом реакции является присоединение этилена к образовавшемуся радикалу, в результате чего образуется новый радикал:

    *СН3 + СН2=СН2 > СН3 -СН2-СН2*

    К радикалу, образовавшемуся по реакции присоединяются последовательно молекулы этилена (реакция роста):

    СН3 -СН2-СН2* + СН2=СН2 > СН3 -СН2-СН2-СН2-СН2*

    Рост цепи заканчивается обрывом цепи. Обычно это происходит, когда из двух растущих радикалов образуется одна неактивная макромолекула:

    СН3-CH2* + СН3-CH2* > СН3-СН2-СН2-CH3

    Или, когда из двух растущих радикалов образуются две неактивные макромолекулы, одна из которых на конце имеет двойную связь:

    СН3-(СН2-СН2)n-CH2* + СН3-(СН2-СН2)m-CH2* >

    СН3-(СН2-СН2)n-1-CH=CH2 + СН3-(СН2-СН2)m-CH2*

    Эти реакции уменьшают скорость процесса полимеризации.

    При полимеризации этилена по изложенному выше механизму следует ожидать образование линейного насыщенного полимера.

    Однако в действительности, в зависимости от реакционных условий, получают более или менее разветвленные макромолекулы, содержащие небольшое количество двойных связей (что также обусловлено протеканием реакции передачи цепи).

    Различают два варианта реакции передачи цепи на полимер: внутримолекулярный и межмолекулярный.

    При внутримолекулярной передаче цепи из растущего полимерного радикала один атом водорода переносится от вторичного углерода в конец цепи:

    Вторичный радикал, образованный в результате внутримолекулярного переноса, дает началу роста новой боковой цепи. Конечный участок цепи, образованный в результате переноса, представляет собой разветвление в виде бокового бутильного ответвления. Таким образом, образуются короткие боковые цепи. Разветвление в виде длинных цепей происходит в результате межмолекулярного переноса водорода:

    R1-CH2-CH2* + R2-CH2-CH2-CH3 > R1-CH2-CH2* + R2-CH*-CH2-CH3

    3.2 Аппаратурное оформление производства полиэтилена при высоком давлении

    Полимеризация этилена при высоком давлении осуществляется в реакторах трубчатого или автоклавного типа.

    Полимеризация может происходить блочным способом ("в массе"), когда этилен высокой степени очистки, сжатый до давления 100-300 МПа, вводится в реактор одновременно с инициаторами процесса, или в растворе, когда реакция проводится в среде растворителя.

    Полимеризация в блоке относительно трудно поддается регулированию из-за высокой экзотермичности процесса.

    Во время полимеризации нужно точно регулировать температурный режим реакции а также вязкость реакционной массы, с целью улучшения массопередачи.

    Отвод тепла через стенку реактора, охлаждение реакционный смеси свежим газом путем частичного дополнительного ввода в реактор, снижение температуры поступающую на полимеризацию этилена - все эти меры не обеспечивают достаточного теплоотвода для того, чтобы этилен заполимеризовался на 100%. Чтобы не допустить большого тепловыделения, при котором произойдет тепловое разложение этилена, производится искусственное торможение реакции на стадии, соответствующей 15-20% -ной степени превращения (в лучшем случае 30% -ной). Непрореагировавший этилен отделяют и возвращают в рецикл. Таким образом, принципы, на которых основана полимеризация этилена при высоком давлении, достаточно просты, но процесс специфичен и требует сложного оборудования, контрольно-измерительных приборов и автоматики.

    3.3 Основная технологическая схема промышленной установки

    Технологическая схема производства полиэтилена с использованием сжиженного этилена представлена на рис. 2

    Рассматриваемая ниже технологическая схема производства полиэтилена осуществляются в одну стадию, когда все материальные потоки движутся непрерывно по одной нитке, включая и непрерывную переработку полимера в товарный полиэтилен.

    Свежий этилен высокой степени чистоты, пройдя расходометр 1 и газоанализатор 2, сжимается поршневым компрессором 3, при этом плотность его достигает плотности легких жидких углеводородов (400-500 кг/м3), и направляется через концевой холодильник 4 в прибор конденсации этилена 5, откуда вместе с газом рецикла поступает в хранилище 6 сжиженного свежего и возвратного этилена.

    Сжиженный этилен из хранилища забирается и направляется на пропиленовую холодильную установку для "переохлаждения". Переохлажденный этилен подается к многоступенчатому центробежному насосу 7, в котором он сжимается до промежуточного давления - давления всасывания насосов высокого давления. Перед поступлением в систему высокого давления этилен пропускается через ряд фильтров, в которых удаляются примеси. Во всасывающий трубопровод насосом высокого

    давления вводят добавки, катализаторы и воздух (при кислородном инициировании). Этилен, содержащий добавки и катализатор, поступает в общий коллектор, питающий четыре одинаковых насоса высокого давления 8, работающие параллельно. Сжатие этилена производится до предельного давления 150-270 МПа. Этилен после сжатия в насосах высокого давления подается в реактор 9 в одну или несколько точек (200°С). На выходе из насосов и на выходе в реактор давление замеряется специальными тензиметрами. Они показывают и регистрируют давление. Для автоматического сброса этилена в атмосферу в случае повышения давления выше заданного устанавливается аварийно-выпускной клапан.

    Реактор состоит из ряда длинных горизонтально расположенных труб высокого давления, снабженных водяными рубашками. Эти трубы имеют очень высокое отношение длины к диаметру. При превышении заданной температуры в реакторе автоматически приводится в действие система клапанов для ускорения отвода тепла, что практически исключает возможность теплового разложения этилена.

    Отделение полученного полиэтилена от непрореагировавшего этилена производится в большом вертикальном сборнике полимера с паровой рубашкой 10. Уровень полимера в аппарате контролируется и регулируется специальным уровнемером с радиоактивным элементом.

    Расплавленный полиэтилен из сборника поступает в экструдер 11 и пропускается через гранулятор, наполненный водой. Образующаяся суспензия гранул и воды направляется на сито 12 и затем на центробежную сушилку 13. Высушенный полимер самотеком поступает в один из двух сборников-бункеров.

    Из сборника продукта горячий газ, пройдя котел-утилизатор 14, охлаждается в водяном холодильнике 15. Отделение от низкомолекулярных полимеров производится в сепараторах 16. Очищенный в ловушках, наполненных стеклянной ватой 17, газ поступает в колонку, в которой от него отделяется масло и добавки. После сжижения этилен 5 направляется в хранилище 6. Регенерированные добавки из колонны подаются на смешение с этиленом в насос высокого давления 8.

    Существуют различные методы повышения эффективности производства полиэтилена. Оно должно осуществляться путем внедрения агрегатов большой единичной мощности и интенсификации производства на основе научно-технического прогресса. Увеличение производительности реакторов за счет интенсификации и повышения эффективности их работы не требует больших капитальных затрат и осуществляется путем совершенствования конструкции реакционных устройств и оптимизации технологического прогресса полимеризации.

    Эффективное повышение производительности единицы реакционного объема возможно путем увеличения превращения этилена за проход, на которое в основном влияют следующие факторы:

    1) снижение температуры газа, поступающего на полимеризацию;

    2) повышение температуры в реакционной зоне;

    3) повышения давления (для создания гомогенной реакционной среды и увеличения концентрации этилена);

    4) лучший отвод тепла реакции, как за счет лучшей теплопередачи через стенку, так и за счет лучшей теплопередачи через стенку, так и за счет более совершенного распределения свежего газа по длине реактора;

    5) Использование более эффективных инициаторов полимеризации;

    6) Лучшее перемешивание реакционной массы;

    7) Повышение чистоты исходного этилена;

    8) Совершенствование конструкций реакционных устройств и технологических схем.

    Интересно также утилизация и переработка отработанного полиэтилена, например тары. Полиэтиленовая тара используется во многих отраслях промышленности: косметической, химической, пищевой и др. Для вторичного использования полиэтилена, тару, из-под разных продуктов, необходимо измельчить, высушить, переплавить в условиях вакуума и гранулировать. Однако такой полиэтилен обладает меньшим показателем относительного растяжения, т.е. он менее прочен, а его состав менее однороден. Эти недостатки устраняются добавлением в него смазывающих веществ.

    4. Контроль качества полиэтилена

    4.1 Показатели качества полиэтилена

    производство полиэтилен ассортимент рынок

    Контроль качества полиэтилена проводят как при самом производстве материала (в реакторе, на выходе из реактора, в экструдоре-грануляторе), так и в лаборатории уже готового продукта. Оценивают качество полиэтилена по таким показателям:

    · Плотность;

    · Молекулярная масса;

    · Показатель текучести расплава;

    · Вязкость;

    · Разброс показателей текучести расплава в пределах партии;

    · Количество включений;

    · Технологическая проба на внешний вид пленки;

    · Стойкость к растрескиванию;

    · Предел текучести при растяжении;

    · Прочность при разрыве;

    · Относительное удлинение при разрыве;

    · Массовая доля экстрагируемых веществ;

    · Запах и привкус водных вытяжек;

    · Стойкость к термоокислительному старению;

    · Стойкость к фотоокислительному старению (методом облучения, по массовой доле сажи, по равномерности распределения сажи);

    · Массовая доля летучих веществ.

    Основными, из перечисленных показателей, по которым проводится обязательный контроль качества, являются молекулярная масса полиэтилена, его плотность, вязкость, показатель текучести расплава. В таблице 3 представлены нормы показателей качества для нескольких базовых марок.

    Таблица 3 Показатели качества базовых марок полиэтилена

    Наименование показателя

    Норма для марки

    1. Плотность, г/см

    2. Показатель текучести расплава (номинальное значение) с допуском, %, г/10 мин

    3. Разброс показателей текучести расплава в пределах партии, %, не более:

    Высшего сорта

    1-го сорта

    2-го сорта

    4. Количество включений, шт., не более:

    Высшего сорта

    1-го сорта

    2-го сорта

    5. Технологическая проба на внешний вид пленки:

    Высшего сорта

    1-го сорта

    2-го сорта

    6. Стойкость к растрескиванию, ч, не менее

    7. Предел текучести при растяжении, Па (кгс/см), не менее

    8. Прочность при разрыве, Па (кгс/см), не менее

    9. Относительное удлинение при разрыве, %, не менее

    10. Массовая доля экстрагируемых веществ, %, не более:

    высшего сорта

    1-го и 2-го сорта

    11. Запах и привкус водных вытяжек, балл, не выше

    12 Стойкость к термоокислительному старению, ч, не менее

    13. Стойкость к фотоокислитель- ному старению:

    методом облучения ч, не менее:

    по массовой доле сажи, %

    по равномерности распределения сажи

    14. Массовая доля летучих веществ, %, не более:

    Высшего сорта

    1-го и 2-го сорта

    4.2 Методы определения качества

    Определение молекулярной массы:

    Полиэтилен имеет линейное строение и может растворяться в подходящих растворителях.

    Молекулярная масса линейных полимеров лежит в интервале 103--107, причем образующиеся в процессе полимеризации макромолекулы полиэтилена имеют разные молекулярные массы, поэтому растворы полиэтилена представляют собой полидисперсные системы, а определяемая экспериментально молекулярная масса является только средней статистической величиной.

    Молекулярная масса сшитых фракций полиэтилена может быть очень большой. Она определяется степенью сшивания, т.е. средней "молекулярной массой" между узлами сшивания. Степень сшивания можно оценить по степени набухания полимера в растворителях.

    Молекулярную массу полимеров можно определить различными методами, причем каждый метод применим для измерения молекулярных масс, лежащих в соответствующих интервалах.

    Все эти методы, за исключением метода "концевых групп", основаны на изменении каких-либо свойств разбавленных растворов полимеров пропорционально числу молекул растворенного вещества; для определения молекулярной массы такими методами требуется сложная аппаратура. Поэтому на заводах до настоящего времени обычно применяют наиболее простой и быстрый вискозиметрический метод и молекулярную массу вычисляют из найденного значения вязкости раствора.

    Метод определения концевых групп. Если на концах макромолекулы имеются функциональные группы, которые можно определить химическим методом, то на основании данных химического анализа можно вычислять среднечисловую молекулярную массу полимера. Так как в образце полимера с высокой молекулярной массой относительное число концевых групп очень мало, то точность их определения невелика. Этим методом определяют молекулярную массу до 3·104.

    Эбуллиоскопия и криоскопия. В этих методах молекулярная масса рассчитывается по повышению температуры кипения или понижению температуры замерзания растворов полимера. Поскольку изменения температуры здесь очень малы, то и точность этих методов также невелика.

    При применении эбуллиоскопического метода применяют растворитель с невысокой температурой кипения во избежание деструкции полимера. Выбор растворителя для криоскопического метода еще более затруднен, так. как макромолекулы полимера могут выпадать из растворителя до достижения температуры замерзания растворителя или вместе с растворителем. Интервал определения молекулярной массы 2·104-3·104.

    Метод осмотического давления. При использовании этого метода значительные сложности возникают при изготовлении полупроницаемых мембран, способных пропустить молекулы растворителя и задержать макромолекулы с молекулярной массой до 30 000 (применение осмотического метода для полимеров с более низкой массой не надежно). Интервал определения молекулярной массы 104-106.

    Метод светорассеяния. Световой луч, проходя через прозрачную среду, частично рассеивается. Метод основан на том, что чистый растворитель и раствор полимера имеют разные степени светорассеяния. Полученная молекулярная масса является среднемассовой молекулярной массой. Интервал определения молекулярной массы 104-107.

    Метод осаждения (или седиментации) в ультрацентрифуге. При отстаивании суспензии постепенное осаждение частиц и по скорости осаждения можно вычислить массу частиц суспензированного вещества, если использовать очень сильное центробежное поле, в ультрацентрифуге. Частота вращения ротора центрифуги должна быть не менее 1000 об/с. По скорости, осаждения можно вычислить не только молекулярную массу полимера, но и распределение по молекулярным массам. Интервал определения молекулярных масс 104-107.

    Метод вискозиметрии. Наиболее простым и удобным методом определения молекулярной массы является вискозиметрический метод. Молекулярная масса вычисляется по эмпирическому уравнению, связывающему вязкость раствора, вязкость растворителя и концентрацию полимера. Вычисленная по вязкостной характеристике молекулярная масса называется средневязкостной молекулярной массой и выражается обычно значением ее логарифма.

    Определение показателя текучести расплава: аппарат для определения ПТР (ГОСТ 11645--73) представляет собой шприцующий пластомер, внутренний диаметр сопла которого равен 2,09 мм, со штоком и грузом на нем, равным 2,16 кг, термопарой для замера температуры расплава, которая при определении индекса поддерживается постоянной 463 К ± 0,5 (190 ± 0,5°С). Масса материала в граммах, выдавленная в течение 10 мин при этих условиях, называется показателем текучести расплава. Низкий индекс расплава соответствует высокому внутреннему трению, присущему материалу с высокой молекулярной массой. Таким образом, определяемый данным методом показатель текучести расплава позволяет, с известным приближением вследствие недостаточной точности измерения, классифицировать сорта полиэтилена по размеру молекул полимера.

    Определение кажущейся плотности (объемной массы):

    Метод обмера и взвешивания. Метод заключается в определении плотности вещества по отношению массы образца к его объему, определенному непосредственным взвешиванием и обмером. Можно измерять объем другими методами, например по вытесненному объему жидкости для образцов неправильной или трудно измеряемой формы. Метод применяется для определения плотности (объемной массы) изделий и полуфабрикатов (стержни, бруски, трубы) и обеспечивает точность измерения до 0,5% при точности измерения объема 0,3% и массы 0,2%.

    Метод гидростатического взвешивания. Метод заключается в сравнении масс одинаковых объемов испытуемого вещества и жидкости известной плотности (например, дистиллированной воды). Метод предназначен для определения плотности (объемной массы) формованных изделий (стержни, бруски, трубки); он обеспечивает точность измерения до 0,1%.

    Пикнометрический метод. Метод состоит в сравнении масс одинаковых объемов испытуемого вещества и жидкости известной плотности. Метод применяется для определения плотности формованных изделий, пресс-порошковых гранул, хлопьев; он обеспечивает точность измерения до 0,05%.

    Флотационный метод заключается в сравнении плотности образца с плотностью известной жидкости в момент перехода образца во взвешенное состояние. Метод применяется для определения плотности пластмасс (преимущественно полиолефинов) в виде гранул и любых формованных изделий, В качестве рабочей жидкости используют, смесь этиловый спирт -- вода. Метод пригоден для определения плотности полимеров от 910 кг/м 3 (0,9100 г/см 3) с точностью до 0,0002 г/см 3 .

    Метод градиентной колонки основан на сравнении глубины погружения испытуемого образца и жидкости известной плотности в цилиндре или в трубке с раствором, у которого плотность изменяется по высоте ("градиентная колонка").

    Метод применяется для определения плотности изделий в виде пленок, гранул, волокон, а также любых формованных изделий. Точность этого метода зависит от перепада плотности жидкости по высоте градиентной колонки. При "чувствительности" колонки 0,0001 к/см 3 на миллиметр точность метода достигает 0,05%.

    В настоящее время полиэтилен, как низкой, так и высокой плотности широко распространен на рынке, основная часть которых приходится на тару и упаковку различных видов продукции. Поэтому необходимо уделять достаточно много внимания качеству и свойствам этого материала.

    В ходе проделанной работы я узнала, что полиэтилен, изготавливаемый при высоком давлении имеет низкую плотность и относится к группе термопластичных полимеров. Он обладает химической инертностью, легкостью и прочностью, способностью растягиваться. Такие качества определили сферу его применения, где полиэтилен используется в виде пленок, упаковочного материала, антикоррозионных покрытий, электроизоляционным материалов для кабелей, им пропитывают ткань и бумагу.

    Сырьем для полиэтилена служит этилен и катализаторы. Но в чистом виде он выпускается редко. Многообразие его марок объясняется введением в полиэтилен добавок, таких как наполнители, пластификаторы, связывающие вещества, отвердители, красители, стабилизаторы, смазывающие вещества. Добавки придают полиэтилену определенные специфические свойства и улучшают его качество.

    Также я узнала, что полимеризация полиэтилена идет при повышенных температуре и давлении и, чтобы не допустить теплового разложения этилена либо торможения реакции, нужен постоянный контроль. Поэтому в производстве используется большое количество контрольно-измерительных приборов и автоматика.

    Основными показателями, по которым характеризуется полиэтилен являются его молекулярная масса, плотность и текучесть расплава. По этим показателям определяют качество полиэтилена в лабораториях, а также на самом производстве: в реакторе, непосредственно на выходе из реактора, готовых гранул полиэтилена.

    Технология полиэтилена требует точного соблюдения регламента производства, учета влияния технологических параметров на свойства готового продукта, строго организационного процесса. Только при таком подходе можно получить качественный материал.

    Необычайно актуальной темой на сегодняшний момент стала утилизация отработанного полиэтилена, так как он сам не разлагается и загрязняет окружающую среду. Ученые уже разработали несколько методов вторичного применения полиэтилена, что возможно благодаря его термопластичным свойствам. Однако затруднение составляет необходимость наличия мощного оборудования и рассортировка отходов.

    Список литературы

    1. Шифрина В., Статский Н. Полиэтилен высокого давления. Справочное руководство - Гостхимиздат, 1975 г. - с. 45-50.

    3. Каварновский С.Н., Козлов В.Н. Технологические схемы процессов основного органического синтеза. Методы производства исходных продуктов высокомолекулярных соединений. К.: Горький, 1968 г. - с. 122-124.

    4. Т.М. Томилина, Л.М. Заболотникова, В.В. Вакуш, И.А. Мочальник, Н.П. Гришина. Основы технологии важнейших отраслей промышленности: в 2 ч. Ч. 2: Учеб. Пособие для вузов; Под ред. И.В. Ченцова, В.В. Вашука. - Мн.: Выш. шк., 1989 г. - с. 79

    5. Ю. Ковальов. Обзор украинского рынка полиэтилена. Журнал "Полимеры-деньги". Под ред. В. Кузовенко. - 2006 г. №8 - с. 19-22.

    6. О.П. Мантуло, И.М. Новиков. Вжита полімерна тара з ПЕТ, шляхи переробки. Журнал "Хімічна промисловість України" Под ред. Ю.М. Сидоренко - 2006 №1 - с. 51-53.

    7. І.О. Мікульонок. Термопластичні композитні матеріали та їх наповнювачі, класифікація та загальні відомості. Журнал "Хімічна промисловість України" Под ред. Ю.М. Сидоренко - 2005 №5 - с. 30-39.

    8. ГОСТ 16337-77 Полиэтилен высокого давления. Технические условия. Введ. 01.01.1979 - М.: ИПК Издательство стандартов - 1979 г. - с. 70

    9. ГОСТ 11645-73 Пластмассы. Методы определения показателя текучести расплава термопластов. Введ. 01.01.1975 - М.: Издательство стандартов. 1975 г. - с. 12

    Размещено на Allbest.ru

    ...

    Подобные документы

      Основные способы производства полиэтилена. Получение полиэтилена при высоком давлении. Способ полимеризации в массе. Характеристические свойства полиэтилена. Технологический процесс разложения и отмывки катализатора. Оценка показателя текучести.

      реферат , добавлен 02.06.2012

      Методы производства полиэтилена низкого давления; выбор и обоснование технологии проектируемого производства. Характеристика продукции, ее применение; расчет и подбор оборудования; автоматизация процессов. Экологическая и экономическая оценка проекта.

      дипломная работа , добавлен 12.03.2011

      Историческая справка о методах получения и использования полиэтилена. Процесс полимеризации этилена. Техническая характеристика сырья полуфабрикатов и продукта. Расчет материального баланса производства полиэтилена низкого давления газофазным методом.

      дипломная работа , добавлен 26.01.2014

      Характеристика полиэтилена высокого давления. Физико-химические свойства. Нормативно-техническая документация. История возникновения и развития ОАО "Казаньоргсинтез". Назначение и особенности IDEF0-моделирования. Модель производства процессов "Как есть".

      курсовая работа , добавлен 03.05.2015

      Термопласты, применяемыми в производстве труб. Прочностные характеристики труб из полиэтилена. Формование и калибрование заготовки трубы. Технические требования, предъявляемые к трубным маркам полиэтилена и напорным трубам, методы контроля качества.

      курсовая работа , добавлен 20.10.2011

      Промышленное производство пленок из синтетических полимеров (полиэтилен, поливинилхлорид и др.) осуществляется непрерывным методом из расплавов полимеров двумя способами: каландровым и выдавливанием червячными прессами. Применение пленочных изделий.

      курсовая работа , добавлен 15.05.2008

      Технология производства промышленных полиэтиленов, исходное сырье. Полиэтиленовая продукция и способы влияния на ее свойства. Методика производства труб из полиэтилена низкого давления путем применения суперконцентратов для окрашивания в различные цвета.

      дипломная работа , добавлен 20.08.2009

      Общие свойства полимерных пленок. Технологический процесс производства рукавной пленки из полиэтилена низкой плотности. Расчет коэффициента геометрической формы головки и производительности одношнекового однозаходного экструдера для производства пленки.

      курсовая работа , добавлен 04.06.2014

      Технологические операции, используемые в процессе производства полимерных труб. Базовые марки полиэтилена и полипропилена, рецептуры добавок, печатных красок, лаков для производства полимерных труб. Типы труб и их размеры. Основные формы горлышка трубы.

      контрольная работа , добавлен 09.10.2010

      Выбор и обоснование способа производства изделия из полиэтилена низкого давления, характеристика основного и вспомогательного оборудования. Технологическая схема производства. Расчет количества сырья и материалов. Составление материального баланса.

    Поделиться: