Виды полимерных материалов. Сферы применения полимерных материалов

Полимерные материалы - это химические высокомолекулярные соединения, которые состоят из многочисленных маломолекулярных мономеров (звеньев) одинакового строения. Зачастую для изготовления полимеров используют следующие мономерные компоненты: этилен, винилхлорид, винилденхлорид, винилацетат, пропилен, метилметакрилат, тетрафторэтилен, стирол, мочевину, меламин, формальдегид, фенол. В данной статье мы подробно рассмотрим, что такое полимерные материалы, каковы их химические и физические свойства, классификация и виды.

Виды полимеров

Особенностью молекул данного материала является большая которая соответствует следующему значению: М>5*103. Соединения с меньшим уровнем этого параметра (М=500-5000) принято называть олигомерами. У низкомолекулярных соединений масса меньше 500. Различают следующие виды полимерных материалов: синтетические и природные. К последним принято относить натуральный каучук, слюду, шерсть, асбест, целлюлозу и т. д. Однако основное место занимают полимеры синтетического характера, которые получают в результате процесса химического синтеза из соединений низкомолекулярного уровня. В зависимости от метода изготовления высокомолекулярных материалов, различают полимеры, которые созданы или путем поликонденсации, или с помощью реакции присоединения.

Полимеризация

Этот процесс представляет собой объединение низкомолекулярных компонентов в высокомолекулярные с получением длинных цепей. Величина уровня полимеризации - это количество «меров» в молекулах данного состава. Чаще всего полимерные материалы содержат от тысячи до десяти тысяч их единиц. Путем полимеризации получают следующие часто применяемые соединения: полиэтилен, полипропилен, поливинилхлорид, политетрафторэтилен, полистирол, полибутадиен и др.

Поликонденсация

Данный процесс представляет собой ступенчатую реакцию, которая заключается в соединении или большого количества однотипных мономеров, или пары различных групп (А и Б) в поликонденсаторы (макромолекулы) с одновременным образованием следующих побочных продуктов: диоксида углерода, хлороводорода, аммиака, воды и др. При помощи поликонденсации получают силиконы, полисульфоны, поликарбонаты, аминопласты, фенопласты, полиэстеры, полиамиды и другие полимерные материалы.

Полиприсоединение

Под данным процессом понимают образование полимеров в результате реакций множественного присоединения мономерных компонентов, которые содержат предельные реакционные объединения, к мономерам непредельных групп (активные циклы или двойные связи). В отличие от поликонденсации, реакция полиприсоединения протекает без выделений побочных продуктов. Важнейшим процессом данной технологии считают отверждение и получение полиуретанов.

Классификация полимеров

По составу все полимерные материалы делятся на неорганические, органические и элементоорганические. Первые из них слюда, асбест, керамика и др.) не содержат атомарный углерод. Их основой являются оксиды алюминия, магния, кремния и т. д. Органические полимеры составляют наиболее обширный класс, они содержат атомы углерода, водорода, азота, серы, галогена и кислорода. Элементоорганические полимерные материалы - это соединения, которые в составе основных цепей имеют, кроме перечисленных, и атомы кремния, алюминия, титана и других элементов, способных сочетаться с органическими радикалами. В природе такие комбинации не возникают. Это исключительно синтетические полимеры. Характерными представителями этой группы являются соединения на кремнийорганической основе, главная цепь которых строится из атомов кислорода и кремния.

Для получения полимеров с необходимыми свойствами в технике зачастую используют не «чистые» вещества, а их сочетания с органическими или неорганическими компонентами. Хорошим примером служат полимерные строительные материалы: металлопласты, пластмассы, стеклопластики, полимербетоны.

Структура полимеров

Своеобразие свойств этих материалов обусловлено их структурой, которая, в свою очередь, делится на следующие виды: линейно-разветвленная, линейная, пространственная с большими молекулярными группами и весьма специфическими геометрическими строениями, а также лестничная. Рассмотрим вкратце каждую из них.

Полимерные материалы с линейно-разветвленной структурой, кроме основной цепи молекул, имеют боковые ответвления. К таким полимерам относятся полипропилен и полиизобутилен.

Материалы с линейной структурой имеют длинные зигзагообразные либо закрученные в спирали цепочки. Их макромолекулы прежде всего характеризуются повторениями участков в одной структурной группе звена либо химической единицы цепи. Полимеры с линейной структурой отличаются наличием весьма длинных макромолекул со значительным различием характера связей вдоль цепи и между ними. Имеются ввиду межмолекулярные и химические связи. Макромолекулы таких материалов весьма гибкие. И это свойство является основой полимерных цепей, которая приводит к качественно новым характеристикам: высокой эластичности, а также отсутствию хрупкости в затвердевшем состоянии.

А теперь узнаем, что такое полимерные материалы с пространственной структурой. Эти вещества образуют при объединении между собой макромолекул прочные химические связи в поперечном направлении. В результате получается сетчатая структура, у которой неоднородная либо пространственная основа сетки. Полимеры этого типа обладают большей теплостойкостью и жесткостью, чем линейные. Эти материалы являются основой многих конструкционных неметаллических веществ.

Молекулы полимерных материалов с лестничной структурой состоят из пары цепей, которые соединены химической связью. К ним относятся кремнийорганические полимеры, которые характеризуются повышенной жесткостью, термостойкостью, кроме того, они не взаимодействуют с органическими растворителями.

Фазовый состав полимеров

Данные материалы представляют собой системы, которые состоят из аморфных и кристаллических областей. Первая из них способствует снижению жесткости, делает полимер эластичным, то есть способным к большим деформациям обратимого характера. Кристаллическая фаза способствует увеличению их прочности, твердости, модуля упругости, а также других параметров, одновременно снижая молекулярную гибкость вещества. Отношение объема всех таких областей к общему объему называется степенью кристаллизации, где максимальный уровень (до 80%) имеют полипропилены, фторопласты, полиэтилены высокой плотности. Меньшим уровнем степени кристаллизации обладают поливинилхлориды, полиэтилены низкой плотности.

В зависимости от того, как ведут себя полимерные материалы при нагреве, их принято делить на термореактивные и термопластичные.

Термореактивные полимеры

Данные материалы первично имеют линейную структуру. При нагреве они размягчаются, однако в результате протекания в них химических реакций строение меняется на пространственное, и вещество превращается в твердое. В дальнейшем это качество сохраняется. На этом принципе построены полимерные Последующий их нагрев не размягчает вещество, а приводит только к его разложению. Готовая термореактивная смесь не растворяется и не плавится, поэтому недопустима ее повторная переработка. К этому виду материалов относятся эпоксидные кремнийорганические, феноло-формальдегидные и другие смолы.

Термопластичные полимеры

Данные материалы при нагреве сначала размягчаются и потом плавятся, а при последующем охлаждении затвердевают. Термопластичные полимеры при такой обработке не претерпевают химических изменений. Это делает данный процесс полностью обратимым. Вещества этого типа имеют линейно-разветвленную или линейную структуру макромолекул, между которыми действуют малые силы и совершенно нет химических связей. К ним относятся полиэтилены, полиамиды, полистиролы и др. Технология полимерных материалов термопластичного типа предусматривает их изготовление методом литья под давлением в водоохлажденных формах, прессования, экструзии, выдувания и другими способами.

Химические свойства

Полимеры могут перебывать в следующих состояниях: твердое, жидкое, аморфное, кристаллическое фазовое, а также высокоэластическое, вязкотекучее и стеклообразное деформационное. Широкое применение полимерных материалов обусловлено их высокой стойкостью к различным агрессивным средам, таким как концентрированные кислоты и щелочи. Они не подвержены воздействию Кроме того, с увеличением их молекулярной массы происходит снижение растворимости материала в органических растворителях. А полимеры, обладающие пространственной структурой, вообще не подвержены воздействию упомянутых жидкостей.

Физические свойства

Большинство полимеров являются диэлектриками, кроме того, они относятся к немагнитным материалам. Из всех используемых конструкционных веществ только они обладают наименьшей теплопроводностью и наибольшей теплоемкостью, а также тепловой усадкой (примерно в двадцать раз больше, чем у металла). Причиной потерь герметичности различными уплотнительными узлами при условиях низкой температуры является так называемое стеклование резины, а также резкое различие между коэффициентами расширения металлов и резин в застеклованном состоянии.

Механические свойства

Полимерные материалы отличаются широким диапазоном механических характеристик, которые сильно зависят от их структуры. Кроме этого параметра, большое влияние на механические свойства вещества могут оказать различные внешние факторы. К ним относятся: температура, частота, длительность или скорость нагружения, вид напряженного состояния, давление, характер окружающей среды, термообработка и др. Особенностью механических свойств полимерных материалов является их относительно высокая прочность при весьма малой жесткости (по сравнению с металлами).

Полимеры принято делить на твердые, модуль упругости которых соответствует Е=1-10 ГПа (волокна, пленки, пластмассы), и мягкие высокоэластичные вещества, модуль упругости которых составляет Е=1-10 МПа (резины). Закономерности и механизм разрушения тех и других различны.

Для полимерных материалов характерны ярко выраженная анизотропия свойств, а также снижение прочности, развитие ползучести при условии длительного нагружения. Вмести с этим они обладают довольно высоким сопротивлением усталости. По сравнению с металлами, они отличаются более резкой зависимостью механических свойств от температуры. Одной из главных характеристик полимерных материалов является деформируемость (податливость). По этому параметру в широком температурном интервале принято оценивать их основные эксплуатационные и технологические свойства.

Полимерные материалы для пола

Теперь рассмотрим один из вариантов практического применения полимеров, раскрывающего всю возможную гамму этих материалов. Эти вещества нашли широкое применение в строительстве и ремонтно-отделочных работах, в частности в покрытии полов. Огромная популярность объясняется характеристиками рассматриваемых веществ: они устойчивы к стиранию, малотеплопроводны, имеют незначительное водопоглощение, достаточно прочны и тверды, обладают высокими лакокрасочными качествами. Производство полимерных материалов можно разделить условно на три группы: линолеумы (рулонные), плиточные изделия и смеси для устройства бесшовных полов. Теперь вкратце рассмотрим каждый из них.

Линолеумы изготавливают на основе разных типов наполнителей и полимеров. В их состав также могут входить пластификаторы, технологические добавки и пигменты. В зависимости от типа полимерного материала, различают полиэфирные (глифталевые), поливинилхлоридные, резиновые, коллоксилиновые и другие покрытия. Кроме того, по структуре они делятся на безосновные и со звуко-, теплоизолирующей основой, однослойные и многослойные, с гладкой, ворсистой и рифленой поверхностью, а также одно- и многоцветные.

Материалы для бесшовных полов являются наиболее удобными и гигиеничными в эксплуатации, они обладают высокой прочностью. Эти смеси принято делить на полимерцемент, полимербетон и поливинилацетат.

1. На основе полимеров получают волокна путем продавливания растворов или расплавов через фильеры с последующим затвердеванием - это полиамиды, полиакрилонитрилы и др.

2. Полимерные пленки получают продавливанием через фильеры с щелевидными отверстиями или нанесением на движущую ленту. Их используют как электроизоляционный и упаковочный материал, основы магнитных лент.

3. Лаки - растворы пленкообразующих веществ в органических растворителях.

4. Клеи, композиции способные соединять различные материалы вследствие образования прочных связей между их поверхностями клеевой прослойкой.

5. Пластмассы

6. Композиты (композиционные материалы) - полимерная основа, армированная наполнителем.

10.4.2. Областиприменения полимеров

1. Полиэтилен устойчив к агрессивной среде, влагонепроницаем, является диэлектриком. Из него изготавливают трубы, электротехнические изделия, детали радиоаппаратуры, изоляционные пленки, оболочки кабелей телефонных и силовых линий.

2. Полипропилен - механически прочен, стоек к изгибам, истиранию, эластичен. Применяют для изготовления труб, пленок, аккумуляторных баков и др.

3. Полистирол - устойчив к действию кислот. Механически прочен, является диэлектриком Используется как электроизоляционный и конструкционный материал в электротехнике, радиотехнике.

4. Поливинилхлорид - трудногорюч, механически прочен, электроизоляционный материал.

5. Политетрафторэтилен (фторопласт) - диэлектрик не растворяется в органических растворителях. Обладает высокими диэлектрическими свойствами в широком диапазоне температур (от -270 до 260ºС). Применяется также как антифрикционный и гидрофобный материал.

6. Полиметилметакрилат (плексиглас) - применяется в электротехнике как конструкционный материал.

7. Полиамид – обладает высокой прочностью, износостойкостью, высокими диэлектрическими свойствами.

8. Синтетические каучуки (эластомеры).

9. Фенолформальдегидные смолы - основа клеев, лаков, пластмасс.

10.5. Органические полимерные материалы

10.5.1. Полимеризационные термопластичные смолы

Полипропилен - термопластичный полимер, получаемый из газа пропилена C 3 H 6 . (CH 2 = CH - CH 3)

Структурная формула

[-CH 2 -CH(CH 3)-] n .

Полимеризация ведется в бензине при температуре 70 °С по способу Натта. Получают полимер с регулярной структурой. Он имеет высокую химостойкость и разрушается лишь под действием 98% H 2 SO 4 и 50% HNO 3 при температуре выше 70°.

Электрические свойства как у полиэтилена. Пленка имеет малую газо - и паропроницаемость. Применяется для изоляции высокочастотных кабелей и монтажных проводов, в качестве диэлектрика высокочастотных конденсаторов.

Полиизобутилен - продукт полимеризации газа изобутилена. Структурная формула:

Существует несколько видов полиизобутилена, жидкие низкомолекулярные (1000) и твердые высокомолекулярные (400000). Т.е. в зависимости от степени полимеризации он может быть жидким с различной вязкостью и эластичным подобно каучуку. Молекулы имеют нитевидную симметричную структуру с разветвленностью в боковых группах. Этим можно объяснить клейкость материала, большая эластичность, по сравнению с полиэтиленом. Это диэлектрик с ρ = 10 15 – 10 16 Ом см,ε = 2,25 – 2,35, электрическая прочность – 16 – 23 кВ/мм.

Морозостойкость полиизобутилена зависит от его молекулярного веса, чем вес больше, тем полиизобутилен морозоустойчивее.

В чистом виде или в композициях полиизобутилен применяют для изготовления изоляционных лент; изоляции высокочастотных кабелей (в композициях с полиэтиленом); уплотнителей; изоляционных заливочных компаундов; клеящих материалов.

Вследствие холодной текучести полиизобутилена для изоляции высокочастотных кабелей применяется резиноподобная смесь из 90% полиизобутилена и 10% полистирола с прослойкой полистирольной пленки (стирофлекса). Эта смесь имеет высокие электрические свойства при повышенной влажности.

Полистирол – продукт полимеризации стирола – ненасышенного УВ – винилбензола или фенилэтилена –CH 2 CHC 6 H 5 .

Молекула стирола несколько несимметрична, что обусловлено наличием в нем фенольных групп.

При нормальной температуре стирол - бесцветная прозрачная жидкость. Из методов полимеризации стирола и получения твердого диэлектрика наиболее распространены методы блочной и эмульсионной полимеризации.

Стирол токсичен, вызывает раздражения кожи, глаз и органов дыхания. Пыль полистирола образует с воздухом взрывоопасные концентрации.

Плотность – 1,05 г/см 3

ρ, Ом·см, 10 14 – 10 17

ε= 2,55 – 2,52

Полистирол – химически стоек, на него не действуют концентрированные кислоты (HNO 3 – исключение) и щелочи, он растворяется в эфирах, кетонах, ароматических углеводородах и не растворяется в спиртах, воде, растительных маслах.

Степень полимеризации зависит от условий. Можно получить полимер с молекулярной массой до 600000. Это будут твердые полимеры. Применение находят полимеры с М.М. от 40000 до 150000. При нагреве 180 – 300 ºС возможна деполимеризация. Электрические свойства также зависят от метода полимеризации и наличия полярных примесей, особенно эмульгаторов.

Изделия из полистирола производят прессованием и литьем под давлением. Из него изготавливают: пленку (стирофлекс), ламповые панели, каркасы катушек, изоляционные детали переключателей, изоляторы антенн; пленки для конденсаторов и др. Полистирол в виде лент, шайб, колпачков применяется для изоляции высокочастотных кабелей.

Недостатки: невысокая нагревостойкость и склонность к быстрому старению – появление на поверхности сетки мелких трещин; при этом понижается электрическая прочность и повышается ε .

Полидихлорстирол – отличается от полистирола содержанием в каждом звене цепи двух атомов хлора и вследствие этого большой теплостойкостью, нагревостоек.

ε= 2,25 – 2,65

Полихлорвинил – термопластичное синтетическое высокополимерное соединение с линейной структурой молекул несимметричного строения. Резко выраженная асимметричность и полярность полихлорвинила связана с хлором.

Получают полимеризацией хлорвинила H 2 C =CH -Cl. Исходным сырьем для получения являются дихлорэтан и ацетилен. Хлорвинил является галоидопроизводным этилена. При нормальной температуре он представляет собой бесцветный газ, при температуре 12 - 14 ºС – жидкость, и при -159 ºС твердое тело. Полимеризация хлорвинила может производиться тремя способами: блочным, эмульсионным и в растворах. Наиболее применимый – водоэмульсионный. Существуют марки полихлорвинила с добавкой пластификаторов и наполнителей с различными механическими свойствами, морозостойкостью и нагревостойкостью.

Молекула полихлорвинила имеет вид

ε= 3,1 – 3,4 (при 800 Гц)

ρ = 10 15 – 10 16 Ом. см

Полихлорвинил малогигроскопичен, изменение диэлектрических свойств во влажной атмосфере незначительно.

Изделия изготовляют путем прессования, литьем под давлением, штамповкой, формованием.

Полихлорвинил применяется в виде пластмасс различной эластичности, в виде лаков для защитных покрытий. Он химически стоек против воздействия щелочей, кислот, спирта, бензина и минеральных масел. Сложные эфиры, кетоны, ароматические углеводороды частично растворяют его или вызывают набухание.

Полихлорвинил применяется в электропромышленности в следующих изделиях:

а) аккумуляторные банки;

б) шланги для электроизоляции и химзащиты;

в) изоляция телефонных проводов и кабелей (заменитель свинца);

г) изоляционные прокладки, втулки и др. изделия.

Не применяется в высокочастотных цепях в качестве диэлектрика из-за высоких диэлектрических потерь (высокая проводимость), и при температурах выше 60-70 ºС.

Поливинилацетат – полимеры жидкого винилацетата, получаемого в результате химического взаимодействия ацетилена (C 2 H 2) и уксусной кислоты:

или CH 2 =CHOCOCH 3 . Из него получаютвинилацетат - бесцветную легкоподвижную жидкость с эфирным запахом, разлагающуюся при 400°С.

Материал поливинилацетат – бесцветный, без запаха, занимает среднее место между смолами и каучуками. Свойства его зависят от степени полимеризации. М.М. от 10000 до 100000. Температура размягчения равна 40 – 50 °С.

Высокополимерные продукты при 50 – 100 °С становятся каучукоподобными, а при отрицательных температурах – твердыми, достаточно эластичными.

Все полимеры обладают светостойкостью, даже при 100 °С. При нагревании поливинилацетат не деполимеризуется до мономера, а разлагается с отщеплением уксусной кислоты. Не воспламеняется. Это полярный полимер. Растворим в эфирах, кетонах (ацетон), метиловом (CH 3 OH) и этиловом (C 2 H 5 OH) спиртах, не растворим в бензине. В воде слегка набухает, но не растворяется.

Применяется главным образом, для производства безосколочного стекла " триплекс ". Применяется в электроизоляционной технике. Лаки на его основе ценятся за хорошие электроизоляционные свойства, эластичность, светостойкость, бесцветность.

Полиметилметакрилат (органическое стекло, плексиглас) – большая группа высокополимерных эфиров метакриловой кислоты, имеющих большое техническое применение

В электропромышленности применяется как вспомогательный материал.

Получается при полимеризации метилового эфира метакриловой кислоты (метилметакрилат) в присутствии инициатора.

При 573 К полиметилметакрилат деполимеризуется с образованием исходного мономера метилметакрилата.

По составу от поливинилацетата отличается наличием метильной группы в боковой цепи вместо водорода и наличием валентной связи углерода главной цепи с эфирной группой не через кислород, а через углерод.

Имеет низкую теплостойкость (примерно 56 °C); ε = 3,3 - 4,5; ρ = 2,3·10 13 - 2·10 12 Ом. м. Не пригоден для электрической изоляции.

Применяется как конструкционный, оптический и декоративный материал, окрашиваемый анилиновыми красителями в различные цвета. Из него изготовляют корпуса и шкалы приборов, прозрачные защитные стекла и колпаки, прозрачные детали аппаратуры и др. Органическое стекло легко обрабатывается: сверлится, пилится, обтачивается, шлифуется, полируется. Хорошо гнется, штампуется и склеивается растворами полиметилметакрилата в дихлорэтане.

Поливиниловый спирт – твердый полимер состава (-CH 2 -CHOH-) n . Получается при гидролизе поливинилацетата кислотой или щелочью. Формула поливинилового спирта

Линейный полимер несимметричной структуры. Наличие группы ОН в каждом звене цепи определяет высокую гигроскопичность и полярность спирта. Растворяется только в воде. Имеетρ = 10 7 Ом·см. Используется как вспомогательный материал при изготовлении печатных радиосхем.

Устойчив против плесени и бактерий. Хороший материал для изготовления масло- и бензоустойчивых мембран, шлангов, панелей. Прогрев при 170°С в течение 3 – 5 часов повышает водостойкость и уменьшает растворимость поливинилового спирта.

Олигоэфиракрилаты

Олигомеры – химические соединения со средним молекулярным весом (менее 1000), большим по сравнению с мономерами и меньшим по сравнению с полимерами. Основное их свойство – способность к полимеризации за счет ненасыщенных связей, обуславливающих пространственную или линейную структуру готового продукта. При полимеризации не выделяются низкомолекулярные продукты, поэтому изоляция, полученная методом заливки олигомерами, отличается монолитностью, без пустот и пор. Они не требуют для полимеризации особых условий (высокого давления, температуры, среды и т.д.).

Промышленностью выпускаются полиэфирные, полиуретановые, кремнийорганические олигомерные соединения и их модификации.

Удивительно, насколько разнообразны окружающие нас предметы и материалы, из которых они изготовлены. Раньше, примерно в XV-XVI веках, основными материалами были металлы и дерево, чуть позже стекло, почти во все времена фарфор и фаянс. А вот сегодняшний век - это время полимеров, о которых и пойдет речь дальше.

Понятие о полимерах

Полимер. Что это такое? Ответить можно с разных точек зрения. С одной стороны, это современный материал, используемый для изготовления множества бытовых и технических предметов.

С другой стороны, можно сказать, это специально синтезированное синтетическое вещество, получаемое с заранее заданными свойствами для использования в широкой специализации.

Каждое из этих определений верное, только первое с точки зрения бытовой, а второе - с точки зрения химической. Еще одним химическим определением является следующее. Полимеры - соединения, в основе которых лежат короткие участки цепи молекулы - мономеры. Они многократно повторяются, формируя макроцепь полимера. Мономерами могут быть как органические, так и неорганические соединения.

Поэтому вопрос: "полимер - что это такое?" - требует развернутого ответа и рассмотрения по всем свойствам и областям применения этих веществ.

Виды полимеров

Существует множество классификаций полимеров по различным признакам (химической природе, термостойкости, строению цепи и так далее). В ниже приведенной таблице коротко рассмотрим основные виды полимеров.

Классификация полимеров
Принцип Виды Определение Примеры
По происхождению (возникновению) Природные (натуральные) Те, что встречаются в естественных условиях, в природе. Созданы природой. ДНК, РНК, белки, крахмал, янтарь, шелк, целлюлоза, каучук натуральный
Синтетические Получены в лабораторных условиях человеком, не имеют отношения к природе. ПВХ, полиэтилен, полипропилен, полиуретан и другие
Искусственные Созданы человеком в лабораторных условиях, но на основе Целлулоид, ацетатцеллюлоза, нитроцеллюлоза
С точки зрения химической природы Органической природы Большая часть всех известных полимеров. В основе мономер органического вещества (состоит из атомов С, возможно включение атомов N, S, O, P и других). Все синтетические полимеры
Неорганической природы Основу составляют такие элементы, как Si, Ge, O, P, S, H и другие. Свойства полимеров: не бывают эластичными, не образуют макроцепей. Полисиланы, полидихлорфосфазен, полигерманы, поликремниевые кислоты
Элементоорганической природы Смесь органических и неорганических полимеров. Главная цепь - неорганика, боковые - органика. Полисилоксаны, поликарбоксилаты, полиорганоциклофосфазены.
Различие главной цепочки Гомоцепные Главная цепь представлена либо углеродом, либо кремнием. Полисиланы, полистирол, полиэтилен и другие.
Гетероцепные Основной остов из разных атомов. Полимеры примеры - полиамиды, белки, этиленгликоль.

Также различают полимеры линейного, сетчатого и разветвленного строения. Основа полимеров позволяет быть им термопластичными или термореактивными. Также они имеют различия по способности к деформации при обычных условиях.

Физические свойства полимерных материалов

Основные два агрегатных состояния, характерные для полимеров, это:

  • аморфное;
  • кристаллическое.

Каждое характеризуется своим набором свойств и имеет важное практическое значение. Например, если полимер существует в аморфном состоянии, значит, он может быть и вязкотекущей жидкостью, и стеклоподобным веществом и высокоэластичным соединением (каучуки). Это находит широкое применение в химических отраслях промышленности, строительстве, технике, производстве промышленных товаров.

Кристаллическое состояние полимеры имеют достаточно условное. На самом деле данное состояние перемежается с аморфными участками цепи, и в целом вся молекула получается очень удобной для получения эластичных, но в тоже время высокопрочных и твердых волокон.

Температуры плавления для полимеров различны. Многие аморфные плавятся при комнатной температуре, а некоторые синтетические кристаллические выдерживают довольно высокие температуры (оргстекло, стекловолокно, полиуретан, полипропилен).

Окрашиваться полимеры могут в самые разные цвета, без ограничений. Благодаря своей структуре они способны поглощать краску и приобретать самые яркие и необычные оттенки.

Химические свойства полимеров

Химические свойства полимеров отличаются от таковых у низкомолекулярных веществ. Это объясняется размером молекулы, наличием различных функциональных группировок в ее составе, общим запасом энергии активации.

В целом можно выделить несколько основных типов реакций, характерных для полимеров:

  1. Реакции, которые будут определяться функциональной группой. То есть если в состав полимера входит группа ОН, характерная для спиртов, значит, и реакции, в которые они будут вступать, будут идентичны таковым у окисление, восстановление, дегидрирование и так далее).
  2. Взаимодействие с НМС (низкомолекулярными соединениями).
  3. Реакции полимеров между собой с образованием сшитых сетей макромолекул (сетчатые полимеры, разветвленные).
  4. Реакции между функциональными группировками в пределах одной макромолекулы полимера.
  5. Распад макромолекулы на мономеры (деструкция цепи).

Все перечисленные реакции имеют в практике большое значение для получения полимеров с заранее заданными и удобными человеку свойствами. Химия полимеров позволяет создавать термоустойчивые, кислотно и щелочеупорные материалы, обладающие при этом достаточной эластичностью и стабильностью.

Применение полимеров в быту

Применение этих соединений повсеместно. Мало можно вспомнить областей промышленности, народного хозяйства, науки и техники, в которых не нужен был бы полимер. Что это такое - полимерное хозяйство и повсеместное применение, и чем оно исчерпывается?

  1. Химическая промышленность (производство пластмасс, дубильных веществ, синтез важнейших органических соединений).
  2. Машиностроение, авиастроение, нефтеперерабатывающие предприятия.
  3. Медицина и фармакология.
  4. Получение красителей и пестицидов и гербицидов, инсектицидов сельского хозяйства.
  5. Строительная промышленность (легирование сталей, конструкции звуко- и теплоизоляции, строительные материалы).
  6. Изготовление игрушек, посуды, труб, окон, предметов быта и домашней утвари.

Химия полимеров позволяет получать все новые и новые, совершенно универсальные по свойствам материалы, равных которым нет ни среди металлов, ни среди дерева или стекла.

Примеры изделий из полимерных материалов

Прежде чем называть конкретные изделия из полимеров (их невозможно перечислить все, слишком большое их многообразие), для начала нужно разобраться, что дает полимер. Материал, который получают из ВМС, и будет основой для будущих изделий.

Основными материалами, изготовленными из полимеров, являются:

  • пластмассы;
  • полипропилены;
  • полиуретаны;
  • полистиролы;
  • полиакрилаты;
  • фенолформальдегидные смолы;
  • эпоксидные смолы;
  • капроны;
  • вискозы;
  • нейлоны;
  • клеи;
  • пленки;
  • дубильные вещества и прочие.

Это только небольшой список из того многообразия, что предлагает современная химия. Ну а здесь уже становится понятным, какие предметы и изделия изготавливаются из полимеров - практически любые предметы быта, медицины и прочих областей (пластиковые окна, трубы, посуда, инструменты, мебель, игрушки, пленки и прочее).

Полимеры в различных отраслях науки и техники

Мы уже затрагивали вопрос о том, в каких областях применяются полимеры. Примеры, показывающие их значение в науке и технике, можно привести следующие:

  • антистатические покрытия;
  • электромагнитные экраны;
  • корпусы практически всей бытовой техники;
  • транзисторы;
  • светодиоды и так далее.

Нет никаких ограничений фантазии по применению полимерных материалов в современном мире.

Производство полимеров

Полимер. Что это такое? Это практически все, что нас окружает. Где же они производятся?

  1. Нефтехимическая (нефтеперерабатывающая) промышленность.
  2. Специальные заводы по производству полимерных материалов и изделий из них.

Это основные базы, на основе которых получают (синтезируют) полимерные материалы.

Развитие современных технологий привело к появлению материалов, которые обладают исключительными эксплуатационными качествами. Полимерные материалы могут обладать молекулярной массой от нескольких тысяч до нескольким миллионов. Основные качества подобных материалов определяют их большое распространение. С каждым годом на долю полимеров приходится все большее количество выпускаемой продукции. Именно поэтому рассмотрим их особенности подробнее.

Свойства полимеров

Применение полимеров весьма обширно. Это связано с особыми качествами, которых обладает рассматриваемый материал. Сегодня полимерные материалы встречаются в самых различных областях, присутствуют практически в каждом доме. Процесс производства полимерных материалов постоянно совершенствуется, проводится изменение состава, за счет чего он приобретает новые эксплуатационные качества.

Физические свойства полимеров можно охарактеризовать следующим образом:

  1. Низкий показатель коэффициента теплопроводности. Именно поэтому некоторые полимеры могут применяться в качестве изоляции при проведении некоторых работ.
  2. Высокий показатель ТКЛР обуславливается относительно высокой подвижностью связей и постоянной сменой коэффициента деформации.
  3. Несмотря на высокий показатель ТКЛР, полимерные материалы идеально подходят для напыления. В последнее время часто можно встретить ситуацию, когда полимер наносится на поверхность в виде тонкого слоя для придания металлу и другим материал антикоррозионных качеств. Современные технологии нанесения позволяют получать тонкую защитную пленку.
  4. Удельная масса может варьироваться в достаточно большом диапазоне в зависимости от особенностей конкретного состава.
  5. Довольно высокий предел прочности от части вызван повышенной пластичностью. Конечно, показатель существенно уступает тем, которые имеет металл или сплавы.
  6. Прочность полимеров относительно невысокая. Для того чтобы повысить значение ударной вязкости проводится добавление в состав различных дополнительных компонентов, за счет чего получаются особые разновидности полимеров.
  7. Стоит учитывать низкую рабочую температуру. Полимерные материалы плохо справляются с нагревом. Именно поэтому многие варианты исполнения могут работать при температуре не выше 80 градусов Цельсия. Если превысить рекомендуемый температурный порог, то есть вероятность, что сильный нагрев станет причиной повышения пластичности полимерного материала. Слишком высокая пластичность становится причиной снижения прочности и изменение других физических свойств.
  8. Удельное сопротивление может варьироваться в достаточно большом диапазоне. Примером таких полимеров назовем ПВХ твердый, который имеет 10 17 Ом×см.
  9. Многие полимерные материалы имеют повышенную горючесть. Этот момент определяет то, что в некоторых отраслях промышленности использовать полимеры нельзя. Кроме этого химический состав определяет то, что при горении могут выделять токсичные вещества или едкий дым.
  10. При применении особой технологии производства поверхность может иметь сниженный показатель коэффициента трения по стали. За счет этого покрытие служит намного дольше, и на нем не появляются дефекты.
  11. Коэффициент линейного расширения составляет от 70 до 200 10 -6 на градус Цельсия.

Рассматривая характеристики распространенных полимеров, не стоит забывать о нижеприведенных качествах:

  1. Хорошие диэлектрические свойства позволяют использовать полимерный материал без опаски поражения электричеством. Именно поэтому полимеры довольно часто применяют при создании инструментов и оборудования, предназначенного для работы с электричеством.
  2. Линейные полимеры способны восстанавливать свою первоначальную форму после длительного воздействия нагрузки. Примером можно назвать воздействие поперечной нагрузки, которая изгибает деталь, но после ее пропадания форма не сохраняется.
  3. Важное качество всех полимеров – существенное изменение эксплуатационных качеств при введении небольшого количества примесей.
  4. Сегодня полимерные материалы встречаются в самых различных агрегатных состояниях. Примером можно назвать клей, смазку, герметик, краски, некоторые твердые полимерные материалы. Большое распространение получили твердые пластмассы, которые используются при производстве самого различного оборудования. Как ранее было отмечено, вещество обладает высокой эластичностью, за счет чего был получен силикон, резина, поролон и другие подобные полимерные материалы.

Стоит учитывать тот момент, что химический состав полимерных материалов может существенно отличаться. В ГОСТ представлена процедура качественной оценки, которая основана на баллах.

Большое распространение полимерные материалы получили в промышленности, так как имеют повышенную стойкость к неорганическим реактивам. Именно поэтому они применяются при производстве баков для чистой воды или особо чистых реактивов.

Вся приведенная выше информация определяет то, что полимеры получили просто огромное распространение в самых различных отраслях. Однако не стоит забывать, что насчитывается несколько десятков основных типов полимерных материалов, все они обладают своими определенными качествами. Именно поэтому следует подробно рассмотреть классификацию полимерных материалов.

Классификация полимеров

Есть довольно большое количество показателей, по которым синтетические полимерные материалы могут классифицироваться. При этом классификация затрагивает и основные эксплуатационные качества. Именно поэтому рассмотрим разновидности полимерных материалов подробнее.

Классификация проводится по агрегатному состоянию:

  1. Твердые. Практически все люди знакомы с полимерами, так как они используются при изготовлении корпусов бытовой техники и других предметов быты. Другое название этого материала – пластмасса. В твердой форме полимерный материал обладает достаточно высокой прочностью и пластичностью.
  2. Эластичные материалы. Высокая эластичность структуры получила применение при производстве резины, поролона, силикона и других подобных материалов. Большая часть встречается в строительстве в качестве изоляции, что также связано с основными эксплуатационными качествами.
  3. Жидкости. На основе полимеров производится достаточно большое количество самых различных жидких веществ, большая часть которых также применима в строительстве. Примером назовем краски, лаки, герметики и многое другое.

Жидкие полимеры — краски
Эластичные полимеры — резиновое покрытие

Различные виды полимерных материалов обладают разными эксплуатационными качествами. Именно поэтому следует рассматривать их особенности. Есть в продаже полимеры, которые до соединения находятся в жидком состоянии, но после вступления в реакцию становятся твердыми.

Классификация полимеров по происхождению:

  1. Искусственные вещества, характеризующиеся высокомолекулярной массой.
  2. Биополимеры, которые еще называют природными.
  3. Синтетические.

Большее распространение получили полимерные материалы синтетического происхождения, так как за счет смешивания самых различных веществ достигаются исключительные эксплуатационные качества. Искусственные полимеры сегодня встречаются практически в каждом доме.

Классификация синтетических материалов проводится также по особенностям молекулярной сетки:

  1. Линейные.
  2. Разветвленные.
  3. Пространственные.

Классификация проводится и по природе гетероатома:

  1. В главную цепь может входить атом кислорода. Подобное строение цепочки позволяет получить сложные и простые полиэфиры и перекиси.
  2. ВМС, которые характеризуются наличием атома серы в основной цепочке. За счет подобного строения получают политиоэфиры.
  3. Можно встретить и соединения, в главной цепочке которых есть атомы фосфора.
  4. В главную цепочку могут входить и атомы кислорода и с азотом. Наиболее распространенным примером подобного строения можно назвать полиуретаны.
  5. Полиамины и полиамиды – яркие представители полимерных материалов, которые в своей главной цепочке имеют атомы азота.

Кроме этого выделяют две большие группы полимерных материалов:

  1. Карбоцепные – вариант, который имеет основную цепочку макромолекулы ВМС с одним атомом углерода.
  2. Гетероцепные – структура, которая кроме атома углерода имеет и атомы других веществ.

Существует просто огромное количество разновидностей карбоцепных полимеров:

  1. Высокомолекулярные соединения, которые называют тефлоном.
  2. Полимерные спирты.
  3. Структуры с насыщенными главными цепочками.
  4. Цепочки с насыщенными основными связями, которые представлены полиэтиленом и полипропиленом. Отметим, что сегодня подобные разновидности полимеров получили просто огромное распространение, их применяют при производстве строительных материалов и других вещей.
  5. ВМС, которые получаются на основе переработки спиртов.
  6. Вещества, полученные при переработке карбоновой кислоты.
  7. Вещества, полученные на основе нитрилов.
  8. Материалы, которые были получены на основе ароматических углеводородов. Самым распространенным представителем этой группы является полистирол. Он получил широкое применение по причине высоких изоляционных качеств. Сегодня полистирол используют для изоляции жилых и нежилых помещений, транспортных средств и другой техники.

Вся приведенная выше информация определяет то, что существует просто огромное количество разновидностей полимерных материалов. Этот момент также определяет их широкое распространение, применение практически во всех отраслях промышленности и сферах деятельности человека.

Применение полимеров

Современная экономика и жизнь людей просто не может обойтись без полимерных материалов. Это связано с тем, что они обладают относительно невысокой стоимостью, при необходимости основные эксплуатационные качества могут изменяться под конкретные задачи.

Применение полимерных материалов

Рассматривая применение полимеров, следует уделить внимание нижеприведенным моментам:

  1. Активное производство началось в начале 20 века. Изначально технология производства заключалась в переработке низкомолекулярного сырья и целлюлозы. В результате их переработки появились краски и пленки.
  2. Современные полимеры повлияли на развитие всех отраслей промышленности. В момент развития кинематографа появление прозрачных пленок позволило снимать первые картины.
  3. В современном мире рассматриваемые полимерные материалы применяется практически во всех отраслях промышленности. Примером можно назвать использование полимеров при производстве игрушек, оборудования, лекарственных средств, тканей, строительных материалов и многого другого. Кроме этого они становятся частью других материалов для изменения их основных эксплуатационных качеств, применяются при обработке натуральной кожи или резины. За счет применения пластика производители смогли снизить стоимость компьютеров и мобильных девайсов, сделать их легче и тоньше. Если сравнить металл и полимеры, то разница в стоимости может быть просто огромной.
  4. Совершенствование технологии производства полимерных материалов привело к появлению более современных композитов, которые стали использовать в машиностроении и многих других отраслях промышленности.
  5. Применение полимера связано и с космосом. Можно назвать примером создание как летальных аппаратов, так и различных спутников. Существенное снижение массы позволяет с меньшими затратами преодолеть земное притяжение. Кроме этого полимеры хорошо известны тем, что выдерживают воздействие окружающей среды, представленное перепадами температуры и влажности.

Изначально в качестве сырья при производстве полимеров использовали низкокачественные низкомолекулярные вещества. Именно поэтому у них было огромное количество недостатков. Однако совершенствование технологий производства привело к тому, что сегодня полимеры обладают высокой безопасностью при применении, не выделяют вредных веществ в окружающую среду. Поэтому они стали все чаще использоваться при изготовлении вещей, применяемых в быту.

В заключение отметим, что рассматриваемая область постоянно развивается, за счет чего стали появляться композитные материалы. Они обходятся намного дороже полимеров, но при этом обладают исключительными физическими, химическими и механическими качествами. В ближайшее время полимерные материалы будут все также активно применяться в самых различных областях, так как альтернативы для их замены пока не существует.

Приведенная ниже статья постарается ответить на вопрос, что такое полимер. Здесь мы рассмотрим определение подобного термина, особенности взаимосвязей, возникающих в молекулах, образование, исторические данные и многое другое.

Введение

Что такое полимер? Это вещество, обладающее неорганической или органической природой и образующееся посредством химических связей, обуславливающих и придающих им аморфную или кристаллическую форму. Полимер возникает при помощи соединения большого количества звеньев простых мономеров, а полученная структура называется макромолекулой. Тип связи может быть: координационным или химическим видом. Понятие полимера тесно связанно с пластмассами.

Связь молекул

Отвечая на вопрос о том, что такое полимер, важно знать, как взаимно связываются молекулы в подобном веществе. В случае, когда макромолекулы объединяются посредством слабой силы Ван-Дер-Ваальса, их относят к термопластам. Если связь, при помощи которой они соединяются, носит химическую природу, то - это реактопласт.

Существуют линейные формы полимеров (целлюлоза) и разветвленные (амилопектины). У последнего имеется сложная трехмерная структура. Строение полимера предопределяет в себе наличие мономерного звена. Это фрагмент цепи, который регулярно повторяется и состоит из нескольких атомов.

Образование

Полимер (polymer) - это вещество, которое образуется в ряде различных явлений при реакции полимеризации, а также поликонденсации. В эту группу соединений относится множество природных компонентов пищи, среди которых можно выделить: протеины (белок), полисахаридные углеводы, научу, ряд нуклеиновых кислот и т. д. Несмотря на то что преимущественно это вещества органической природы, неорганические соединения также располагают огромным количеством подобных химических образований. Множество из них получают при помощи искусственного синтеза.

Специфика

Рассматриваемые в этой статье вещества, имеют множество характеристик, которые обуславливают большую потребность в их применении человеком.
К особенностям механических свойств можно отнести их эластичность, малую хрупкость стеклообразного и кристаллообразного ряда полимеров, а также способность, при помощи которой макромолекулы ориентируются в соединении, посредством деятельности направленных механических полей.

Растворы полимеров обладают высоким показателем вязкости при небольшой концентрации. Растворяться могут после прохождения стадии набухания.
Главным свойством химического типа является их умение быстро менять набор своих физико-механических свойств под воздействием малого количества реагентов. Молекулы характеризуются высокой гибкостью.

Виды

Классификация полимеров обуславливается в соответствие с несколькими параметрами.

Рассмотрение их с точки зрения химии позволяет выделять не- и органические, а также элементоорганические. К последним относятся вещества, содержащие в основе цепи наборы радикалов неорганического типа. Здесь прослеживается способность полимеров образовывать взаимосвязи между веществами разной природы. Примером может служить кремнийорганическое соединение, полученное искусственным путем. Неорганические виды полимеров обходятся без углерода в повторяющихся звеньях, но могут его включать в боковых заместителях.

В соответствии с формой выделяются несколько основных типов соединений: линейное, сетчатое, гребнеобразное, плоское, разветвленное, иногда звездообразное (входит в разветвленную группу) и прочие.

Другие виды полимеров могут различаться путем определения их полярности, значение которой можно найти при помощи расчета количества диполей. Что это?

Диполь - это молекула, обладающая разобщенной формой распределения «+» и «-» зарядов. Неполярное звено взаимно компенсирует дипольный момент связи между атомами. Полимеры, для которых характерно наличие значительной степени полярности, относят к гидрофильной группе. Амфифильным веществом называют соединение мономеров, обладающее как неполярными, так и полярными звеньями.

Реакции полимеров на нагревание позволяют выделять среди них термореактивные и термопластичные. К первым относятся вещества, размягчающиеся в ходе нагревании и затвердевающие при воздействии низких температур. Процесс носит обратимый характер. Термореактивные полимеры под влиянием высоких температур не восстанавливаются, а реакция считается необратимой.

Процесс развития

Что такое полимер? Этот вопрос вытекает из древности. Однако в такой форме был сформулирован, относительно недавно. Человеком использовались подобные вещества еще с древних времен. Шелка, хлопковые материалы, кожа, шерсть и многое другое применялось нашими предками для создания элементов одежды, в качестве связующих соединений, в ходе различных обработок и т. д. Формулировка вопроса изменялась с течением эволюции человека, но всегда носила общий характер.
На промышленных предприятиях цепные полимеры начали изготавливать в начале 20-го века. С момента зарождения отрасли по их производству пути образования соединений разделились на две ветки. Первая занималась переработкой полимеров, органической и природной формы. С их помощью создавались искусственные виды. Процесс синтеза, как правило, проходит с участием низкомолекулярного ряда соединений.

В настоящее время одно из самых масштабных и крупнотоннажных производств в качестве основы использует целлюлозу. Наладился процесс не сразу. Первым материалом, который получили при помощи физической модификации целлюлозы, является полимер целлулоида. Однако первое его открытие было сделано до двадцатого века - в середине девятнадцатого. Обладание патентом бакелитовой смолы, которую создал Лео Бакеланд, дало толчок к началу стремительного развития промышленных отраслей, в которых изготавливали полимеры. Это произошло в 1906 году. Упомянутая смола является продуктом процесса конденсации формальдегида в паре с фенолом. Наблюдать превращение можно было в ходе нагревания, а вследствие этого явления образовывалось трехмерное соединений. Не одно десятилетие эта смола применялась в ходе изготовления корпуса для различных механизмов, например для аккумулятора, телевизора, розетки и т. д.

Вклад Генри Форда

Производство полимеров во многом обязано усилиям, которые приложил Г. Форд. Перед началом первой мировой войны он активно развивал промышленность в сфере автомобилестроения. Изначально он использовал натуральные каучуки, а далее начал их синтезировать искусственно. Изготовление последнего бурно изучалось и осваивалось в 1937-1939 гг. Основными странами, которые вложили в это немало времени, денег и других средств, является СССР, Англия, Соединенные Штаты Америки и Германия. В этот же период были освоены полистирол и поливинилхлорид, которые прекрасно изолировали электропроводку. Открытие полиметилметакрилата позволило наладить широкомасштабное производство самолетов в военные годы.

Поле того как окончилась война, начало возобновляться синтезирование полиамидных тканей и волокон. Производств их начало развиваться еще до второго конфликта между странами. В пятидесятых годах 20-го столетия разрабатывались методы по получению полиэфирных волокон, также освоилось изготовление таких материалов, как лавсан и полиэтилентерефлатат. Полипропиленовые вещества (искусственно полученная шерсть) - это еще один яркий пример эксплуатации волокон, полученных в ходе реакции поликонденсации и полимеризации.

Огнеупорная структура

Полимер - что это такое? Рассматривая такой вопрос, мы упоминали их способности реагировать на термическую обработку.

Углубляясь в это, важно знать, что множество полимеров являются воспламеняемыми. Такие вещества легко поддаются поджиганию. Однако это недопустимо в большинстве случаев при их изготовлении и эксплуатации. Для того чтобы предотвратить вероятность подобного казуса, в состав полимера добавляют специальный ряд добавок.

Существует понятие о галогенированных полимерах, которые создают при помощи включения в реакции конденсации, различного набора мономеров хлорированного или бромированного типа. Подобные соединения имеют высокую огнеупорность, но недостаток их заключается в том, что при воздействии высоких температур они начинают образовывать газы, дающие начало процессам коррозии. Это негативно сказывается на электротехнике, расположенной вблизи.

Способы эксплуатации

Делая обзор полимеров и пластмассы, можно сказать, что им свойственно общее наличие качественных характеристик. Оба соединения эксплуатируются в различных отраслях человеческой деятельности, например, при производстве машин, в сельско-хозяйственных целях, в медицине, при изготовлении самолетов, в судостроении и т. д. Повседневная обстановка человека не может обойтись без этих веществ. Благодаря соединениям высокомолекулярного типа, возможно производство различных волокон, резины и, собственно, пластмассы. Не забываем также о том, что наш организм функционирует благодаря наличию в нем большого количества полимеров, которые не только строят органы и ткани, но также служат средством добычи энергетических ресурсов, например, АТФ или НАДФ, образованных в ходе биологического окисления и пищеварения.

Изучение полимеров

Определение полимеров было сформулировано более 150 лет назад. Однако наука, изучающая их, стала самостоятельной лишь перед началом Второй мировой войны, которая началась в 1939 году. Более сильное развитие получила уже в пятидесятых годах ХХ века и затем детально исследовалась. В это время была определена роль полимеров, их взаимосвязь с развитием прогресса технической природы, влияние на биологические объекты и т. д. Отрасль науки, изучающая подобные соединения, тесно связана с различными разделами химии, физики и биологии.

Поделиться: