Чем определяется величина диссоциации оксигемоглобина. Оксигемоглобин: понятие, механизм образования, кривая диссоциации и её сдвиги. Смещение кривой диссоциации оксигемоглобина

Поиск по книге ← + Ctrl + →

Кривая диссоциации оксигемоглобина

Нормальному уровню Ра02 (92- 98 мм рт. ст.) соответствует S,0; 94-98 %. Добиться полного насыщения гемоглобина кислородом можно только посредством увеличения содержания кислорода во вдыхаемом газе."

Выбирая пульсоксиметр, обычно проверяют его на себе. Если монитор показывает SpО2= 100 % (а такие модели-оптимисты встречаются достаточно часто), подумайте, стоит ли его покупать. Испытывать пульсоксиметр должен.некурящий человек, так как «осле выкуренной сигареты до 8-10 % гемоглобина крови превращаются в карбоксигемоглобин. При этом пульсоксиметр завышает Sa02, и модель может оказаться незаслуженно скомпрометированной.

Зависимость SaO2 от РaО2 для каждого больного можно описать эмпирическими формулами (уравнение Хилла, алгоритмы Кел-мана, Северингхауза и др.), в которых учитываются температура, рН и прочие факторы. Данные формулы в разных модификациях обычно вводят в современные автоматические приборы контроля КЩС и газового состава крови (Radiometer, AVL, Instrumentation Laboratories и пр.), которые вычисляют сатурацию гемоглобина по напряжению кислорода в крови. Собственно, сама кривая диссоциации оксигемоглобина и является графическим выражением этих уравнений. Более простой показатель положения кривой диссоциации - индекс Рм; он равен напряжению кислорода в крови, при котором сатурация гемоглобина составляет 50 % (рис. 1.7).

Нормальная величина P50 равна 27 мм рт. ст. Ее уменьшение соответствует сдвигу кривой влево, а увеличение - сдвигу вправо.

После полного насыщения гемоглобина кислородом дальнейшее повышение Ра02 сопровождается лишь незначительным приростом СаО2 за счет физически растворенного кислорода. Поэтому увеличение концентрации кислорода во вдыхаемом или вдуваемом газе (F1O2) сверх уровня, достаточного для полного насыщения гемоглобиновой емкости (Sa02 = 99-100 %), редко бывает оправданным.

Проходя через капилляры, артериальная кровь отдает тканям часть содержащегося в ней кислорода и превращается в венозную (PvO2 = 40 мм рт. ст., SvO2 = 75 %). Таким образом, в газообмене участвует лишь около 25 % запаса кислорода артериальной крови, а сатурация и десатурация гемоглобина происходят, на пологом участке кривой диссоциации.

Патология дыхательной системы приводит к нарушению ок-сигенации крови в легких с развитием артериальной гипоксемии, степень которой количественно оценивается пульсоксиметром. В этих условиях снабжение тканей кислородом осуществляется в "аварийном" режиме, на крутом участке кривой, где незначительного падения РаО2 оказывается достаточно для отделения от оксигемоглобина требуемого количества кислорода. Аварийность режима заключается в уменьшении напряжения и, следовательно, содержания кислорода в тканях, о чем свидетельствует низкое напряжение кислорода в венозной крови.

Гемоглобин как транспортный белок призван решать две задачи: присоединять кислород в легких и отдавать его тканям. Эти задачи противоположны по своей сути, но выполняются одним и тем же веществом, поэтому стремление гемоглобина связываться с кислородом (сродство гемоглобина к кислороду) должно быть достаточным - чтобы обеспечить оксигенацию крови в легких, но не избыточным - чтобы не нарушить процесс отдачи кислорода на периферии. Нормальное положение кривой диссоциации оксигемоглобина как раз и соответствует оптимальной готовности гемоглобина к реализации обеих задач. Но при определенных условиях баланс между стремлением гемоглобина присоединить кислород и готовностью его отдать нарушается. Графически это выражается сдвигом кривой диссоциации вправо или влево (рис. 1.8).

Рис. 1.8. Сдвиг кривой диссоциации оксигемоглобина

При ацидозе (респираторном или метаболическом), гипертермии и увеличении концентрации 2,3-дифосфоглицерата (2,3-ДФГ) в эритроцитах сродство гемоглобина к кислороду снижается и кривая диссоциации НЬО2 сдвигается вправо. При этом насыщение гемоглобина кислородом в легких ухудшается (уменьшение Sp02 при прежнем РаО2), но отделение кислорода от оксигемоглобина в капиллярах облегчается.

Если газообмен в легких не нарушен, то даже существенный сдвиг кривой диссоциации вправо сопровождается весьма незначительным снижением Sp02, поскольку события в легких происходят на пологом участке кривой. В тканях же напряжение кислорода повышается. В отношении кислородного гомеостаза это в целом безопасная ситуация. Некоторые специалисты даже счи-

тают, что при нормальной работе легких ацидоз способствует снабжению тканей кислородом.

Иная картина наблюдается при грубой патологии дыхания, когда от легких оттекает кровь с низким напряжением кислорода, соответствующим крутому участку кривой диссоциации НЬО2. Если при этом кривая сдвинута вправо, SpO2 может оказаться намного ниже, чем при нормальном положении кривой. Данное обстоятельство - дополнительный удар по снабжению тканей кислородом и важный вклад в дело развития гипоксии. Таким образом, при исходной артериальной гипоксемии (низком уровне РаС»2) метаболический ацидоз, гиперкапния и гипер-термия способны заметно снизить сатурацию гемоглобина (Sp02) и, следовательно, содержание кислорода в артериальной крови.

Алкалоз (респираторный или метаболический), гипотермия и уменьшение концентрации 2,3-ДФГ повышают сродство гемоглобина к кислороду, и кривая диссоциации НЬ02 сдвигается влево. В этих условиях гемоглобин жадно присоединяет к себе кислород в легких (SpO2 возрастает при прежнем РаО2) и неохотно отдает его тканям. Считается, что сдвиг кривой диссоциации влево всегда неблагоприятно сказывается на оксигенации тканей, ибо небольшой прирост содержания (но не напряжения) кислорода в артериальной крови не окупает последующего нежелания оксигемоглобина делиться кислородом с тканями на периферии. Пожалуй, от левого положения кривой диссоциации НЬО2 не страдают только новорожденные. Но это отдельная тема.

Непостоянство отношений между РаО2 и SpO2 может затруднить осмысление данных пульсоксиметрии: далеко не всегда известно, по какой кривой диссоциации работает гемоглобин в данный момент.

← + Ctrl + →
Физиологические основы пульсоксиметрии О дисгемоглобинах, красителях и лаке для ногтей

Красный пигмент крови человека, сложный железосодержащий белок (хромопротеин, состоящий из глобина и четырех гемов с двухвалентным железом в центре каждого) – , соединяясь с молекулярным кислородом (O2) в легких, образует оксигенированную форму – оксигемоглобин (HHbO2) . Оксигемоглобин, приобретая уникальные свойства и обеспечивая дыхание, как одно из элементарных проявлений жизни, продолжает саму жизнь организма. Например, достаточно ввести окись углерода вместо кислорода или нарушить потребление О2 клетками при попадании цианидов (солей синильной кислоты), которые ингибируют ферментные системы тканевого дыхания, как тут же наступает гибель организма.

Дыхание, на первый взгляд, кажется совсем простым процессом. Между тем, оно основано на взаимодействии многих компонентов, составляющих гигантскую молекулу красного пигмента крови – хромопротеина гемоглобина, который, в свою очередь, отличается многообразием производных, где из их числа несомненный интерес вызывает оксигемоглобин. Итак, оксигемоглобин образуется в легких путем соединения сложного железосодержащего белка гемоглобина с кислородом, поступающим с вдыхаемым воздухом.

Образование и распад оксигемоглобина

В спокойном состоянии тканям человеческого тела достаточно около 0,2 л кислорода в одну минуту, но все меняется при физической нагрузке и чем она интенсивнее, тем больше необходимого для дыхания газа запрашивают ткани. Для удовлетворения их нужд потребность в кислороде может увеличиваться в 10 – 15 раз и составлять до 2, а то и 3 литров О2 в одну минуту. Однако газообразный кислород в данном количестве никак не сможет пробраться в ткани, поскольку он почти не растворим и в воде, и в плазме, то есть, этот элемент в ткани должен доставить какой-то белок, способный соединиться с ним и решить задачу транспорта.

Кровь, как биологическая среда, реализует свои функциональные обязанности по обеспечению дыхания за счет присутствия в ней сложного содержащего железо протеина – гемоглобина, физиологическая роль которого, как транспортного средства кислорода, базируется на способности Hb связывать и отдавать О2 в корреляции с концентрацией (парциальным давлением – P) данного газа в крови. Образование оксигемоглобина осуществляется в паренхиме легких, куда кислород прибывает при дыхании из воздуха окружающей среды.

Процесс образования HHbO2 происходит в доли секунды (0,01 с), поскольку кровь в легких задерживается всего-то на полсекунды. Схематично и коротко образование оксигемоглобина можно представить в следующем виде:

  • Попадая в капиллярные сосуды легких, кровь обогащается кислородом, то есть, красный кровяной пигмент к своим 4 гемам присоединяет кислород – идет реакция окисления (оксигенации);
  • Кислород связывается с гемами хромопротеина при помощи координационных связей феррума (железо – Fe) и, не изменяя в данном случае валентности последнего (в геме валентность железа всегда – II), переводит его (Hb) в несколько иное состояние;
  • Гем железосодержащего протеина представляет собой активный центр, с его помощью хромопротеин в результате вышеуказанной реакции переходит в непрочный комплекс – оксигенированный гемоглобин (HHbO2), который, находясь в красных кровяных тельцах – эритроцитах, с током крови доставляется к клеткам тканей, чтобы через распад оксигемоглобина и выделения в процессе диссоциации кислорода, обеспечить их дыхание.

Таким образом, результатом реакции оксигенации становится образование оксигемоглобина, подкисление биологической жидкости, снижение ее щелочного резерва, то есть, ее умения связывать углекислоту (СО2), которое, разумеется, на тот момент снижается.

Железосодержащий протеин, насытившись в легочной паренхиме кислородом и приобретя оксигенированную форму, уносит О2 к тканям, в капиллярных сосудах которых его концентрация в крови резко понижена. Там происходит распад оксигемоглобина (диссоциация), кислород уходит на тканевое дыхание, гемоглобин забирает отработанный углекислый газ, превращаясь в другую физиологическую модель – карбогемоглобин (HHbCO2), и в этом качестве отправляется в главный орган дыхания, чтобы обменять CO2 на очередную порцию необходимого организму газа.


Кривая образования и распада (диссоциации) оксигемоглобина

Агентом, гарантирующим быстрое насыщение железосодержащего белка кислородом (образование оксигемоглобина), выступает высокое напряжение (парциальное давление) О2 в легочных альвеолах (порядка 100 мм рт. ст.).

Корреляцию между степенью насыщения красного кровяного пигмента кислородом и парциальным давлением O2 (P O 2) выражают в виде S-образной кривой (сигмоиды), которую называют кривой диссоциации оксигемоглобина.

Свойственная красному кровяному пигменту S-образная (сигмоида) кривая диссоциации оксигемоглобина свидетельствует о том, что контактирование первой молекулы О2 с одним из гемов Hb открывает путь присоединению других молекул элемента остальными тремя гемами. Кривой насыщения железосодержащего белка кислородом принадлежит немалая физиологическая значимость – S-образная конфигурация позволяет крови обогатиться данным газом при изменениях концентрации кислорода в биологической жидкости в довольно обширных интервалах. К примеру, не следует ожидать таких особенных расстройств дыхательной функции крови, как выраженное кислородное голодание (гипоксия), при подъеме на высоту до 3,5 км над уровнем моря или во время перелета на самолете. Хотя P O 2 во вдыхаемом воздухе сильно понизится, концентрация кислорода в крови будет находиться на достаточно высоком уровне, чтобы обеспечить насыщение Hb данным газом. На это указывает и отлогий график формирования и распада оксигемоглобина на верхнем его отрезке (верхний отрезок кривой свидетельствует о течении процесса насыщения О2 красного пигмента крови в легочной паренхиме и находится в пределах 75 – 98%).

Кривая диссоциации оксигемоглобина может быть разделена на 4 отрезка, каждому их которых соответствует определенный период образования оксигемоглобина (зависимость скорости насыщения хромопротеина кислородом от парциального давления газа в крови):

  • 0 – 10 мм рт. ст. – гемоглобин не спешит насыщаться;
  • 10 – 40 мм рт. ст. – оксигенация резко ускоряется (стремительный подъем кривой), доходя до 75%;
  • 40 – 60 мм рт. ст. – оксигенация заметно замедляется, потихоньку добираясь до 90%;
  • Значения P O 2 пересекают отметку 60 мм рт. ст. – насыщение идет слабо (линия лениво ползет вверх). Однако кривая медленно продолжает стремиться к отметке 100%, но, так и не достигнув ее, останавливается на уровне 96 – 98%. Кстати, и такие показатели насыщения Hb кислородом отмечаются только у молодых и здоровых людей (P O 2 артериальной крови ≈ 95 мм рт. ст., легочных капилляров – ≈ 100 мм рт. ст.). С возрастом дыхательные способности крови снижаются.

Несовпадение парциального давления кислорода артериальной крови и смеси газов в альвеолах легких трактуется:

  1. Некоторыми разногласиями между интенсивностью тока крови и вентилированием разных отделов главного органа дыхания – легких;
  2. Притоком незначительного объема крови из бронхиальных вен в венозные сосуды легких (шунтирование), где, как известно, течет артериальная кровь;
  3. Прибытием доли крови из коронарных вен в левый желудочек сердца посредством тебезиевых вен (вены Тебезия-Вьессена), в которых проходимость возможна в обоих направлениях.

Между тем, причины, вследствие которых кривая образования и диссоциации оксигемоглобина приобрела сигмоидную форму, пока остаются не до конца выясненными.

Смещение кривой диссоциации оксигемоглобина

Но кривая диссоциации оксигемоглобина, о которой идет речь выше, справедлива, если в организме все нормально. В других ситуациях график может сдвигаться в ту или иную сторону.

В числовом выражении сродство гемоглобина к кислороду обозначается величиной P 50 – напряжение полунасыщения красного пигмента крови кислородом или иными словами: парциальное напряжение О2, при котором 50% Hb пребывает в форме оксигемоглобина (оптимальные условия: рН – 7,4, tº – 37ºC). Нормальные значения этого показателя в артериальной крови приближаются к величине 34,67 гПа (26 мм рт. ст.). Смещение графика вправо указывает на то, что способность красного кровяного пигмента соединяться с кислородом снижается, что, естественно, увеличивает значения P 50. И, наоборот – смещение кривой влево говорит об увеличении сродства этого хромопротеина к кислороду (↓P 50.).

Ходу сигмоиды помогают некоторые факторы, повышающие обогащение крови кислородом и таким образом участвующие в тканевом дыхании, поэтому названные вспомогательными:

  • Повышение водородного показателя (pH) крови (эффект Бора), поскольку способность гемоглобина присоединять кислород связана с водородным показателем (pH) данной биологической среды (гемоглобин представляет одну из четырех буферных систем и влияет на регуляцию кислотно-основного баланса, поддерживая pH на нужном уровне: 7,36 – 7,4). Следовательно, чем выше водородный показатель, тем активнее ведет себя гемоглобин в отношении кислорода и наоборот – снижение pH отнимает возможности хромопротеина присоединять кислород, например: ↓pH до 7,2 заставит график отклоняться вправо (≈ на 15%), pH до 7,6 передвинет кривую диссоциации оксигемоглобина влево (≈ на 15%);
  • Отделение углекислого газа от карбогемоглобина в легких и выход СО2 с выдыхаемым воздухом (эффект Бора-Вериго) на фоне повышения водородного показателя создает условия для жадного насыщения гемоглобина кислородом (образование оксигемоглобина в легких);
  • Возрастание уровня значимого для обмена фосфата – 2,3-дифосфоглицерата (2,3-ДФГ), содержание которого в крови меняется в зависимости от условий протекания обменных процессов;
  • Снижение температуры в легких (в тканях она выше, нежели в легких) и чем ниже упадет tº, тем больше способностей присоединять кислород появляется у железосодержащего белка (при повышении температуры идет обратный эффект).

Уровень красного пигмента в крови, а также его способность присоединять кислород (кривая диссоциации оксигемоглобина) в некоторой степени подвержены возрастным колебаниям. Так, у младенцев, только-только известившим мир о своем появлении первым криком, количество гемоглобина заметно выше, что объясняется присутствием фетального гемоглобина, который, как известно, обладает повышенным сродством к кислороду. Красный пигмент крови стариков, напротив, постепенно снижает способности связывать кислород.

В заключение хочется заметить, что гемоглобин не только имеет сродство к кислороду и довольно легко соединяется с углекислым газом. Кроме физиологических соединений красного кровяного пигмента при определенных условиях возникают связи с другими газами, в частности – с угарным газом (CO) и оксидом азота (NO), причем соединение происходит также непринужденно

Высокое сродство Hb к угарному газу влечет образование карбоксигемоглобина (HHbCO), который препятствует соединению хромопротеина с кислородом, а в результате этого ткани остаются без O2. К чему это может привести – всем известно: при отравлении угарным газом высок риск смертельного исхода, если вовремя не помочь человеку.

При отравлении оксидом азота или парами нитробензола гемоглобин переходит в метгемоглобин (HHbOH) с изменением валентности железа (II → III). Метгемоглобин также не позволяет кислороду соединиться с гемоглобином, в итоге – наступает кислородное голодание тканей, создается угроза жизни организма.

Видео: о транспорте кислорода и углекислого газа гемоглобином


Кислородная емкость крови. Большая часть кислорода переносится кровью в виде химического соединения с гемоглобином. Для того чтобы узнать, какое наибольшее количество О 2 ; может быть связано гемоглобином, следует иметь в виду, что молекула последнего состоит из четырех субъединиц. Следовательно, реакцию оксигенации можно записать следующим образом Нb+4О 2 Нb(О 2)4.

Таким образом, 1 моль гемоглобина может связать до 4 моль О 2 . Поскольку объем 1 моль идеального газа составляет 22,4 л, 64 500 г гемоглобина связывают 4·22,4 л О 2 , а 1 г гемоглобина ―1,39 мл О 2 . При анализе газового состава крови получают несколько меньшую величину (1,34-1,36 мл О 2 на 1 г Hb). Это обусловлено тем, что небольшая часть гемоглобина находится в неактивном состоянии. Таким образом, ориентировочно можно считать, что in vivo 1г Hb связывает 1,34 мл О 2 (так называемое число Хюфнера).

Исходя из числа Хюфнера, можно, зная содержание гемоглобина, вычислить кислородную емкость крови: [О 2 ] макс = (1,34 мл О 2 на 1 г Hb)·(150 г Hb на 1 л крови) = 0,2 л О 2 на 1 л крови. Однако такое содержание кислорода в крови может достигаться лишь в том случае, если кровь контактирует с газовой смесью, насыщенной кислородом (РО 2 > 300 мм рт.ст.); при этом равновесие значительно сдвинуто вправо. В естественных условиях эта реакция протекает при меньшем значении парциального давления О 2 , поэтому гемоглобин оксигенируется не полностью.

Кривая диссоциации оксигемоглобина.

Реакция взаимодействия кислорода с гемоглобином подчиняется закону действующих масс. Это означает, что соотношение между количествами гемоглобина и оксигемоглобина зависит от содержания физически растворенного О 2 в крови; последнее же, согласно закону Генри-Дальтона, пропорционально напряжению О 2 . Процент оксигемоглобина от общего содержания гемоглобина называют кислородным насыщением (SО 2) гемоглобина. Если гемоглобин полностью дезоксигенирован, то SО 2 = 0%; если же весь гемоглобин превратился в оксигемоглобин, то SО 2 = 100%. В соответствии с законом действующих масс насыщение гемоглобина кислородом зависит от напряжения О 2 . Графически эту зависимость отражает так называемая кривая диссоциации оксигемоглобина. Эта кривая имеет S-образную форму. Расположение кривой диссоциации оксигемоглобина зависит от ряда факторов (см. ниже). Наиболее простым показателем, характеризующим расположение этой кривой, служит так называемое напряжение полунасыщения (50%), т.е. такое напряжение О 2 , при котором насыщение гемоглобина кислородом составляет 50%. В норме (при рН=7,4 и t=37°C) полунасыщение артериальной крови составляет около 26 мм рт.ст. (3,46 кПа).

Причины S-образной формы кривой диссоциации оксигемоглобина до конца не ясны. Если бы каждая молекула гемоглобина присоединяла только одну молекулу О 2 , то кинетика этой реакции графически описывалась бы гиперболой. Именно такая гиперболическая кривая диссоциации характерна, например, для реакции соединения кислорода с красным мышечным пигментом миоглобином, аналогичной реакции оксигенации гемоглобина. Строение миоглобина сходно со структурой одной из четырех субъединиц гемоглобина, поэтому молекулярные массы этих двух веществ соотносятся как 1:4. Поскольку в состав миоглобина входит лишь одна пигментная группа, одна молекула миоглобина может присоединить только одну молекулу О 2 . Исходя из вполне правдоподобного предположения о том, что S-образная форма кривой диссоциации НbО 2 обусловлена связыванием одной молекулой гемоглобина четырех молекул О 2 , Эдер выдвинул так называемую гипотезу промежуточных соединений. Согласно этой гипотезе, присоединение четырех молекул О 2 к гемоглобину происходит в несколько стадий, причем каждая из этих стадий влияет на равновесие следующей реакции. Таким образом, реакция соединения кислорода с гемоглобином описывается четырьмя константами равновесия, что и объясняет сигмоидную форму кривой диссоциации оксигемоглобина.

В то же время возможно и другое объяснение, согласно которому существуют две формы гемоглобина-оксигенированная и дезоксигенированная, переходящие одна в другую в результате конформационных перестроек. Если предположить, что параметры равновесия реакций оксигенации для этих двух форм гемоглобина различны, то с позиции данной гипотезы можно объяснить S-образную форму кривой диссоциации НbО 2

Биологический смысл формы кривой диссоциации оксигемоглобина. Конфигурация кривой диссоциации оксигемоглобина имеет важное значение с точки зрения переноса кислорода кровью. В процессе поглощения кислорода в легких напряжение О 2 в крови приближается к таковому в альвеолах. У молодых людей РО 2 артериальной крови составляет около 95 мм рт.ст. (12,6 кПа). При таком напряжении насыщение гемоглобина кислородом составляет примерно 97%. С возрастом (и в еще большей степени при заболеваниях легких) напряжение О 2 в артериальной крови может значительно снижаться, однако, поскольку кривая диссоциации оксигемоглобина в правой ее части почти горизонтальна, насыщение крови кислородом уменьшается ненамного. Так, даже при падении РО 2 в артериальной крови до 60 мм рт.ст. (8,0 кПа) насыщение гемоглобина кислородом равно 90%. Таким образом, благодаря тому, что области высоких напряжений кислорода соответствует горизонтальный участок кривой диссоциации оксигемоглобина, предупреждается cyщественное снижение насыщения артериальной крови кислородом.

Крутой наклон среднего участка кривой диссоциации оксигемоглобина свидетельствует об очень благоприятных условиях для отдачи кислорода тканям. При изменении локальной потребности в кислороде он должен высвобождаться в достаточном количестве в отсутствие значительных сдвигов РО 2 в артериальной крови. В состоянии покоя РО 2 в области венозного конца капилляра равно приблизительно 40 мм рт.ст. (5,3 кПа), что соответствует примерно 73% насыщения. Если в результате увеличения потребления кислорода его напряжение в венозной крови падает лишь на 5 мм рт.ст. (0,7 кПа), то насыщение гемоглобина кислородом снижается не менее чем на 7%; высвобождающийся при этом О 2 может быть сразу же использован для процессов метаболизма.

Количество химически связанного кислорода в крови зависит от насыщения им гемоглобина.

При прохождении крови через тканевые капилляры используется лишь 25% общей кислородной емкости. Разумеется, разные органы существенно различаются по степени извлечения кислорода. При интенсивной физической нагрузке артериовенозная разница по кислороду может превышать 0,1.

В 100 мл крови при температуре тела растворяется лишь 0,3 мл кислорода. Кисло-род, растворяющийся в плазме крови капилляров малого круга кровообращения , диф-фундирует в эритроциты, сразу же связывается гемоглобином, образуя оксигемоглобин , в котором кислорода 190 мл/л. Скорость связывания кислорода велика: время полунасы-щения гемоглобина кислородом около 3 мс. В капиллярах альвеол с соответствующими вентиляцией и перфузией практически весь гемоглобин превращается в оксигемоглобин.

Кривая диссоциации оксигемоглобина. Превращение гемоглобина в оксигемоглобин определяется напряжением растворенного кислорода. Графически эта зависимость выра-жается кривой диссоциации оксигемоглобина (рис. 151).

Когда напряжение кислорода равно нулю, в крови находится только восстановленный гемоглобин (дезоксигемоглобин). Повышение напряжения кислорода сопровождается увеличением количества оксигемоглобина. Но данная зависимость существенно отли-чается от линейной, кривая имеет S-образную форму. Особенно быстро (до 75%) уровень оксигемоглобина возрастает при увеличении напряжения кислорода от 10 до 40 мм рт. ст. При 60 мм рт. ст. насыщение гемоглобина кислородом достигает 90%, а при дальнейшем повышении напряжения кислорода приближается к полному насыщению очень медленно. Таким образом, кривая диссоциации оксигемоглобина состоит из двух основных ча-стей — крутой и отлогой.

Отлогая часть кривой, соответствующая высоким (более 60 мм.рт. ст.) напряжениям кислорода, свидетельствует о том, что в этих условиях содержание оксигемоглобина лишь слабо зависит от напряжения кислорода и его парциального давления во вдыхаемом и альвеолярном воздухе. Так, подъем на высоту 2 км над уровнем моря сопровождается снижением атмосферного давления с 760 до 600 мм рт. ст., парциального давления кислорода в альвеолярном воздухе со 105 до 70 мм рт. ст., а содержание оксигемоглобина снижается лишь на 3%. Таким образом, верхняя отлогая часть кривой диссоциации отражает способность гемоглобина связывать большие количества кислорода несмотря удумеренное снижение его парциально-го давления во вдыхаемом воздухе. И в этих условиях ткани достаточно снаб-жаются кислородом.

Крутая часть кривой диссоциации соответствует напряжениям кислорода, обычным для тканей организма (35 мм рт. ст. и ниже). В тканях, поглощающих много кислорода (работающие мышцы, печень, почки), оксигемоглобин диссоциирует в большей степени, иногда почти полностью. В тканях, в которых интенсивность окислительных процессов мала, большая часть оксигемоглобина не диссоциирует. Переход тканей из состояния по-коя в деятельное состояние (сокращение мышц, секреция желез) автоматически создает условия для увеличения диссоциации оксигемоглобина и увеличения снабжения тканей кислородом.


Сродство гемоглобина к кислороду (отражается кривой диссоциации оксигемогло-бина) непостоянно. Особенно значительно на него влияют следующие факторы. 1. В эри-троцитах содержится особое вещество 2, 3-дифосфоглицерат . Его количество увеличи-вается, в частности, при снижении напряжения кислорода в крови. Молекула 2, 3-дифос-фоглицерата способна внедряться в центральную часть молекулы гемоглобина, что при-водит к снижению сродства гемоглобина к кислороду. Кривая диссоциации смещается вправо. Кислород легче переходит в ткани. 2. Сродство гемоглобина к кислороду сни-жается при увеличении концентрации Н 4 " и двуокиси углерода (рис. 152). Кривая дис-социации оксигемоглобина в этих условиях также смещается вправо. 3. Подобным же образом действует на диссоциацию оксигемоглобина повышение температуры. Нетруд-но понять, что эти изменения сродства гемоглобина к кислороду имеют важное значение для обеспечения снабжения им тканей. В тканях, в которых процессы обмена веществ протекают интенсивно, концентрация двуокиси углерода и кислых продуктов увели-чивается, а температура повышается. Это ведет к усилению диссоциации оксигемо-глобина.

Гемоглобин крови плода (HbF) обладает значительно большим сродством к кисло-роду, чем гемоглобин взрослых (НЬА). Кривая диссоциации HbF по отношению к кривой диссоциации НЬА сдвинута влево.

В волокнах скелетных мышц содержится близкий к гемоглобину миоглобин. Он обладает очень высоким сродством к кислороду.

Количество кислорода в крови. Максимальное количество кислорода, которое может связать кровь при полном насыщении гемоглобина кислородом, называется кислородной емкостью крови . Для ее определения кровь насыщают кислородом воздуха. Кислородная емкость крови зависит от содержания в ней гемоглобина.

Один моль кислорода занимает объем 22,4 л. Грамм-молекула гемоглобина способна присоеди-нить 22 400Х4== 89 600 мл кислорода (4 — число гемов в молекуле гемоглобина). Молекулярная масса гемоглобина — 66 800. Значит, 1 г гемогло-бина способен присоединить 89 600:66 800== 1,34 мл кислорода. При содержании в крови 140 г/л ге-моглобина кислородная емкость крови будет 1,34-. 140=== 187,6 мл, или около 19 об. % (без учета не-большого количества физически растворенного в плазме кислорода).

В артериальной крови содержание кис-лорода лишь немного (на 3—4%) ниже ки-слородной емкости крови. В норме в 1 л арте-риальной крови содержится 180—200 мл кис-лорода. При дыхании чистым кислородом его количество в артериальной крови практи-чески соответствует кислородной емкости. По сравнению с дыханием атмосферным воз-духом количество переносимого кислорода увеличивается мало (на 3—4%), но при этом возрастают напряжение растворенного ки-слорода и способность его диффундировать в ткани.

Венозная кровь в состоянии покоя со-держит около 120 мл/л кислорода. Таким об-разом, протекая по тканевым капиллярам, кровь отдает не весь кислород. Часть кисло-рода, поглощаемая тканями из артериальной крови, называется коэффициентом утилиза-ции кислорода. Для его вычисления делят разность содержания кислорода в артери-альной и венозной крови на содержание кислорода в артериальной крови и умножают на 100. Например: (200— 120) :200-100=40%. В покое коэффициент утилизации кисло-рода колеблется от 30 до 40%. При тяжелой мышечной работе он повышается до 50— 60%.

Реакция взаимодействия кислорода с гемоглобином подчиняется закону действующих масс. Это означает, что соотношение между количествами гемоглобина и оксигемоглобина зависит от содержания физически растворенного О 2 в крови; последнее же, согласно закону Генри-Дальтона, пропорционально напряжению О 2 . Процент оксигемоглобина от общего содержания гемоглобина называют кислородным насыщением (SО 2) гемоглобина. Если гемоглобин полностью дезоксигенирован, то SО 2 = 0%; если же весь гемоглобин превратился в оксигемоглобин, то SО 2 = 100%. В соответствии с законом действующих масс насыщение гемоглобина кислородом зависит от напряжения О 2 . Графически эту зависимость отражает так называемая кривая диссоциации оксигемоглобина. Эта кривая имеет S-образную форму. Расположение кривой диссоциации оксигемоглобина зависит от ряда факторов (см. ниже). Наиболее простым показателем, характеризующим расположение этой кривой, служит так называемое напряжение полунасыщения (50%), т.е. такое напряжение О 2 , при котором насыщение гемоглобина кислородом составляет 50%. В норме (при рН=7,4 и t=37°C) полунасыщение артериальной крови составляет около 26 мм рт.ст. (3,46 кПа).

Причины S-образной формы кривой диссоциации оксигемоглобина до конца не ясны. Если бы каждая молекула гемоглобина присоединяла только одну молекулу О 2 , то кинетика этой реакции графически описывалась бы гиперболой. Именно такая гиперболическая кривая диссоциации характерна, например, для реакции соединения кислорода с красным мышечным пигментом миоглобином, аналогичной реакции оксигенации гемоглобина. Строение миоглобина сходно со структурой одной из четырех субъединиц гемоглобина, поэтому молекулярные массы этих двух веществ соотносятся как 1:4. Поскольку в состав миоглобина входит лишь одна пигментная группа, одна молекула миоглобина может присоединить только одну молекулу О 2 . Исходя из вполне правдоподобного предположения о том, что S-образная форма кривой диссоциации НbО 2 обусловлена связыванием одной молекулой гемоглобина четырех молекул О 2 , Эдер выдвинул так называемую гипотезу промежуточных соединений. Согласно этой гипотезе, присоединение четырех молекул О 2 к гемоглобину происходит в несколько стадий, причем каждая из этих стадий влияет на равновесие следующей реакции. Таким образом, реакция соединения кислорода с гемоглобином описывается четырьмя константами равновесия, что и объясняет сигмоидную форму кривой диссоциации оксигемоглобина.

В то же время возможно и другое объяснение, согласно которому существуют две формы гемоглобина-оксигенированная и дезоксигенированная, переходящие одна в другую в результате конформационных перестроек. Если предположить, что параметры равновесия реакций оксигенации для этих двух форм гемоглобина различны, то с позиции данной гипотезы можно объяснить S-образную форму кривой диссоциации НbО 2

Биологический смысл формы кривой диссоциации оксигемоглобина. Конфигурация кривой диссоциации оксигемоглобина имеет важное значение с точки зрения переноса кислорода кровью. В процессе поглощения кислорода в легких напряжение О 2 в крови приближается к таковому в альвеолах. У молодых людей РО 2 артериальной крови составляет около 95 мм рт.ст. (12,6 кПа). При таком напряжении насыщение гемоглобина кислородом составляет примерно 97%. С возрастом (и в еще большей степени при заболеваниях легких) напряжение О 2 в артериальной крови может значительно снижаться, однако, поскольку кривая диссоциации оксигемоглобина в правой ее части почти горизонтальна, насыщение крови кислородом уменьшается ненамного. Так, даже при падении РО 2 в артериальной крови до 60 мм рт.ст. (8,0 кПа) насыщение гемоглобина кислородом равно 90%. Таким образом, благодаря тому, что области высоких напряжений кислорода соответствует горизонтальный участок кривой диссоциации оксигемоглобина, предупреждается cyщественное снижение насыщения артериальной крови кислородом.

Крутой наклон среднего участка кривой диссоциации оксигемоглобина свидетельствует об очень благоприятных условиях для отдачи кислорода тканям. При изменении локальной потребности в кислороде он должен высвобождаться в достаточном количестве в отсутствие значительных сдвигов РО 2 в артериальной крови. В состоянии покоя РО 2 в области венозного конца капилляра равно приблизительно 40 мм рт.ст. (5,3 кПа), что соответствует примерно 73% насыщения. Если в результате увеличения потребления кислорода его напряжение в венозной крови падает лишь на 5 мм рт.ст. (0,7 кПа), то насыщение гемоглобина кислородом снижается не менее чем на 7%; высвобождающийся при этом О 2 может быть сразу же использован для процессов метаболизма.

Поделиться: