Давление в плевральной полости, его происхождение, изменение при дыхании и роль в механизме внешнего дыхания. Опыт Дондерса. Пневмоторакс. Давление в плевральной полости, его изменение при дыхании Давление в плевральной полости равно атмосферному


При рождении ребенка легкие еще не содержат воздуха и их собственный объем совпадает с объемом грудной полости. При первом вдохе сокращаются скелетные мышцы вдоха, объем грудной полости увеличивается.

Давление на легкие снаружи со стороны ірудной клетки уменьшается по сравнению с атмосферным. В силу этой разницы воздух свободно входит в легкие, растягивая их и прижимая наружную поверхность легких к внутренней поверхности грудной клетки и к диафрагме. При этом растянутыс легкие, обладая эластичностью, противодействуют растяжению. В результате на высоте вдоха легкие оказывают на грудную клетку изнутри уже не атмосферное давление, а меньшее на величину эластической тяги легких.
После рождения ребенка грудная клетка растет быстрее, чем ткань легкого. Так как
легкие оказываются под действием тех же сил, которые растягивали их при первом вдохе, они полностью заполняют грудную клетку как во время вдоха, так и во время выдоха, находясь постоянно в растянутом состоянии. В результате, давление легких на внутреннюю поверхность грудной клетки всегда меньше, чем давление воздуха в легких (на величину эластической тяги легких). При остановке дыхания в любой момент вдоха или выдоха в легких сразу же устанавливается атмосферное давление. При проколе с диагностической целью грудной клетки и париетальной плевры взрослого человека полой иглой, соединенной с манометром, и попадании конца иглы в плевральную полость, в манометре сразу же давление уменьшается ниже атмосферного. Манометр регистрирует в плевральной полости отрицательное давление по отношению к атмосферному, принимаемому" за ноль. Эта разница между давлением в альвеолах и давлением легких на внутреннюю поверхность грудной клетки, т.е. давление в плевральной полости, называется транспульмональным давлением.

Еще по теме ДАВЛЕНИЕ В ПЛЕВРАЛЬНОЙ ПОЛОСТИ. МЕХАНИЗМ ЕГО ВОЗНИКНОВЕНИЯ.:

  1. КОЛЕБАНИЯ ДАВЛЕНИЯ В ПЛЕВРАЛЬНОЙ ПОЛОСТИ ПРИ ДЫХАНИИ. ИХ МЕХАНИЗМ.
  2. ДЫХАТЕЛЬНОЕ УПРАЖНЕНИЕ № I. МЕХАНИЗМЫ ЕГО ОЗДОРОВИТЕЛЬНОГО ВОЗДЕЙСТВИЯ. «СИЛЬНЫЕ» И «СЛАБЫЕ» СТОРОНЫ УПРАЖНЕНИЯ.

Лёгкие постоянно находятся в грудной полости в растянутом состоянии. Оно формируется в результате существования плевральной полости и наличия в ней отрицательного давления.

Плевральная полость образуется следующим образом: лёгкие и стенки грудной полости покрыты серозной оболочкой – плеврой . Между листками висцеральной и париетальной плевры имеется узкая (5-10 мкм) щель, формируется полость, содержащая серозную жидкость, по составу близкую к лимфе. Эта жидкость имеет низкую концентрацию белков, что обуславливает низкое онкотическое давление по сравнению с плазмой крови. Это обстоятельство препятствует накоплению жидкости в плевральной полости.

Давление в плевральной полости ниже атмосферного, что определяется как отрицательное давление. Оно обусловлено эластической тягой лёгких, т.е. постоянным стремлением лёгких уменьшить свой объём. Давление в плевральной полости ниже альвеолярного на величину, создаваемую эластической тягой лёгких: Р пл = Р альв – Р э.т.л. . эластическая тяга лёгких обусловлена тремя факторами:

1) Поверхностным натяжением плёнки жидкости, покрывающей внутреннюю поверхность альвеол – сурфактантом. Это вещество имеет низкое поверхностное натяжение. Сурфактант образуется пневмоцитами II типа, состоит из белков и липидов. Обладает свойством уменьшать поверхностное натяжение стенки альвеолы при уменьшении размеров альвеол. Это стабилизирует состояние стенки альвеол при изменении их объёма. Если бы поверхность альвеол была покрыта слоем водного раствора, то это увеличило бы поверхность натяжения в 5-8 раз. В таких условиях наблюдалось полное спадение одних альвеол (ателектаз) при перерастяжении других. Наличие сурфактанта предотвращает развитие подобного состояния лёгких в здоровом организме.

2) Упругостью ткани стенок альвеол , которые имеют в стенке эластические волокна.

3) Тонусом бронхиальных мышц.

Эластическая тяга лёгких обуславливает упругие свойства лёгких. Количественно упругие свойства лёгких принято выражать растяжимостью легочной ткани С :

где V – прирост объёма лёгких при их растяжении (в мл),

∆Р – изменение транспульмонального давления при растяжении лёгких (в см вод. ст.).

У взрослых С равно 200 мл/см вод. ст, у новорожденных и детей грудного возраста – 5-10 мл/см вод. ст. Данный показатель (его уменьшение) изменяется при заболеваниях лёгких и используется с диагностическими целями.

Плевральное давление изменяется в динамике дыхательного цикла. В конце спокойного выдоха давление в альвеолах равно атмосферному, а в плевральной полости – 3 мм рт. ст. Разность Р альв – Р пл = Р л называется транспульмональным давлением и равна +3 мм рт. ст. Именно это давление поддерживает растянутое состояние лёгких в конце выдоха.

При вдохе, вследствие сокращения инспираторных мышц, объём грудной клетки увеличивается. Давление плевральное (Р пл) становится более отрицательным – к концу спокойного вдоха оно равно –6 мм рт. ст., транспульмональное давление (Р л) нарастает до +6 мм рт.ст., вследствие чего лёгкие расправляются, их объём увеличивается за счёт атмосферного воздуха.

При глубоком вдохе Р пл может снизиться до −20 мм рт. ст. Во время глубокого выдоха это давление может стать положительным, тем не менее оставаясь ниже давления в альвеолах на величину давления, создаваемого эластической тягой лёгких.

Если в плевральную щель попадает небольшое количество воздуха, лёгкое частично спадается, но вентиляция его продолжается. Такое состояние называется закрытым пневмотораксом. Через некоторое время воздух из плевральной полости всасывается и лёгкое расправляется (Всасывание газов из плевральной полости происходит вследствие того, что в крови мелких вен малого круга кровообращения напряжение растворенных газов ниже, чем в атмосфере).

Механизм возникновения отрицательного давления в плевральной полости может быть уяснен с помощью видоизмененной .

Если подобрать бутыль такого размера, какой соответствует размеру грудной клетки животного, и, поместив в эту бутыль его легкие, отсосать из нее воздух, то легкие займут почти весь ее объем. При этом давление в щелеобразном пространстве между стенкой бутыли и легкими станет несколько ниже атмосферного. Это объясняется тем, что растянутая эластическая ткань легких стремится сжаться. Сила, в которой сжимается эластическая ткань легкого - так называемая эластическая тяга легочной ткани, противодействует атмосферному давлению.

Явления, которые происходят в описанном варианте модели Дондерса, точно соответствуют тем, которые существуют в нормальных физиологических условиях при вдохе и выдохе. Легкие в грудной клетке всегда находятся в растянутом состоянии, причем растяжение легочной ткани увеличивается во время вдоха и уменьшается во время выдоха. Это является причиной отрицательного давления в плевральной полости и его возрастания на вдохе и уменьшения на выдохе. В том, что легкие действительно постоянно растянуты, можно убедиться, если вскрыть грудную полость: легкие при этом вследствие эластической тяги немедленно спадутся и займут примерно всего ⅓ грудной полости.

Растяжение легочной ткани зависит от того, что атмосферное давление действует на легкие только изнутри через воздухоносные пути и не действует на них снаружи благодаря неподатливости грудной стенки. Поэтому лёгкие находятся в грудной полости под односторонним давлением, которое, растягивая их, плотно прижимает к грудной стенке так, что они заполняют всю плевральную полость, следы которой остаются лишь в виде узкой плевральной щели, содержащей тонкий слой серозной жидкости.

Сила атмосферного давления затрачивается в некоторой мере на преодоление эластической тяги легких. Поэтому поверхность легких прижимается кгрудной стенке с меньшей силой, чем величина атмосферного давления. В результате давление в плевральной щели даже на выдохе меньше атмосферного на величину эластической тяги легких, т. е. примерно на 6 мм рт. ст.

Эластическая тяга легких обусловлена двумя факторами:

    наличием в стенке альвеол большого количества эластических волокон,

    поверхностным натяжением стенки альвеол.

Нейергард еще в 1929 г. показал, что около ⅔ , эластической тяги легких зависит от поверхностного натяжения стенки альвеол. С этим согласуются новые данные, показавшие, что легкие после разрушения их эластической ткани ферментом эластином сохраняют свои эластические свойства.

Так как силы поверхностного натяжения могут быть неодинаковы в разных альвеолах, то возможно спадение и слипание части из них во время выдоха за счет того, что другие альвеолы остаются растянутыми. Этого, однако, не происходит вследствие того, что внутренняя поверхность альвеол покрыта нерастворимой в воде, тонкой мономолекулярной пленкой вещества, названного сурфактаном (от англ. слова surface - поверхность). Сурфактан обладает малым поверхностным натяжением и препятствует полному спадению альвеол, стабилизируя их размеры. В случае отсутствия у новорожденного легкие не расправляются (ателектаз). Сурфактан представляет собой альфа-лецитин. Предполагают, что он образуется в митохондриях клеток альвеолярного эпителия. После перерезки обоих блуждающих нервов выработка его угнетается.

Измерение внутриплеврального давления у новорожденного показывает, что во время выдоха оно равно атмосферному и становится отрицательныи лишь во время вдоха.

Возникновение отрицательного давления в плевральной щели объясняется тем, что грудная клетка новорожденного растет быстрее, чем легкие, в силу чего легочная ткань подвергается постоянному (даже в положении выдоха) растяжению. В создании отрицательного давления в плевральной щели имеет значение еще то, что плевральные листки обладают большой всасывательной способностью. Поэтому газ, введенный в плевральную полость, через некоторое время всасывается и в плевральной полости восстанавливается отрицательное давление. Таким образом, имеется механизм, активно поддерживающий отрицательное давление в плевральной щели.

Отрицательное давление в грудной полости имеет большое значение для движения крови по венам. Стенки крупных вен, расположенных в грудной полости, легко растяжимы, и поэтому отрицательное давление в плевральной полости передается и на них. Отрицательное давление в полых венах является вспомогательным механизмом, облегчающим возврат крови к правому сердцу. Понятно, что при увеличении отрицательного давления во время вдоха усиливается и приток кропи к сердцу. Напротив, присильном натуживании и кашле внутригрудное давление настолько повышается, что венозный возврат крови может резко уменьшиться.

Легкие покрыты висцеральной, а пленка грудной полости - париетальной плеврой. Между ними содержится серозная жидкость. Они плотно прилегают друг к другу (щель 5-10 мкм) и скользят относительно друг друга. Это скольжение необходимо для того, чтобы легкие могли следовать за сложными изменениями грудной клетки не деформируясь. При воспалении (плеврит, спайки) уменьшается вентиляция соответствующих участков легких.

Если ввести иглу в плевральную полость и соединить ее с водным манометром, то окажется, что давление в ней:

    при вдохе - на 6-8 см Н 2 О

    при выдохе - на 3-5 см Н 2 О ниже атмосферного.

Эту разницу между внутриплевральным и атмосферным давлением обычно называют давлением в плевральной полости.

Отрицательное давление в плевральной полости обусловлено эластической тягой легких, т.е. стремлением легких к спадению.

При вдохе увеличение грудной полости ведет к повышению отрицательного давления в плевральной полости, т.е. возрастает транспульмональное давление, приводящее к расправлению легких.

спадаются - выдох.

Аппарат Дондерса.

Если ввести в плевральную полость небольшое количество воздуха, то он рассосется, т.к. в крови мелких вен малого круга кровообращения напряжение раствор. газов меньше, чем в атмосфере. При расслаблении инспираторных мышц транспульмональное давление уменьшается и легкие в силу эластичности спадаются.

Накоплению жидкости в плевральной полости препятствует более низкое онкотическое давление плевральной жидкости (меньше белков), чем в плазме. Имеет значение и понижение гидростатического давления в малом круге кровообращения.

Изменение давления в плевральной полости можно измерить прямым способом (но можно повредить легочную ткань). Но лучше измерять его путем введения в пищевод баллончика l = 10 см (грузная часть пищевода). Стенки пищевода податливы.

Эластическая тяга легких обусловлена 3 факторами:

    Поверхностным натяжением пленки жидкости, покрывающей внутреннюю поверхность альвеол.

    Упругостью ткани стенок альвеол (содержат эластические волокна).

    Тонусом бронхиальных мышц.

На любой поверхности раздела между воздухом и жидкостью действуют силы межмолекулярного сцепления, стремящиеся уменьшить величину этой поверхности (силы поверхностного натяжения). Под влиянием этих сил альвеолы стремятся сократиться. Силы поверхностного натяжения создают 2/3 эластической тяги легких. Поверхностное натяжение альвеол в 10 раз меньше теоретически рассчитанного для соответствующей водной поверхности.

Если бы внутренняя поверхность альвеолы была покрыта водным раствором, то поверхностное натяжение должно было быть в 5-8 раз больше. В этих условиях было бы спадение альвеол (ателектаз). Но этого не происходит.

Это значит, что в альвеолярной жидкости на внутренней поверхности альвеол имеются вещества, снижающие поверхностное натяжение, т. е. ПАВ. Их молекулы сильно притягиваются к друг другу, но обладают слабым средством с жидкостью, вследствие этого они собираются на поверхности и тем самым снижают поверхностное натяжение.

Такие вещества называются ПАВ, а в данном случае сурфактантами. Они представляют собой липиды и белки. Образуются специальными клетками альвеол - пневмоцитами II типа. Выстилка имеет толщину 20-100 нм. Но наибольшей поверхностной активностью компонентов этой смеси обладают производные лецитина.

При уменьшении размеров альвеол. молекулы сурфактанта сближаются, их плотность на единицу поверхности больше и поверхностное натяжение снижается - альвеола не спадается.

При увеличении (расширении) альвеол их поверхностное натяжение повышается, так как плотность сурфактанта на единицу поверхности понижается. Это усиливает эластическую тягу легких.

В процессе дыхания усиления дыхательных мышц тратится на преодоление не только эластического сопротивления легких и тканей грудной клетки, но и на преодоление неэластического сопротивления газовому потоку в воздухоносных путях, которое зависит от их просвета.

Нарушение образования сурфактантов приводит к спадению большого количества альвеол - ателектазу - отсутствие вентиляции обширных участков легких.

У новорожденных сурфактанты необходимы для расправления легких при первых дыхательных движениях.

Существует заболевание новорожденных, при котором поверхность альвеол покрыта преципитатом фибрина (геалиновые мембраны), который понижает активность сурфактантов - снижена. Это приводит к неполному расправлению легких и тяжелым нарушением газообмена.

Пневмоторакс - поступление воздуха в плевральную полость (через поврежденную грудную стенку или легкие).

В силу эластичности легких - они спадаются поджимаясь к поршню, занимая 1/3 своего объема.

При одностороннем - легкое на неповрежденной стороне может обеспечивать достаточное насыщение крови О 2 и удаление СО 2 (в покое).

Двухсторонний - если не производится искусственная вентиляция легких, или герметизация плевральной полости - к гибели.

Односторонний пневмоторакс иногда применяется для терапевтических целей: введение воздуха в плевральную полость для лечения туберкулеза (каверны).


Легкие расположены в геометрически закрытой полости, образованной стенками грудной клетки и диафрагмой. Изнутри грудная полость выстлана плеврой, состоящей из двух листков. Один листок прилегает к грудной клетке, другой - к легким. Между листками имеется щелевидное пространство, или плевральная полость, заполненная плевральной жидкостью.

Грудная клетка в утробном периоде и после рождения растет быстрее легких. Кроме того, плевральные листки обладают большой всасывающей способностью. Поэтому в плевральной полости устанавливается отрицательное давление. Так, в альвеолах легких давление равно атмосферному - 760, а в плевральной полости - 745-754 мм рт. ст. Эти 10-30 мм и обеспечивают расширение легких. Если проколоть грудную стенку так, чтобы воздух вошел в плевральную полость, то легкие тут же спадутся (ателектаз). Это произойдет потому, что давление атмосферного воздуха на наружную и внутреннюю поверхность легких сравняется.

Легкие в плевральной полости всегда находятся в несколько растянутом состоянии, но во время вдоха их растяжение резко увеличивается, а при выдохе уменьшается. Это явление хорошо демонстрирует модель, предложенная Дондерсом. Если подобрать бутыль, по объему соответствующую величине легких, предварительно поместив их в эту бутыль, и вместо дна натянуть резиновую пленку, выполняющую роль диафрагмы, то легкие будут расширяться при каждом оттягивании резинового дна. Соответственно будет изменяться величина отрицательного давления внутри бутыли.

Отрицательное давление можно измерить, если ввести в плевральное пространство инъекционную иглу, соединенную с ртутным манометром. У крупных животных оно достигает при вдохе 30-35, а при выдохе уменьшается до 8-12 мм рт. ст. Колебания давления при вдохе и выдохе влияют на движение крови по венам, расположенным в грудной полости. Так как стенки вен легкорастяжимы, то отрицательное давление передается на них, что способствует расширению вен, их кровенаполнению и возврату венозной крови в правое предсердие, при вдохе приток крови к сердцу усиливается.

Типы дыхания.У животных различают три типа дыхания: реберный, или грудной,- при вдохе преобладает сокращение наружных межреберных мышц; диафрагмальный, или брюшной,- расширение грудной клетки происходит преимущественно за счет сокращения диафрагмы; эеберно-брюшной - вдох обеспечивается в равной степени межреберными мышцами, диафрагмой и брюшными мышцами. Последний тип дыхания свойственен сельскохозяйственным животным. Изменение типа дыхания может свидетельствовать о заболевании органов грудной или брюшной полости. Например, при заболевании органов брюшной полости преобладает реберный тип дыхания, так как животное оберегает больные органы.

Жизненная и общая емкость легких.В покое крупные собаки и овцы выдыхают в среднем 0,3-0,5, лошади

5-6 л воздуха. Этот объем называют дыхательным воздухом. Сверх данного объема собаки и овцы могут вдохнуть еще 0,5-1, а лошади - 10-12 л - дополнительный воздух. После нормального выдоха животные могут выдохнуть приблизительно такое же количество воздуха - резервный воздух. Таким образом, при нормальном, неглубоком дыхании у животных грудная клетка не расширяется до максимального предела, а находится на некотором оптимальном уровне, при необходимости объем ее может увеличиваться за счет максимального сокращения мышц инспираторов. Дыхательный, дополнительный и резервный объемы воздуха составляют жизненную емкость легких. У собак она составляет 1.5 -3 л, у лошадей - 26-30, у крупного рогатого скота - 30-35 л воздуха. При максимальном выдохе з легких еще остается немного воздуха, этот объем называют остаточным воздухом. Жизненная емкость легких и остаточный воздух составляют общую емкость легких. Величина жизненной емкости легких может значительно уменьшиться при некоторых заболеваниях, что приводит к нарушению газообмена.

Определение жизненной емкости легких имеет большое значение для выяснения физиологического состояния организма в норме и при патологии. Ее можно определить с помощью специального аппарата, называемого водяным спирометром (аппаратом «Спиро 1-В»). К сожалению, эти способы трудно применимы в производственных условиях. У лабораторных животных жизненную емкость определяют под наркозом, при вдыхании смеси с высоким содержанием С02 . Величина наибольшего выдоха примерно соответствует жизненной емкости легких. Жизненная емкость изменяется в зависимости от возраста, продуктивности, породы и других факторов.

Легочная вентиляция.После спокойного выдоха в легких остается резервный, или остаточный, воздух, называемый также альвеолярным воздухом. Около 70 % вдыхаемого воздуха непосредственно поступает в легкие, остальные 25-30 % участия в газообмене не принимают, так как он остается в верхних дыхательных путях. Объем альвеолярного воздуха у лошадей составляет 22 л. Поскольку при спокойном дыхании лошадь вдыхает 5 л воздуха, из которых в альвеолы поступает только 70 %, или 3,5 л, то при каждом вдохе в альвеолах вентилируется только "/б часть воздуха (3,5:22). Отношение вдыхаемого воздуха к альвеолярному называют коэффициентом легочной вентиляции, а количество воздуха, проходящего через легкие за 1 мин,- минутным объемом легочной вентиляции. Минутный объем - величина переменная, зависимая от частоты дыхания, жизненной емкости легких, интенсивности работы, характера рациона, патологического состояния легких и других факторов.

Воздухоносные пути (гортань, трахея, бронхи, бронхиолы) не принимают непосредственного участия в газообмене, поэтому их называют вредным пространством. Однако они имеют большое значение в процессе дыхания. В слизистой оболочке носовых ходов и верхних дыхательных путях имеются серозно-слизистые клетки и мерцательный эпителий. Слизь улавливает пыль и увлажняет дыхательные пути. Мерцательный эпителий движениями своих волосков способствует удалению слизи с частицами пыли, песка и другими механическими примесями в область носоглотки, откуда она выбрасывается. В верхних дыхательных путях находится множество чувствительных рецепторов, раздражение которых вызывает защитные рефлексы, например кашель, чихание, фырканье. Данные рефлексы способствуют выведению из бронхов частиц пыли, корма, микробов, ядовитых веществ, представляющих опасность для организма. Кроме того, вследствие обильного кровоснабжения слизистой оболочки носовых ходов, гортани, трахеи согревается вдыхаемый воздух.

Объем легочной вентиляции несколько меньше количества крови, протекающей через малый круг кровообращения в единицу времени. В области верхушек легких альвеолы вентилируются менее эффективно, чем у основания, прилегающего к диафрагме. Поэтому в области верхушек легких вентиляция относительно преобладает над кровотоком. Наличие вено-артериальных анастомозов и сниженное отношение вентиляции к кровотоку в отдельных частях легких - основная причина более низкого напряжения кислорода и более высокого напряжения двуокиси углерода в артериальной крови по сравнению с парциальным давлением этих газов в альвеолярном воздухе.

Состав вдыхаемого, выдыхаемого и альвеолярного воздуха.Атмосферный воздух содержит 20,82 % кислорода, 0,03 % двуокиси углерода и 79,03 % азота. В воздухе животноводческих помещений обычно содержится больше двуокиси углерода, водяных паров, аммиака, сероводорода и др. Количество кислорода может быть меньше, чем в атмосферном воздухе.

Выдыхаемый воздух содержит в среднем 16,3 % кислорода, 4 % двуокиси углерода, 79,7 % азота (эти показатели приведены в пересчете на сухой воздух, то есть за вычетом паров воды, которыми насыщен выдыхаемый воздух). Состав выдыхаемого воздуха непостоянен и зависит от интенсивности обмена веществ, объема легочной вентиляции, температуры атмосферного воздуха и др.

Альвеолярный воздух отличается от выдыхаемого большим содержанием двуокиси углерода - 5,62 % и меньшим кислорода - в среднем 14,2-14,6, азота - 80,48 %. Выдыхаемый воздух содержит воздух не только альвеол, но и «вредного пространства», где он имеет такой же состав, как и атмосферный.

Азот в газообмене не участвует, но процентное содержание его во вдыхаемом воздухе несколько ниже, чем в выдыхаемом и альвеолярном. Это объясняется тем, что объем выдыхаемого воздуха несколько меньше, чем вдыхаемого.

Предельно допустимая концентрация двуокиси углерода в скотных дворах, конюшнях, телятниках - 0,25 %; но уже 1 % С 0 2 вызывает заметную одышку, и легочная вентиляция увеличивается на 20 %. Содержание двуокиси углерода выше 10 % ведет к смерти.

Поделиться: