Научные труды Джеймс Максвелл. Биография джеймса максвелла

Джеймс Клерк Максвелл (James Clerk Maxwell, 1831–1879) - выдающийся деятель шотландского Просвещения, многое сделавший для актуализации наследия кельтов, которые взаимодействовали с пространством с позиции цвета и света. Максвелл внес неоценимый вклад в понимание античных культур. Кроме того, его труды по электродинамике являются основой учения о развитии и управлении сознанием человека посредством электромагнитных волн.

Максвелл создал важнейшую систему теории света, которая опередила на тот момент и даже сегодня опережает возможности человека переживать цвет. Он научно доказал важность понимания именно восьми частотных характеристик цвета, которые определяют возможности нашего сознания. Особенно важно отметить его изучение восьмого цвета - белого, который он показал как фигуру, состоящую из частотных характеристик красного, зеленого и фиолетовых цветов. Это значит, что три цвета, определяющие самый низкий, самый высокий и средний частотные показатели, образуют белый цвет.

По сути, он создал великую теорию Геометрии цвета, которая так и не стала востребована обществом для развития человека, а ушла в научную плоскость - работу с различными частотными колебаниями. А ведь белый цвет - это, по сути, равнобедренный треугольник, обладающий центром вращения (он же точка смешения трех цветов). По аналогичной схеме работает и наше тело, если понимать его как треугольник (но это только если понимать его как треугольник). Если воссоздать в теле подобную точку смешения, то мы сможем получить наивысшую частотную характеристику, связанную с белым цветом. Это не просто электромагнитный эффект, а возможность проживания нашего духа.

Так мы изменяем поведение молекулярных связей внутри нашего тела и можем противопоставить себя магнитному полю. Но самое главное состоит в том, что Максвелл показал поступательность этого движения, то есть наращивание, где можно доказать безграничность развития нашего тела и сознания. И известное правило буравчика, которое мы изучаем, технически несет в себе совсем иное концептуальное осмысление.

Увы, великие знания Максвелла до сих пор преподаются и трактуются неверно. А ведь здесь объясняется возможность понимания, вернее, восприятия физического состояния оси как органа, который наделен электрическими показателями с особой частотой.

Наличие этой оси позволяет человеку сместить все свои энергетические характеристики, создать внутренний «волчок», что, кстати, Максвелл доказал не только посредством своей теории цветов, но и опытом с бросанием кошки вниз (ее способность приземляться на четыре лапы).

Но почему именно цвет столь важен для нас в этой связи? Потому что цветовая реакция на мозг затмила все другие реакции в нашем теле. Не научившись воспринимать цвет и правильно реагировать на него, мы все равно будем зависеть от этой реакции, и она будет мешать всем остальным восприятиям. Цвет - основа нашего зрения, а зрение - основа нашего духа, то есть дух человека питается в первую очередь цветом. Самое важное - разобраться с тремя цветами - красный, зеленый и фиолетовый (синий).

Понятно, что Максвелл не углубился в то, что он выявил, но важно то, что он это обозначил, так как именно здесь закладывается опора образования человека и развития его качества наблюдения. Что бы мы ни делали, мы зависим от цвета - и в месте, где мы живем, и в одежде, которую носим. И даже в пище, которую мы едим. Это реальная система, обладающая физическими показателями и соответствующей силой. Так что этот великий шотландец не только дал человечеству ключи к познанию природы, но и объяснил идею тартана (расцветки клеток ткани у шотландских семейств и организаций), клановости шотландцев, где скрыта комбинация развития клана. Тартан - это формула, которая имеет свои частотные показатели.

Государство: Великобритания

Сфера деятельности: Наука, физика

Величайшее достижение: Стал основоположником электродинамики.

С тех самых пор, как наука была открыта всему человечеству, каждый пытался найти в ней что-то новое. И вписать свое имя в историю. Конечно, людям, увлекающимся гуманитарными науками, неизвестны имена физиков, химиков и математиков. Но, тем не менее, есть некоторые личности, которые на слуху а каждого, даже человека, отдаленно не представляющего, что такое физика. Джеймс Максвелл – один из таких ученых, который оставил свой след в истории математики и физики.

Джеймс Клерк Максвелл, шотландский физик, наиболее известный за его формулировку электромагнитной теории. Он рассматривается большинством современных физиков, как ученый 19-го века, которые оказали наибольшее влияние на физику 20-го века, и он занимает почетное место с Исааком Ньютоном и за фундаментальный характер его вклада.

Ранние годы

Будущий физик родился 13 июня 1831 года в Эдинбурге. Первоначальная фамилия была Клерк, дополнительная фамилия добавляется его отцом, который работал юристом и унаследовал поместье Миддлби. Джеймс был единственным ребенком. Его родители поженились довольно поздно по тем временам, а его матери было 40 лет на момент его рождения. Детские годы мальчик провел в поместье Миддлби, который был переименован в Гленлэр.

Его мать умерла в 1839 году от рака брюшной полости, и отец стал основной фигурой в воспитании. Именно благодаря ему юный Джеймс заинтересовался точными науками. В школе он проявлял живое любопытство в раннем возрасте и имел феноменальную память. В 1841 году он был отправлен в школу при Эдинбургской Академии. Среди других учеников были его будущий биограф Льюис Кэмпбелл и его друг Питер Гатри Тэйт.

Интересы Максвелла выходили далеко за рамки школьной программы, и он не обращал особого внимания на результаты экзаменов. Его первая научная работа, опубликованная, когда ему было всего 14 лет, описывала обобщенный ряд овальных кривых, которые можно было проследить с помощью булавок и нитей по аналогии с эллипсом. Это увлечение геометрией и механическими моделями продолжалось на протяжении всей его карьеры и было большим подспорьем в его последующих исследованиях.

В 16 лет он поступил в Эдинбургский университет, где он читал запоем книги по всем предметам и опубликовал еще две научные работы. В 1850 году он поступил в Кембридж. После окончания учебы Джеймсу предложили место преподавателя. В то время он интересуется электричеством и цветами, которые впоследствии лягут в основу первой фотографии в цвете.

Карьера и открытия Джеймса Масквелла

В 1854 он продолжает работу в Тринити Колледже, но, поскольку здоровье его отца ухудшалось, ему пришлось вернуться в Шотландию. В 1856 году он был назначен профессором естественной философии в колледже Маришаль в Абердине, но это назначение омрачилось печальной новостью о кончине отца. Это была большая личная потеря Максвелла, так как у него были близкие отношения с папой. В июне 1858 Максвелл женился на Кэтрин Дьюар, дочери директора колледжа, где он начал работать. Детей у супругов не было, но были доверительные отношения и взаимоуважение.

В 1860 Маришаль и королевский колледж объединились и образовали Абердинский университет. Максвелла попросили покинуть должность. Он подал заявку на вакансию в Эдинбургском университете, но ему было отказано в пользу его школьного друга Тейта. После отказа Джеймс переезжает в Лондон.

Следующие пять лет, несомненно, были самыми плодотворными в его карьере. В этот период были опубликованы две его классические работы по электромагнитному полю, и состоялась его демонстрация цветной фотографии. Максвелл руководил экспериментальным определением электрических единиц для Британской ассоциации содействия развитию науки, и эта работа в области измерений и стандартизации привела к созданию Национальной физической лаборатории.

Именно исследования Максвелла по электромагнетизму создали ему имя среди великих ученых истории. В предисловии к своему трактату об электричестве и магнетизме (1873), Максвелл заявил, что его главной задачей было преобразовать физические идеи Фарадея в математическую форму. Пытаясь проиллюстрировать закон индукции Фарадея (что изменяющееся магнитное поле порождает индуцированное электромагнитное поле), Максвелл построил механическую модель. Он обнаружил, что модель порождает соответствующий «ток смещения» в диэлектрической среде, который затем может быть местом поперечных волн. Рассчитав скорость этих волн, он обнаружил, что они очень близки к скорости света.

Теория Максвелла предполагала, что электромагнитные волны могут генерироваться в лаборатории — возможность, впервые продемонстрированная Генрихом Герцем в 1887 году, через восемь лет после смерти Максвелла. В дополнение к своей электромагнитной теории Максвелл сделал большой вклад в другие области физики. Еще в возрасте 20 лет он продемонстрировал свое мастерство в классической физике, написав эссе о кольцах Сатурна, в котором он пришел к выводу, что кольца должны состоять из масс материи, не связанных друг с другом-вывод, который был подтвержден более чем 100 лет спустя первым космическим зондом Voyager, достигшим кольцевой планеты.

Последние годы жизни

В 1871 году Максвелл был избран новым профессором Кавендиш колледжа в Кембридже. Он приступил к проектированию местной лаборатории и руководил ее строительством. У Максвелла было немного студентов, но они были самого высокого калибра и включали Уильяма Д. Нивена, Джона Амброуза (позже ставшего сэром Джоном Амброузом), Ричарда Тетли Глейзбрука, Джона Генри Пойнтинга и Артура Шустера.

Во время Пасхи 1879 года Максвелл серьезно заболел – оказался рак брюшной полости. То, от чего скончалась когда-то его мать. Не имея возможности проводить лекции, как прежде, он вернулся в Гленлэр в июне, но его состояние не улучшалось. Великий физик Джеймс Масквелл умер 5 ноября 1879 года. Как ни странно, Максвелл не получил никаких общественных почестей и был тихо похоронен на небольшом кладбище в деревне Партон, в Шотландии.

Многие научные издания и журналы в последнее время публикуют статьи о достижениях в физике и современных ученных и редко встречаются публикации о физиках прошлого. Нам бы хотелось исправить это положение и вспомнить об одном из выдающихся физиков прошлого века Джеймсе Клерке Максвелле. Это известный английский физик, отец классической электродинамики, статистической физики и многих других теорий, физических формул и изобретений. Максвелл стал создателем и первым руководителем Кавендишской лаборатории.

Как известно, Максвелл выходцем из Эдинбурга и родился в 1831 году в дворянской семье, которая имела родственную связь с шотландской фамилией Клерков Пеникуик. Детство Максвелла прошло в поместье Гленлэр. Предки Джеймса были политическими деятелями, поэтами, музыкантами и учеными. Наверное, склонность к наукам ему передалась по наследству.

Джеймс воспитывался без матери (так как она умерла, когда ему было 8 лет) отцом, который заботливо относился к мальчику. Отец хотел, чтобы его сын изучал естественные науки. Джеймс сразу полюбил технику и быстро развивал практические навыки. Первые уроки на дому маленький Максвелл воспринял с упорством, так как ему не были по душе жесткие методы воспитания, применяемые учителем. Дальнейшее обучение проходило в аристократической школе, где у мальчика проявились большие математические способности. Особенно Максвеллу нравилась геометрия.

Многим великим людям геометрия казалась потрясающей наукой, и даже в 12 лет говорил об учебнике геометрии, как о святой книге. Максвелл любил геометрию не хуже других научных светил, но у него плохо складывались отношения со школьными товарищами. Они постоянно придумывали ему обидные прозвища и одной из причин была его нелепая одежда. Отец Максвелла считался чудаком и покупал сыну одежду, которая вызывала улыбку.

Максвелл уже в детстве подавал большие надежды в области науки. В 1814 году его отдали учиться Эдинбургскую гимназию, а в 1846 году ему вручили медаль за заслуги в области математики. Его отец гордился своим сыном и ему предоставилась возможность представлять одну из научных работ сына перед коллегией Эдинбургской Академии наук. Эта работа касалось математических расчетов эллиптических фигур. Тогда эта работа имела название «О черчении овалов и об овалах со многими фокусами». Она была написана в 1846 году, а опубликована для широких масс в 1851.

Усиленно изучать физику Максвелл начал после перевода в Эдинбургский университет. Его учителями стали Калланд, Форбс и другие. Они сразу увидели в Джеймсе высокий интеллектуальный потенциал и неудержимое стремление изучать физику. До этого периода Максвелл сталкивался с отдельными разделами физики и изучал оптику (посвятил много времени поляризации света и кольцам Ньютона). В этом ему помогал известный физик Вильям Николь, который в свое время изобрел призму.

Конечно, Максвеллу не были чужды другие естественные науки, и он особое внимание уделял изучению философии, истории науки и эстетики.

В 1850 году он поступает в Кембридж, в котором когда-то работал Ньютон и в 1854 году получает академическую степень. После этого его исследования коснулись области электричества и электроустановок. А в 1855 году ему предоставили членство в совете Тринити-колледжа.

Первая значительная научная работа Максвелла – это «О фарадеевых силовых линиях», которая появилась в 1855 году. В свое время Больцман сказал о статье Максвелла, что данная работа имеет глубокий смысл и показывает насколько целеустремленно подходит к научной работе молодой ученый. Больцман считал, что Максвелл не только разбирался в вопросах естествознания, но и внес особый вклад в теоретическую физику. Максвелл обозначил в своей статье все тенденции эволюции физики на несколько последующих десятилетий. Позже к такому же выводу пришел Кирхгоф, Маха и .

Как образовалась Кавендишская лаборатория?

После завершения учебы в Кембридже Джеймс Максвелл остается здесь, как преподаватель и в 1860 году он становится членом Лондонского королевского общества. В это же время он переезжает в Лондон, где ему предоставляют место руководителя кафедры физики в Кинг-колледже Лондонского университета. На этой должности он проработал 5 лет.

В 1871 году Максвелл возвращается в Кембридж и создает первую в Англии лабораторию для исследований в области физики, которая получила название Кавендишская лаборатория (в честь Генри Кавендиша). Развитию лаборатории, которая стала настоящим центром научных исследований, Максвелл посвятил остаток своей жизни.

О жизни Максвелла известно мало, так как он не вел записей и дневников. Это был скромный и застенчивый человек. Умер Максвелл в возрасте 48 лет от онкологического заболевания.

Какое научное наследие Джеймса Максвелла?

Научная деятельность Максвелла охватывала многие направления в физике: теория электромагнитных явлений, кинематическая теория газов, оптика, теория упругости и другие. Первое, что заинтересовало Джеймса Максвелла – это изучение и проведение исследований в физиологии и физике цветного зрения.

Максвеллу впервые удалось получить цветное изображение, которое получилось благодаря одновременной проекции красного, зеленного и синего диапазона. Этим Максвелл очередной раз доказал миру, что цветной образ зрения основан на трехкомпонентной теории. Данное открытие положило начало создания цветных фотографий. В период с 1857-1859 года Максвеллу удалось исследовать устойчивость колец Сатурна. Его теория говорит о том, что кольца Сатурна будут устойчивы только при одном условии – несвязанности между собой частиц или тел.

С 1855 года Максвелл уделял особое внимание работе в области электродинамики. Существует несколько научных работ этого периода «О фарадеевых силовых линиях», « О физических силовых линиях», «Трактат об электричестве и магнетизме» и «Динамическая теория электромагнитного поля».

Максвелл и теория электромагнитного поля.

Когда Максвелл стал изучать электрические и магнитные явления, то многие из них уже были хорошо исследованы. Был создан закон Кулона , закон Ампера , также было доказано, что магнитные взаимодействия связаны действием электрических зарядов. Многие ученые того времени были сторонниками теории дальнодействия, которая утверждает, что взаимодействие происходит мгновенно и в пустом пространстве.

Главную роль в теории близкодействия сыграли исследования Майкла Фарадея (30-е годы XIX века). Фарадей утверждал, что природа электрического заряда основана на окружающем пространстве электрического поля. Поле одного заряда связано с соседним в двух направлениях. Токи взаимодействуют при помощи магнитного поля. Магнитные и электрические поля по Фарадею описаны им в виде силовых линий, которые являются упругими линиями в гипотетической среде – в эфире.

Максвелл поддерживал теорию Фарадея о существовании электромагнитных полей, то есть был сторонником возникающих процессов вокруг заряда и тока.

Максвелл объяснил идеи Фарадея в математическом виде, в чем очень нуждалась физика. При введении понятия поля законы Кулона и Ампера стали более убедительными и глубоко осмысленными. В понятии электромагнитной индукции Максвелл сумел рассмотреть свойства самого поля. Под действием переменного магнитного поля в пустом пространстве зарождается электрическое поле с замкнутыми силовыми линиями. Такое явление называется вихревым электрическим полем.

Следующим открытием Максвелла было то, что переменное электрическое поле может порождать магнитное поле, на подобии обычного электрического тока. Эту теорию назвали – гипотезой о токе смещения. В дальнейшем поведение электромагнитных полей Максвелл выразил в своих уравнениях.


Справка. Уравнения Максвелла – это уравнения описывающие электромагнитные явления в различных средах и вакуумном пространстве, а также относятся к классической макроскопической электродинамике. Это логический вывод, сделанный с опытов, основанных на законах электрических и магнитных явлений.
Основным выводом уравнений Максвелла является конечность распространения электрических и магнитных взаимодействий, что разграничивало теорию близкодействия и теорию дальнодействия. Скоростные характеристики приблизились к скорости света 300000 км/с. Это дало повод Максвеллу утверждать, что свет это явление, связанное с действием электромагнитных волн.

Молекулярно-кинетическая теория газов Максвелла.

Максвелл внес свою лепту в изучение молекулярно-кинетической теории (сейчас данная наука называется статистическая механика ). Максвеллу первому пришла в голову идея о статистическом характере законов природы. Он создал закон распределения молекул по скоростям, а так же ему удалось рассчитать вязкость газов в отношении скоростных показателей и длины свободного пробега молекул газа. Также благодаря работам Максвелла мы имеем ряд соотношений термодинамики.

Справка. Распределение Максвелла – это теория распределения по скоростям молекул системы в условиях термодинамического равновесия. Термодинамическое равновесие – это условие поступательного движения молекул описанное законами классической динамики.

У Максвелла было множество научных трудов, которые были опубликованы: «Теория теплоты», «Материя и движение», « Электричество в элементарном изложении» и другие. Максвелл не только двигал науку в период, но и интересовался ее историей. В свое время ему удалось опубликовать труды Г. Кавендиша, которые он дополнил своими комментариями.

Чем запомнился миру Джеймс Клерк Максвелл?

Максвелл вел активную работу по изучению электромагнитных полей. Его теория об их существовании получила всемирное признание только спустя десятилетие после его смерти.

Максвелл первый классифицировал материи и присвоил каждой свои законы, которые не сводились к законам механики Ньютона.

О максвелле писали многие ученные. Физик Р. Фейнман сказал о нем, что Максвелл, открывший законы электродинамики, смотрел через века в будущее.

Эпилог. Джеймс Клерк Максвелл умер 5 ноября 1879 года в Кембридже. Его похоронили в небольшой шотландской деревушке возле его любимой церкви, которая находится не далеко возле его родового поместья.


Джеймс Максвелл
(1831-1879).

Джеймс Клерк Максвелл родился в Эдинбурге 13 июня 1831 года. Вскоре после рождения мальчика родители увезли его в свое имение Гленлэр. С этого времени "берлога в узком ущелье" прочно вошла в жизнь Максвелла. Здесь жили и умерли его родители, здесь подолгу жил и похоронен он сам.

Когда Джеймсу было восемь лет, в дом пришло несчастье: тяжело заболела его мать и вскоре умерла. Теперь единственным воспитателем Джеймса стал отец, к которому он на всю жизнь сохранил чувство нежной привязанности и дружбы. Джон Максвелл был не только отцом и воспитателем сына, но и его самым верным другом.

Вскоре пришло время, когда мальчику надо было начинать учиться. Сначала приглашали учителей на дом. Но шотландские домашние учителя были такими же грубыми и невежественными, как и их английские коллеги, с таким сарказмом и ненавистью описанные Диккенсом. Поэтому решено было отдать Джеймса в новую школу, носившую громкое название Эдинбургской академии.

Мальчик постепенно втянулся в школьную жизнь. Он стал с большим интересом относиться к урокам. Особенно ему нравилась геометрия. Она на всю жизнь осталась одним из сильнейших увлечений Максвелла. Геометрические образы и модели сыграли огромную роль в его научном творчестве. С нее начался научный путь Максвелла.

Максвелл закончил академию в одном из первых выпусков. На прощанье с полюбившейся школой он сочинил гимн Эдинбургской академии, который дружно и с увлечением распевали ее воспитанники. Теперь перед ним распахнулись двери Эдинбургского университета.

Будучи студентом, Максвелл выполнил серьезное исследование по теории упругости, получившее высокую оценку специалистов. И теперь перед ним встал вопрос о перспективе его дальнейшей учебы в Кембридже.

Старейшим колледжем Кембриджа был основанный в 1284 году колледж св. Петра (Питерхауз), а наиболее знаменит - колледж св. Троицы (Тринити-колледж), основанный в 1546 году. Славу этого колледжа создал его знаменитый питомец Исаак Ньютон. Питерхауз и Тринити-колледж и были последовательно местом пребывания в Кембридже молодого Максвелла. После короткого пребывания в Питерхаузе Максвелл перевелся в Тринити-колледж.

Объем знаний Максвелла, мощь его интеллекта и самостоятельность мышления позволили ему добиться высокого места в своем выпуске. Он занял второе место.

Молодой бакалавр был оставлен в Тринити-колледже в качестве преподавателя. Но его волновали научные проблемы. Помимо его старого увлечения геометрией и проблемой цветов, которыми он начал заниматься еще в 1852 году, Максвелл заинтересовался электричеством.

20 февраля 1854 года Максвелл сообщает Томсону о своем намерении "атаковать электричество". Результатом "атаки" было сочинение "О фарадеевых силовых линиях" - первое из трех основных трудов Максвелла, посвященных изучению электромагнитного поля. Слово "поле" впервые появилось в том самом письме Томсону, но ни в этом, ни в последующем сочинении, посвященном силовым линиям. Максвелл его не употребляет. Это понятие снова появится только в 1864 году в работе "Динамическая теория электромагнитного поля".

Осенью 1856 года Максвелл вступил в должность профессора натуральной философии Маришаль-колледжа в Абердине. Кафедра натуральной философии, т. е. кафедра физики в Абердине, до Максвелла, по сути дела, не существовала, и молодому профессору пришлось организовывать учебную и научную работу по физике.

Пребывание в Абердине ознаменовалось важным событием и в личной жизни Максвелла: он женился на дочери главы Маришаль-колледжа Даниэля Дьюара Кэтрин Мери Дьюар. Произошло это событие в 1858 году. С этого времени и до конца жизни супруги Максвелл проходили свой жизненный путь рука об руку.

В 1857-1859 годах ученый провел свои расчеты движения колец Сатурна. Он показал, что жидкое кольцо при вращении разрушится возникающими в нем волнами и разобьется на отдельные спутники. Максвелл рассматривал движение конечного ряда таких спутников. Труднейшее математическое исследование принесло ему премию Адамса и славу первоклассного математика. Премированное сочинение было издано в 1859 году Кембриджским университетом.

От изучения колец Сатурна совершенно естественным был переход к рассмотрению движений молекул газа. Абердинский период жизни Максвелла закончился выступлением его на собрании Британской ассоциации 1859 года с докладом "О динамической теории газов". Этот документ положил начало многолетним и плодотворным исследованиям Максвелла в области кинетической теории газов и статистической физики.

Так как кафедру, где работал Максвелл, закрыли, ученому пришлось подыскивать новую работу. В 1860 году Максвелла избирают профессором натуральной философии Кинг-колледжа в Лондоне.

Лондонский период ознаменовался публикацией большой статьи "Пояснения к динамической теории газов", которая была опубликована в ведущем английском физическом журнале "Философский журнал" в 1860 году. Этой статьей Максвелл внес огромный вклад в новую отрасль теоретической физики - статистическую физику. Основателями статистической физики в ее классической форме считаются Максвелл, Больцман и Гиббс.

Лето 1860 года перед началом осеннего семестра в Лондоне супруги Максвелл провели в родовом имении Гленлэр. Однако отдохнуть и набраться сил Максвеллу не удалось. Он заболел оспой в тяжелой форме. Врачи опасались за его жизнь. Но необычайное мужество и терпение преданной ему Кэтрин, которая делала все, чтобы выходить больного мужа, помогли им одержать победу над страшной болезнью. Таким тяжелым испытанием началась его лондонская жизнь. В этот период своей жизни Максвелл опубликовал большую статью о цветах, а также работу "Пояснения к динамической теории газов". Но главный труд его жизни был посвящен теории электричества.

Он публикует две основные работы по созданной им теории электромагнитного поля: "О физических силовых линиях" (1861-1862) и "Динамическая теория электромагнитного поля" (1864-1865). За десять лет Максвелл вырос в крупнейшего ученого, творца фундаментальной теории электромагнитных явлений, ставшей наряду с механикой, термодинамикой и статистической физикой одним из устоев классической теоретической физики.

В этот же период жизни Максвелл начал работы по электрическим измерениям. Он был особенно заинтересован в рациональной системе электрических единиц, так как созданная им электромагнитная теория света основывалась только на совпадении отношения электростатических и электромагнитных единиц электричества со скоростью света. Вполне естественно, что он стал одним из активных членов "Комиссии единиц" Британской ассоциации. Кроме того, Максвелл глубоко понимал тесную связь науки и техники, важность этого союза как для прогресса науки, так и для технического прогресса. Поэтому с шестидесятых годов и до конца жизни он неустанно работал в области электрических измерений.

Напряженная лондонская жизнь плохо отразилась на здоровье Максвелла и его жены, и они решили пожить в своем родовом имении Гленлэре. Это решение стало неизбежным после тяжелого заболевания Максвелла в конце летнего отдыха 1865 года, который он, как обычно, проводил в своем имении. Максвелл оставил службу в Лондоне и пять лет (с 1866 по 1871 год) прожил в Гленлэре, выезжая изредка в Кембридж на экзамены, и лишь в 1867 году по совету врачей совершил путешествие в Италию. Занимаясь в Гленлэре хозяйственными делами, Максвелл не оставлял научных занятий. Он напряженно работал над главным трудом своей жизни "Трактатом по электричеству и магнетизму", написал книгу "Теория теплоты", важную работу о регуляторах, ряд статей по кинетической теории газов, участвовал в собраниях Британской ассоциации. Творческая жизнь Максвелла в деревне продолжалась столь же интенсивно, как и в университетском городе.

В 1871 году Максвелл издал в Лондоне книгу "Теория тепла". Этот учебник пользовался большой популярностью. Ученый писал, что целью его книги "Теория тепла" было изложение учения о теплоте "в той последовательности, в которой оно развивалось".

Вскоре после выхода "Теории тепла" Максвелл получил предложение занять вновь организованную кафедру экспериментальной физики в Кембридже. Он согласился и 8 марта 1871 года был назначен кавендишским профессором Кембриджского университета.

В 1873 году выходят "Трактат по электричеству и магнетизму" (в двух томах) и книга "Материя и движение".

"Материя и движение" - это небольшая книжка, посвященная изложению основ механики.

"Трактат по электричеству и магнетизму" - главный труд Максвелла и вершина его научного творчества. В нем он подвел итоги многолетней работы по электромагнетизму, начавшейся еще в начале 1854 года. Предисловие к "Трактату" датировано 1 февраля 1873 года. Девятнадцать лет работал Максвелл над своим основополагающим трудом!

Максвелл рассмотрел всю сумму знаний по электричеству и магнетизму своего времени, начиная с основных фактов электростатики и кончая созданной им электромагнитной теорией света. Он подвел итоги борьбы теорий дальнодействия и близкодействия, начавшейся еще при жизни Ньютона, посвятив последнюю главу своей книги рассмотрению теорий действия на расстоянии. Максвелл не высказался открыто против существовавших до него теорий электричества; он изложил фарадеевскую концепцию как равноправную с господствующими теориями, но весь дух его книги, его подход к анализу электромагнитных явлений были настолько новы и необычны, что современники отказывались понять книгу.

В знаменитом предисловии к "Трактату" Максвелл так характеризует цель своего труда: описать наиболее важные из электромагнитных явлений, показать, как их можно измерить и "проследить математические соотношения между измеряемыми величинами". Он указывает, что постарается "по возможности осветить связь математической формы этой теории и общей динамики, с тем чтобы в известной степени подготовиться к определению тех динамических законов, среди которых нам следовало бы искать иллюстрации или объяснения электромагнитных явлений".

Законы механики Максвелл считает основными законами природы. Не случайно поэтому в качестве фундаментальной предпосылки к основным своим уравнениям электромагнитной теории он излагает основные положения динамики. Но вместе с тем Максвелл понимает, что теория электромагнитных явлений - это качественно новая теория, не сводящаяся к механике, хотя механика и облегчает проникновение в эту новую область явлений природы.

Главные выводы Максвелла сводятся к следующему: переменное магнитное поле, возбуждаемое изменяющимся током, создает в окружающем пространстве электрическое поле, которое в свою очередь возбуждает магнитное поле, и т. д. Изменяющиеся электрические и магнитные поля, взаимно порождая друг друга, образуют единое переменное электромагнитное поле - электромагнитную волну.

Он вывел уравнения, показывающие, что магнитное поле, создаваемое источником тока, распространяется от него с постоянной скоростью. Возникнув, электромагнитное поле распространяется в пространстве со скоростью света 300 000 км/с, занимая все больший и больший объем. Д. Максвелл утверждал, что волны света имеют ту же природу, что и волны, возникающие вокруг провода, в котором есть переменный электрический ток. Они отличаются друг от друга только длиной. Очень короткие волны и есть видимый свет.

В 1874 году он начинает большую историческую работу: изучение научного наследия ученого XVIII века Генри Кавендиша и готовит ее к печати. После исследований Максвелла стало ясно, что Кавендиш задолго до Фарадея открыл влияние диэлектрика на величину электроемкости и за 15 лет до Кулона открыл закон электрических взаимодействий.

Работы Кавендиша по электричеству с описанием экспериментов заняли большой том, вышедший в 1879 году под названием "Статьи по электричеству достопочтенного Генри Кавендиша". Это была последняя книга Максвелла, выпущенная при его жизни. 5 ноября 1879 года в Кембридже он скончался.

Важнейшим фактором изменений облика мира является расширение горизонтов научных знаний. Ключевой особенностью в развитии науки этого периода времени является широкое применение электричества во всех отраслях производства. И люди уже не могли отказаться от использования электричества, ощутив его существенные преимущества. В это время ученые начали плотно изучать электромагнитные волны и их влияние на различные материалы.

Большим достижением науки XIX в. была выдвинутая английским ученым Д. Максвеллом электромагнитная теория света (1865 г.), которая обобщила исследования и теоретические выводы многих физиков разных стран в отраслях электромагнетизма, термодинамики и оптики.

Максвелл хорошо известен тем, что сформулировал четыре уравнения, которые явились выражением основных законов электричества и магнетизма. Эти две области широко исследовались до Максвелла на протяжении многих лет, и было хорошо известно, что они взаимосвязаны. Однако хотя уже были открыты различные законы электричества и они были истинными для специфических условий, до Максвелла не существовало ни одной общей и единообразной теории.

Д. Максвелл пришел к мысли о единстве и взаимосвязь электрических и магнитных полей, создал на этой основе теорию электромагнитного поля, согласно которой, возникнув в любой точке пространства, электромагнитное поле распространяться в нем со скоростью, равной скорости света. Таким образом он установил связь световых явлений с электромагнетизмом.

В своих четырех уравнениях, коротких, но довольно сложных, Максвелл сумел точно описать поведение и взаимодействие электрических и магнитных полей. Тем самым он трансформировал это сложное явление в единую, доступную для понимания теорию. Уравнения Максвелла находили широкое применение в прошлом веке как в теоретических, так и прикладных науках. Главным достоинством уравнений Максвелла было то, что они являются общими уравнениями, употребимыми при всех обстоятельствах. Все известные прежде законы электричества и магнетизма можно вывести из уравнений Максвелла, равно как и многие другие прежде неизвестные результаты.

Наиболее важные из этих результатов были выведены самим Максвеллом. Из его уравнений можно сделать вывод, что существует периодическое колебание электромагнитного поля. Начавшись, такие колебания, названные электромагнитными волнами, будут распространяться в пространстве. Из своих уравнений Максвелл сумел вывести, что скорость таких электромагнитных волн составила бы приблизительно 300000 километров (186000 миль) в секунду Максвелл увидел, что эта скорость равняется скорости света. Из этого он сделал правильный вывод о том, что свет сам состоит из электромагнитных волн. Таким образом, уравнения Максвелла являются не только основными законами электричества и магнетизма, они являются основными законами оптики. И действительно, все ранее известные законы оптики можно вывести из его уравнений, точно так же, как неизвестные ранее результаты и взаимосвязи. Видимый свет является не только возможным видом электромагнитного излучения.

Уравнения Максвелла показали, что могут существовать другие электромагнитные волны, отличающиеся от видимого света по длине волн и частоте. Эти теоретические выводы были впоследствии наглядно подтверждены Генрихом Герцем, который сумел как создавать, так и выпрямлять невидимые волны, существование которых предсказал Максвелл.

Впервые на практике наблюдать распространения электромагнитных волн удалось немецкому физику Г. Герцу (1883). Он также определил, что скорость их распространения - 300 тыс. км/сек. Парадоксально, но он считал, что электромагнитные волны не будут иметь практического применения. А уже через несколько лет, на основе этого открытия А.С. Попов применил их для передачи первой в мире радиограммы. Она состояла всего из двух слов: «Генрих Герц».

Сегодня мы с успехом используем их для телевидения. Рентгеновские лучи, гамма-лучи, инфракрасные лучи, ультрафиолетовые лучи являются еще одним примером электромагнитного излучения. Все это можно изучить посредством уравнений Максвелла. Хотя Максвелл добился признания главным образом благодаря его эффектному вкладу в электромагнетизм и оптику, он сделал также вклад в другие области науки, включая астрономическую теорию и термодинамику (изучение тепла). Предметом особого его интереса была кинетическая теория газов. Максвелл понял, что не все молекулы газа движутся с одинаковой скоростью. Одни молекулы движутся медленнее, другие быстрее, а некоторые движутся с очень высокой скоростью. Максвелл вывел формулу, которая определяет, какая частица молекулы данного газа будет двигаться при любой установленной скорости. Эта формула, получившая название «распределение Максвелла», широко используется в научных уравнениях и находит значительное применение во многих областях физики.

Это изобретение стало основой для современных технологий беспроводной передачи информации, радио и телевидения, в том числе всех видов мобильной связи, в основе работы которых лежит принцип передачи данных посредствам электромагнитных волн. После экспериментального подтверждения реальности электромагнитного поля было сделано фундаментальное научное открытие: существуют различные виды материи, и каждому из них присущи свои законы, не сводимые к законам механики Ньютона.

О роли Максвелла в развитии науки превосходно сказал американский физик Р. Фейнман: «В истории человечества (если посмотреть на нее, скажем, через десять тысяч лет) самым значительным событием девятнадцатого столетия, несомненно, будет открытие Максвеллом законов электродинамики. На фоне этого важного научного открытия гражданская война в Америке в том же десятилетии будет выглядеть провинциальным происшествием».

Поделиться: