Гмк в гистологии расшифровка. Главные клеточные типы сосудистой стенки. · Сокращение и расслабление ГМК


Кровь выполняет свои функции, находясь в постоянном движении в кровеносных сосудах. Движение крови в сосудах обусловлено сокращениями сердца. Сердце и сосуды образуют замкнутую разветвлённую сеть - сердечно-сосудистую систему.
А. Сосуды. Кровеносные сосуды присутствуют почти во всех тканях. Их нет лишь в эпителиях, ногтях, хрящах, эмали зубов, в некоторых участках клапанов сердца и в ряде других областей, которые питаются за счёт диффузии необходимых веществ из крови. В зависимости от строения стенки кровеносного сосуда и его калибра в сосудистой системе различают артерии, артериолы, капилляры, венулы и вены.

  1. Артерии - кровеносные сосуды, транспортирующие кровь от сердца. Стенка артерий амортизирует ударную волну крови (систолический выброс) и переправляет далее выбрасываемую с каждым ударом сердца кровь. Артерии, расположенные вблизи сердца (магистральные сосуды), испытывают наибольший перепад давления. Поэтому они обладают выраженной эластичностью, (артерии эластического типа). Периферические артерии (распределительные сосуды) имеют развитую мышечную стенку (артерии мышечного типа), способны изменять величину просвета, а следовательно, скорость кровотока и распределение крови в сосудистом русле.
а. План строения кровеносных сосудов (рис. 10-11,10-12). Стенка артерий и других сосудов (кроме капилляров) состоит из трёх оболочек: внутренней (t. intima), средней (t. media) и наружной (t. adventitia).
  1. Внутренняя оболочка
(а) Эндотелий. Поверхность t. intima выстлана пластом находящихся на базальной мембране эндотелиальных клеток. Последние в зависимости от калибра сосуда имеют различные форму и размеры.
(б) Подэндотелиальный слой. Под пластом эндотелия расположена прослойка рыхлой соединительной ткани.
(в) Внутренняя эластическая мембрана (membrana elastica interna) отделяет внутреннюю оболочку сосуда от средней.
  1. Средняя оболочка. В состав t. media, помимо соединительнотканного матрикса с небольшим количеством фибробластов, входят ГМК и эластические структуры (эластические мембраны и эластические волокна). Соотношение этих элементов - главный критерий классификации артерий: в артериях мышечного типа преобладают ГМК, а в артериях эластического типа - эластические элементы.
  2. Наружная оболочка образована волокнистой соединительной тканью с сетью кровеносных сосудов (vasa vasorum) и сопровождающими их нервными волокнами (преимущественно терминальные ветвления постганглионарных аксонов симпатического отдела нервной системы).
б. Артерии эластического типа (рис. 10-13). К ним относят аорту, лёгочные, общую сонную и подвздошные артерии. В состав их стенки в большом количестве входят эластические мембраны и эластические волокна. Толщина стенки артерий эластического типа составляет примерно 15% диаметра их просвета.
  1. Внутренняя оболочка
(а) Эндотелий. Просвет аорты выстлан крупными эндотелиальными клетками полигональной или округлой формы, связанными плотными и щелевыми контактами. В цитоплазме присутствуют электроноплотные гранулы, многочисленные светлые пиноцитозные пузырьки, митохондрии. В области ядра клетка выпячивается в просвет сосуда. Эндотелий отделён от подлежащей соединительной ткани хорошо выраженной базальной мембраной.
(б) Подэндотелиальный слой. В подэндотелиальной соединительной ткани (слой Лангханса) присутствуют эластические и коллагеновые волокна (коллагены I и III). Здесь же встречаются чередующиеся с фибробластами продольно ориентированные ГМК. Внутренняя оболочка аорты содержит также коллаген типа VI - компонент микрофибрилл. Микрофибриллы находятся в непосредственной близости от клеток и коллагеновых фибрилл, «заякоривая» их в межклеточном матриксе.
  1. Средняя оболочка имеет толщину около 500 мкм и содержит окончатые эластические мембраны, ГМК, коллагеновые и эластические волокна.
(а) Окончатые эластические мембраны имеют толщину 2-3 мкм, их около 50-75. С возрастом количество и толщина окончатых эластических мембран увеличиваются.
(б) ГМК. Между эластическими мембранами располагаются ГМК. Направление хода ГМК - по спирали. ГМК артерий эластического типа специализированы для синтеза эластина, коллагена и компонентов аморфного межклеточного вещества. Последнее базофильно, что связано с высоким содержанием суль- фатированных гликозаминогликанов.
(в) Кардиомиоциты присутствуют в средней оболочке аорты и лёгочной артерии.
  1. Наружная оболочка содержит пучки коллагеновых и эластических волокон, ориентированных продольно или идущих по спирали. Адвентиция содержит мелкие кровеносные и лимфатические сосуды, а также миелиновые и безмиелиновые нервные волокна. Vasa vasorum кровоснабжают наружную оболочку и наружную треть средней оболочки. Считают, что ткани внутренней оболочки и внутренних двух третей средней оболочки питаются за счёт диффузии веществ из крови, находящейся в просвете сосуда.
в. Артерии мышечного типа (рис. 10-12). Их суммарный диаметр (толщина стенки + диаметр просвета) достигает I см, диаметр просвета варьирует от 0,3 до 10 мм. Артерии мышечного типа относят к распределительным, т.к. именно эти сосуды (благодаря выраженной способности к изменению просвета) контролируют интенсивность кровотока (перфузию) отдельных органов.
  1. Внутренняя эластическая мембрана расположена между внутренней и средней оболочками. He во всех артериях мышечного типа внутренняя эластическая мембрана развита одинаково хорошо. Сравнительно слабо она выражена в артериях мозга и его оболочек, в ветвях лёгочной артерии, а в пупочной артерии полностью отсутствует.
  2. Средняя оболочка. В артериях мышечного типа большого диаметра средняя оболочка содержит 10-40 плотно упакованных слоёв ГМК. ГМК ориентированы циркулярно (точнее - спирально) по отношению к просвету сосуда, что обеспечивает регуляцию просвета сосуда в зависимости от тонуса ГМК.
(а) Вазоконстрикция - сужение просвета артерии, происходит при сокращении ГМК средней оболочки.
(б) Вазодилатация - расширение просвета артерии, происходит при расслаблении ГМК.
  1. Наружная эластическая мембрана. Снаружи средняя оболочка отграничена эластической пластинкой, выраженной слабее, чем внутренняя эластическая мембрана. Наружная эластическая мембрана хорошо развита лишь в крупных артериях мышечного типа. В мышечных артериях меньшего калибра эта структура может отсутствовать совсем.
  2. Наружная оболочка в артериях мышечного типа развита хорошо. Внутренний её слой - плотная волокнистая соединительная ткань, а наружный - рыхлая соединительная ткань. Обычно в наружной оболочке присутствуют многочисленные нервные волокна и окончания, сосуды сосудов, жировые клетки. В наружной оболочке коронарных и селезёночной артерий присутствуют ориентированные продольно (по отношению к длиннику сосуда) ГМК.
  3. Коронарные артерии. К артериям мышечного типа относят и кровоснабжающие миокард венечные артерии. В большинстве участков этих сосудов эндотелий максимально приближен к внутренней эластической мембране. В участках ветвления коронаров (особенно в раннем детском возрасте) внутренняя оболочка утолщена. Здесь малодифференцированные ГМК, мигрирующие через фенестры внутренней эластической мембраны из средней оболочки, вырабатывают эластин.
  1. Артериолы. Артерии мышечного типа переходят в артериолы - короткие сосуды, имеющие важное значение для регуляции артериального давления (АД). Стенка артериолы состоит из эндотелия, внутренней эластической мембраны, нескольких слоёв циркулярно ориентированных ГМК и наружной оболочки. Снаружи к артериоле прилегают перивас- кулярные соединительнотканные клетки. Здесь же видны профили безмиелиновых нервных волокон, а также пучки коллагеновых волокон.
(а) Терминальные артериолы содержат продольно ориентированные эндотелиальные клетки и вытянутые ГМК. От терминальной артериолы отходит капилляр. В этом месте обычно располагается скопление циркулярно ориентированных ГМК, образующих прекапиллярный сфинктер. Снаружи от ГМК расположены фибробласты. Прекапиллярный сфинктер - единственная структура капиллярной сети, содержащая ГМК.
(б) Приносящие артериолы почки. В артериолах наименьшего диаметра внутренняя эластическая мембрана отсутствует, исключение составляют приносящие артериолы в почке. Несмотря на свой малый диаметр (10-15 мкм), они имеют прерывистую эластическую мембрану. Отростки эндотелиальных клеток проходят через отверстия во внутренней эластической мембране и образуют с ГМК щелевые контакты.
  1. Капилляры. Разветвлённая капиллярная сеть соединяет артериальное и венозное русла. Капилляры участвуют в обмене веществ между кровью и тканями. Общая обменная поверхность (поверхность капилляров и венул) составляет не менее 1000 м2, а в пересчёте на 100 г ткани - 1,5 м2. В регуляции капиллярного кровотока принимают непосредственное участие артериолы и венулы. В совокупности эти сосуды (от артериол до венул включительно) образуют структурно-функциональную единицу сердечно-сосудис- той системы - терминальное, или микроциркуляторное русло.
а. Плотность капилляров в различных органах существенно варьирует. Так, на I мм3 миокарда, головного мозга, печени, почек приходится 2500-3000 капилляров; в скелетной мышце - 300-1000 капилляров; в соединительной, жировой и костной тканях их значительно меньше.

б. Микроциркуляторное русло (рис. 10-1) организовано следующим образом: под прямым углом от артериолы отходят т.н. метартериолы (терминальные артериолы), а уже от них берут начало анастомозирующие истинные капилляры, образующие сеть. В местах отделения капилляров от метартериолы имеются прекапиллярные сфинктеры, контролирующие локальный объём крови, проходящий через истинные капилляры. Объём же крови, проходящей через терминальное сосудистое русло в целом, определяется тонусом ГМК артериол. В микроциркуляторном русле присутствуют артериовенозные анастомозы, связывающие артериолы непосредственно с венулами или мелкие артерии с мелкими венами. Стенка сосудов анастомоза содержит много ГМК. Артериовенозные анастомозы в большом количестве присутствуют в некоторых участках кожи, где они играют важную роль в терморегуляции (мочка уха, пальцы).
в. Структура. Стенка капилляра образована эндотелием, его базальной мембраной и перицитами (см. главу 6.2 Б 2 ж). Различают три основных типа капилляров (рис. 10-2): с непрерывным эндотелием (I), с фенестрированным эндотелием (2) и с прерывистым эндотелием (3).
(I) Капилляры с непрерывным эндотелием - наиболее распространённый тип. Диаметр их просвета менее 10 мкм. Эндотелиальные клетки связаны при помощи плотных контактов, содержат множество пиноцитозных пузырьков, участвующих

Эндотелиальные
клетки

Рис. 10-2. Типы капилляров: А - капилляр с непрерывным эндотелием, Б - с фенестрированным эндотелием, В - капилляр синусоидного типа [из Hees Н, Sinowatz F, 1992]

в транспорте метаболитов между кровью и тканями. Капилляры этого типа характерны для мышц и лёгких.
Барьеры. Частный случай капилляров с непрерывным эндотелием - капилляры, формирующие гематоэнцефалический (А 3 г) и гематотимический барьеры. Для эндотелия капилляров барьерного типа характерно умеренное количество пиноцитозных пузырьков и плотные межэндотелиальные контакты.

  1. Капилляры с фенестрированным эндотелием присутствуют в капиллярных клубочках почки, эндокринных железах, ворсинках кишки, в экзокринной части поджелудочной железы. Фенестра - истончённый участок эндотелиальной клетки диаметром 50-80 нм. Предполагают, что фенестры облегчают транспорт веществ через эндотелий. Наиболее чётко фенестры видны на электроног- раммах капилляров почечных телец (см. главу 14 Б 2 в).
  2. Капилляр с прерывистым эндотелием называют также капилляром синусоидного типа, или синусоидом. Подобный тип капилляров присутствует в кроветворных органах, состоит из эндотелиальных клеток с щелями между ними и прерывистой базальной мембраны.
г. Гематоэнцефалический барьер (рис. 10-3) надёжно изолирует мозг от временных изменений состава крови. Непрерывный эндотелий капилляров - основа гематоэн- цефалического барьера. Снаружи эндотелиальная трубка покрыта базальной мембраной. Капилляры мозга почти полностью окружены отростками астроцитов.
  1. Эндотелиальные клетки. В капиллярах мозга эндотелиальные клетки связаны при помощи непрерывных цепочек плотных контактов.
  2. Функция. Гематоэнцефалический барьер функционирует как избирательный фильтр.
(а) Липофильные вещества. Наибольшей проницаемостью обладают вещества, растворимые в липидах (например, никотин, этиловый спирт, героин).
(б) Транспортные системы
(i) Глюкоза транспортируется из крови в мозг при помощи соответствующих транспортёров [глава 2 I В I б (I) (а) (01.

Рис. 10-3. Гематоэнцефалический барьер образован эндотелиальными клетками капилляров мозга. Базальная мембрана, окружающая эндотелий, и перициты, а также астроциты, ножки которых полностью охватывают капилляр снаружи, не являются компонентами барьера [из Goldstein GW, BetzAL, 1986]
  1. Глицин. Особое значение для мозга имеет система транспорта тормозного нейромедиатора - аминокислоты глицина. Его концентрация в непосредственной близости от нейронов должна быть значительно ниже, чем в крови. Эти различия в концентрации глицина обеспечивают транспортные системы эндотелия.
(в) Лекарственные препараты. Многие препараты плохо растворимы в липидах, поэтому медленно или (Говеем не проникают в мозг. Казалось бы, с увеличением концентрации лекарственного препарата в крови можно было ожидать увеличения его транспорта через гематоэнцефалический барьер. Однако это допустимо только в случае использования малотоксичных препаратов (например, пенициллина). Большинство препаратов дают побочные эффекты, поэтому их нельзя вводить в избытке в расчёте на то, что часть дозы достигнет мишени в мозге. Один из путей введения лекарства в мозг наметился после установления феномена резкого усиления проницаемости гематоэнцефалического барьера при введении в сонную артерию гипертонического раствора сахара, что связано с эффектом временного ослабления контактов между эндотелиальными клетками гематоэнцефалического барьера.
  1. Венулы как никакие другие сосуды имеют прямое отношение к течению воспалительных реакций. Через их стенку при воспалении проходят массы лейкоцитов (диапедез) и плазма. Кровь из капилляров терминальной сети последовательно поступает в постка- пиллярные, собирательные, мышечные венулы и попадает в вены,
а. Посткапиллярная венула. Венозная часть капилляров плавно переходит в постка- пиллярную венулу. Её диаметр может достигать 30 мкм. По мере увеличения диаметра посткапиллярной венулы увеличивается количество перицитов.
Гистамин (через гистаминовые рецепторы) вызывает резкое увеличение проницаемости эндотелия посткапиллярных венул, что приводит к отёку окружающих тканей.
б. Собирательная венула. Посткапиллярные венулы впадают в собирательную венулу, имеющую наружную оболочку из фибробластов и коллагеновых волокон.
в. Мышечная венула. Собирательные венулы впадают в мышечные венулы диаметром до 100 мкм. Название сосуда - мышечная венула - определяет присутствие ГМК. Эндотелиальные клетки мышечной венулы содержат большое количество актиновых микрофиламентов, играющих важную роль для изменения формы эндотелиальных клеток. Отчётливо видна базальная мембрана, разделяющая клетки двух главных типов (эндотелиальные клетки и ГМК). Наружная оболочка сосуда содержит пучки коллагеновых волокон, ориентированных в различных направлениях, фибробласты.
  1. Вены - сосуды, по которым кровь оттекает от органов и тканей к сердцу. Около 70% объёма циркулирующей крови находится в венах. В стенке вен, как и в стенке артерий, различают те же три оболочки: внутреннюю (йнтиму), среднюю и наружную (адвентициальную). Вены, как правило, имеют больший диаметр, чем одноимённые артерии. Их просвет, в отличие от артерий, не зияет. Стенка вены тоньше. Если сравнивать размеры отдельных оболочек одноимённых артерии и вены, то легко заметить, что у вен средняя оболочка тоньше, а наружная оболочка, напротив, более выражена. Некоторые вены имеют клапаны.
а. Внутренняя оболочка состоит из эндотелия, снаружи от которого расположен субэндотелиальный слой (рыхлая соединительная ткань и ГМК). Внутренняя эластическая мембрана выражена слабо и часто отсутствует.
б. Средняя оболочка содержит циркулярно ориентированные ГМК. Между ними располагаются преимущественно коллагеновые и в меньшем количестве эластические волокна. Количество ГМК в средней оболочке вен существенно меньше, чем в средней оболочке, сопровождающей артерии. В этом отношении отдельно стоят вены нижних конечностей. Здесь (преимущественно в подкожных венах) средняя оболочка содержит значительное количество ГМК, во внутренней части средней оболочки они ориентированы продольно, а в наружной - циркулярно.
в. Полиморфность. Структура стенки различных вен характеризуется многообразием. He во всех венах имеются все три оболочки. Средняя оболочка отсутствует во всех безмышечных венах - головного мозга, мозговых оболочек, сетчатки глаза, трабекул селезёнки, костей, в мелких венах внутренних органов. Верхняя полая вена, плечеголовные и яремные вены содержат безмышечные участки (нет средней оболочки). Средняя и наружная оболочки отсутствуют в синусах твёрдой мозговой оболочки, а также в её венах.
г. Клапаны. Вены, особенно конечностей, имеют клапаны, пропускающие кровь только к сердцу. Соединительная ткань образует структурную основу створок клапанов, а вблизи их фиксированного края располагаются ГМК. В целом клапаны можно рассматривать как складки интимы.
  1. Сосудистые афференты. Изменения р02, рС02 крови, концентрация H+, молочной кислоты, пирувата и ряда других метаболитов оказывают как локальные эффекты на стенку сосудов, так и регистрируются вмонтированными в стенку сосудов хеморецепторами, а также барорецепторами, реагирующими на давление в просвете сосудов. Эти сигналы достигают центров регуляции кровообращения и дыхания. Ответы ЦНС реализует двигательная вегетативная иннервация ГМК стенки сосудов (см. главу 7III Г) и миокарда (см. главу 7 II В). Кроме того, существует мощная система гуморальных регуляторов ГМК стенки сосудов (вазоконстрикторы и вазодилататоры) и проницаемости эндотелия.
а. Барорецепторы особенно многочисленны в дуге аорты и в стенке крупных вен, лежащих близко к сердцу. Эти нервные окончания образованы терминалями волокон, проходящих в составе блуждающего нерва.

б. Специализированные сенсорные структуры. В рефлекторной регуляции кровообращения участвуют каротидный синус и каротидное тельце (рис. 10-4), а также подобные им образования дуги аорты, лёгочного ствола, правой подключичной артерии.

  1. Каротидный синус расположен вблизи бифуркации общей сонной артерии, это расширение просвета внутренней сонной артерии тотчас у места её ответвления от общей сонной артерии. В области расширения средняя оболочка сосуда истончена, а наружная, напротив, утолщена. Здесь, в наружной оболочке, присутствуют многочисленные барорецепторы. Если учесть, что средняя оболочка сосуда в пределах каротидного синуса относительно тонка, то легко представить, что нервные окончания в наружной оболочке высокочувствительны к любым изменениям АД. Отсюда информация поступает в центры, регулирующие деятельность сер- дечно-сосудистой системы.
Нервные окончания барорецепторов каротидного синуса - терминали волокон, проходящих в составе синусного нерва (Хёринга) - ветви языкоглоточного нерва.
Рис. 10-4. Локализация каротидного синуса и каротидного тельца.
Каротидный синус расположен в утолщении стенки внутренней сонной артерии вблизи бифуркации общей сонной артерии. Здесь же, тотчас в области бифуркации, находится каротидное тельце [из Ham AW, 1974]
  1. Каротидное тельце (рис. 10-5) реагирует на изменения химического состава крови. Тельце расположено в стенке внутренней сонной артерии и состоит из клеточных скоплений, погружённых в густую сеть широких капилляров синусоидоподобного типа. Каждый клубочек каротидного тельца (гломус) содержит 2-3 гломусных клетки, или клетки I типа, а на периферии клубочка расположены 1-3 клетки Il типа. Афферентные волокна для каротидного тельца содержат вещество P и относящиеся к кальцитониновому гену пептиды (см. главу 9 IV В 2 б (3)).
(а) Клетки I типа образуют синаптические контакты с терминалями афферентных волокон. Для клеток I типа характерно обилие митохондрий, светлых и электроноплотных синаптических пузырьков. Клетки I типа синтезируют ацетилхолин, содержат фермент синтеза этого нейромедиатора (холинацетилтрансфераза), а также эффективно работающую систему захвата холина. Физиологическая роль ацетилхолина остаётся неясной. Клетки I типа имеют н- и м-холинорецепторы. Активация любого из этих типов холинорецепторов вызывает или облегчает освобождение из клеток I типа другого нейромедиатора - дофамина. При снижении р02 секреция дофамина из клеток I типа возрастает. Клетки I типа могут формировать между собой контакты, похожие на синапсы.
(б) Эфферентная иннервация. На гломусных клетках заканчиваются волокна, проходящие в составе синусного нерва (Хёринга), и постганглионарные волокна из верхнего шейного симпатического ганглия. Терминали этих волокон содержат светлые (ацетилхолин) или гранулярные (катехоламины) синаптические пузырьки.


Рис. 10-5. Клубочек каротидного тельца состоит из 2-3 клеток I типа (гломусные клетки), окружённых 1-3 клетками II типа. Клетки I типа образуют синапсы (нейромедиатор - дофамин) с терминалямн афферентных нервных волокон

(в) Функция. Каротидное тельце регистрирует изменения рС02 и р02, а также сдвиги pH крови. Возбуждение передаётся через синапсы на афферентные нервные волокна, по которым импульсы поступают в центры, регулирующие деятельность сердца и сосудов. Афферентные волокна от каротидного тельца проходят в составе блуждающего и синусного нервов (Хёринга).

  1. Главные клеточные типы сосудистой стенки - ГМК и эндотелиальные клетки,
а. Гладкомышечные клетки. Просвет кровеносных сосудов уменьшается при сокращении гладкомышечных клеток средней оболочки или увеличивается при их расслаблении, что изменяет кровоснабжение органов и величину АД.
  1. Структура (см. главу 7III Б). ГМК сосудов имеют отростки, образующие с соседними ГМК многочисленные щелевые контакты. Такие клетки электрически сопряжены, через щелевые контакты возбуждение (ионный ток) передаётся от клетки к клетке. Это обстоятельство важно, т.к. в контакте с двигательными терминалями находятся только ГМК, расположенные в наружных слоях Lmedia. ГМК стенки сосудов (в особенности артериол) имеют рецепторы к разным гуморальным факторам.
  2. Эффект вазоконстрикции реализуется при взаимодействии агонистов с а-адрено- рецепторами, рецепторами серотонина, ангиотензина П, вазопрессина, тромбоксана A2.

а-Адренорецепторы. Стимуляция а-адренорецепторов приводит к сокращению ГМК сосудов.

  1. Норадреналин - по преимуществу агонист а-адренорецепторов.
  2. Адреналин - агонист а- и p-адренорецепторов. Если сосуд имеет ГМК с преобладанием а-адренорецепторов, то адреналин вызывает сужение просвета таких сосудов.
  1. Вазодилататоры. Если в ГМК преобладают p-адренорецепторы, то адреналин вызывает расширение просвета сосуда. Агонисты, вызывающие в большинстве случаев расслабление ГМК: атриопептин (см. Б 2 б (3)), брадикинин, VIP1 гистамин, относящиеся к кальцитониновому гену пептиды (см. главу 9 IV В 2 б (3)), простагландины, оксид азота - NO.
  2. Двигательная вегетативная иннервация. Вегетативная нервная система регулирует величину просвета сосудов.
(а) Адренергическая иннервация расценивается как преимущественно сосудосуживающая.
Сосудосуживающие симпатические волокна обильно иннервируют мелкие артерии и артериолы кожи, скелетных мышц, почек и чревной области. Плотность иннервации одноимённых вен значительно меньше. Сосудосуживающий эффект реализуется при помощи норадреналина - агониста а-адренорецепторов.
(б) Холинергическая иннервация. Парасимпатические холинергические волокна иннервируют сосуды наружных половых органов. При половом возбуждении вследствие активации парасимпатической холинергической иннервации происходит выраженное расширение сосудов половых органов и увеличение в них кровотока. Холинергический сосудорасширяющий эффект прослежен также в отношении мелких артерий мягкой мозговой оболочки.
  1. Пролиферация. Численность популяции ГМК сосудистой стенки контролируют факторы роста и цитокины. Так, цитокины макрофагов и Т-лимфоцитов (трансформирующий фактор роста р, ИЛ-1, у-ИФН) сдерживают пролиферацию ГМК. Эта проблема имеет важное значение при атеросклерозе, когда пролиферация ГМК усиливается под действием факторов роста, вырабатываемых в сосудистой стенке (тромбоцитарный фактор роста (PDGF], фактор роста фибробластов , инсулиноподобный фактор роста I и фактор некроза опухоли a ).
  2. Фенотипы ГМК. Различают два варианта ГМК сосудистой стенки: сократительный и синтетический.
(а) Сократительный фенотип. ГМК, экспрессирующие сократительный фенотип, имеют многочисленные миофиламенты и отвечают на воздействие вазоконстрикторов и вазодилататоров. Гранулярная эндоплазматическая сеть в них выражена умеренно. Подобные ГМК не способны к миграции и не вступают в митозы, т.к. нечувствительны к эффектам факторов роста.
(б) Синтетический фенотип. ГМК, экспрессирующие синтетический фенотип, имеют хорошо развитые гранулярную эндоплазматическую сеть и комплекс Гольджи; клетки синтезируют компоненты межклеточного вещества (коллаген, эластин, протеогликан), цитокины и факторы роста. ГМК в области атеросклеротического поражения сосудистой стенки перепрограммируются с сократительного на синтетический фенотип. При атеросклерозе ГМК вырабатывают факторы роста (например, тромбоцитарный фактор роста , щелочной фактор роста фибробластов ), усиливающие пролиферацию соседних ГМК.
б. Эндотелиальная клетка. Стенка кровеносного сосуда очень тонко реагирует на
изменения гемодинамики и химического состава крови. Своеобразным чувствительным
элементом, улавливающим эти изменения, является эндотелиальная клетка, которая с одной стороны омывается кровью, а другой обращена к структурам сосудистой стенки.
  1. Влияние на ГМК сосудистой стенки
(а) Восстановление кровотока при тромбозе. Воздействие лигандов (АДФ и серотонин, тромбин) на эндотелиальную клетку стимулирует секрецию расслабляющего фактора. Его мишени - расположенные поблизости ГМК. В результате расслабления ГМК просвет сосуда в области тромба увеличивается, и кровоток может восстановиться. К аналогичному эффекту приводит активация других рецепторов эндотелиальной клетки: гистамина, м-холиноре- цепторов, а2-адренорецепторов.
Оксид азота - эндотелием освобождаемый фактор вазодилатации, образующийся из /-аргинина в клетках эндотелия сосудов. Недостаточность NO вызывает повышение АД, образование атеросклеротических бляшек; избыток NO может привести к коллапсу.
(б) Секреция факторов паракринной регуляции. Эндотелиальные клетки контролируют тонус сосудов, выделяя ряд факторов паракринной регуляции (см. главу 9 I К 2). Одни из них вызывают вазодилатацию (например, простациклин), а другие - вазоконстрикцию (например, эндотелин-1).
Эндотелин-1 участвует также в аутокринной регуляции эндотелиальных клеток, индуцируя выработку окиси азота и простациклина; стимулирует секрецию атриопептина и альдостерона, подавляет секрецию ренина. В наибольшей мере способность синтезировать эндотелин-1 проявляют эндотелиальные клетки вен, коронарных артерий и артерий мозга.
(в) Регуляция фенотипа ГМК. Эндотелий вырабатывает и секретирует гепариноподобные вещества, поддерживающие сократительный фенотип ГМК.
  1. Свёртывание крови. Эндотелиальная клетка - важный компонент процесса гемокоагуляции (см. главу 6.1 II В 7). На поверхности эндотелиальных клеток может происходить активация протромбина факторами свёртывания. С другой стороны, эндотелиальная клетка проявляет антикоагуляционные свойства.
(а) Факторы свёртывания. Прямое участие эндотелия в свёртывании крови состоит в секреции эндотелиальными клетками некоторых плазменных факторов свёртывания (например, фактора фон Вйллебранда).
(б) Поддержание нетромбогенной поверхности. В нормальных условиях эндотелий слабо взаимодействует с форменными элементами крови, как и с факторами свёртывания крови.
(в) Торможение агрегации тромбоцитов. Эндотелиальная клетка вырабатывает простациклин, тормозящий агрегацию тромбоцитов.
  1. Факторы роста и цитокины. Эндотелиальные клетки синтезируют и секрети- руют факторы роста и цитокины, влияющие на поведение других клеток сосудистой стенки. Этот аспект имеет важное значение в механизме развития атеросклероза, когда в ответ на патологическое воздействие со стороны тромбоцитов, макрофагов и ГМК эндотелиальные клетки вырабатывают тромбоцитарный фактор роста (PDGF)1 щелочной фактор роста фибробластов (bFGF), инсулиноподобный фактор роста I (IGF-1), ИЛ-1, трансформирующий фактор роста р (TGFp). С другой стороны, эндотелиальные клетки являются мишенями факторов роста и цитокинов. Например, митозы эндотелиальных клеток вызывает щелочной фактор роста фибробластов (bFGF), а пролиферацию только эндотелиальных клеток стимулирует фактор роста эндотелиальных клеток, вырабатываемый тромбоцитами. Цитокины из макрофагов и Т-лимфоцитов - трансформирующий фактор роста р (TGFp)1 ИЛ-1 и у-ИФН - угнетают пролиферацию эндотелиальных клеток.
  2. Метаболическая функция
(а) Процессинг гормонов. Эндотелий участвует в модификации циркулирующих в крови гормонов и других биологически активных веществ. Так, в эндотелии сосудов лёгких происходит конверсия ангиотензина I в ангиотензин И.
(б) Инактивация биологически активных веществ. Эндотелиальные клетки метаболизируют норадреналин, серотонин, брадикинин, простагландины.
(в) Расщепление липопротеинов. В эндотелиальных клетках происходит расщепление липопротеинов с образованием триглицеридов и холестерина.
  1. Хоминг лимфоцитов. Слизистая оболочка ЖКТ и ряда других трубчатых органов содержит скопления лимфоцитов. Вены в этих областях, а также в лимфатических узлах имеют высокий эндотелий, экспрессирующий на своей поверхности т.н. сосудистый адрессин, узнаваемый молекулой CD44 циркулирующих в крови лимфоцитов. В результате лимфоциты фиксируются в этих областях (хоминг).
  2. Барьерная функция. Эндотелий контролирует проницаемость сосудистой стенки. Наиболее наглядно эта функция проявляется в гематоэнцефалическом (А 3 г) и гематотимическом [глава 11II А 3 а (2)] барьерах.
  1. Ангиогенез - процесс образования и роста кровеносных сосудов. Он происходит как в нормальных условиях (например, в области фолликула яичника после овуляции), так и в патологических (при заживлении ран, росте опухоли, в ходе иммунных реакций; наблюдается при неоваскулярной глаукоме, ревматоидном артрите и т.д.).
а. Ангиогенные факторы. Факторы, стимулирующие образование кровеносных сосудов, называют ангиогенными. К ним относят факторы роста фибробластов (aFGF - кислый и bFGF - основный), ангиогенин, трансформирующий фактор роста a (TGFa). Все ангиогенные факторы можно подразделить на две группы: первая - прямо действующие на эндотелиальные клетки и стимулирующие их митозы и подвижность, и вторая - факторы непрямого влияния, воздействующие на макрофаги, которые, в свою очередь, выделяют факторы роста и цитокины. К факторам второй группы относят, в частности, ангиогенин.
б. Торможение ангиогенеза имеет важное значение, его можно рассматривать как потенциально эффективный метод борьбы с развитием опухолей на ранних стадиях, а также других заболеваний, связанных с ростом кровеносных сосудов (например, не- оваскулярная глаукома, ревматоидный артрит).
  1. Опухоли. Злокачественные опухоли требуют для роста интенсивного кровоснабжения и достигают заметных размеров после развития в них системы кровоснабжения. В опухолях происходит активный ангиогенез, связанный с синтезом и секрецией опухолевыми клетками ангиогенных факторов.
  2. Ингибиторы ангиогенеза - факторы, тормозящие пролиферацию главных клеточных типов сосудистой стенки, - секретируемые макрофагами и Т-лимфо- цитами цитокины: трансформирующий фактор роста P (TGFp), HJI-I и у-ИФН. Источники. Естественный источник факторов, тормозящих ангиогенез, - ткани, не содержащие кровеносных сосудов. Речь идет об эпителии и хряще. Исходя из предположения о том, что отсутствие кровеносных сосудов в указанных тканях может быть связано с выработкой в них факторов, подавляющих ангиогенез, проводятся работы по выделению и очистке подобных факторов из хряща.
Б. Сердце
  1. Развитие (рис. 10-6 и 10-7). Сердце закладывается на 3-й неделе внутриутробного развития. В мезенхиме между энтодермой и висцеральным листком спланхнотома образуются две эндокардиальные трубки, выстланные эндотелием. Эти трубки - зачаток эндокарда. Трубки растут и окружаются висцеральным листком спланхнотома. Эти участки
спланхнотома утолщаются и дают начало миоэпикардиальным пластинкам. По мере смыкания кишечной трубки обе закладки сердца сближаются и срастаются. Теперь общая закладка сердца (сердечная трубка) имеет вид двухслойной трубки. Из эндокардиальной её части развивается эндокард, а из миоэпикардиальной пластинки - миокард и эпикард.

Рис. 10-6. Закладка сердца. А - 17-суточный эмбрион; Б - 18-суточный эмбрион; В - эмбрион на стадии 4-х сомитов (21 сутки)
Рис. 10-7. Развитие сердца. I - первичная межпредсердная перегородка; 2 - атриовентирку- лярный (AB) канал; 3 - межжелудочковая перегородка; 4 - septum spurium; 5 - первичное отверстие; 6 - вторичное отверстие; 7 - правое предсердие; 8 - левый желудочек; 9 - вторичная перегородка; 10 - подушка АВ-канала; 11 - межжелудочковое отверстие; 12 - вторичная перегородка; 13 - вторичное отверстие в первичной перегородке; 14 - овальное отверстие; 15 - AB- клапаны; 16 - предсердно-желудочковый пучок; 17 - сосочковая мышца; 18 - пограничный гребень; 19 - функциональное овальное отверс

в свою очередь, подразделяются на вены со слабым развитием мышечных элементов и вены со средним и сильным развитием мышечных элементов. В венах так же, как и в артериях, различают три оболочки: внутреннюю, среднюю и наружную. При этом сте пень выраженности этих оболочек в венах существенно отличает ся. Вены безмышечного типа - это вены твердой и мягкой мозго вых оболочек, вены сетчатки глаза, костей, селезенки и плаценты. Под действием крови эти вены способны к растяжению, но ско пившаяся в них кровь сравнительно легко под действием соб ственной силы тяжести оттекает в более крупные венозные ство лы. Вены мышечного типа отличают развитием в них мышечных элементов. К таким венам относят вены нижней части туловища. Также в некоторых видах вен имеется большое количество клапа нов, что препятствует обратному току крови, под силой собствен ной тяжести. Кроме того, ритмические сокращения циркулярно расположенных мышечных пучков также способствуют продви жению крови к сердцу. Кроме того, существенная роль в продви жении крови по направлению к сердцу принадлежит сокраще ниям скелетной мускулатуры нижних конечностей.

Лимфатические сосуды

По лимфатическим сосудам происходит отток лимфы в ве нозное русло. К лимфатическим сосудам относят лимфатические капилляры, интра и экстраорганные лимфатические сосуды, от водящие лимфу от органов, и лимфатические стволы тела, к кото рым относятся грудной проток и правый лимфатический проток, впадающие в крупные вены шеи. Лимфатические капилляры яв ляются началом лимфатической системы сосудов, в которые по ступают из тканей продукты обмена веществ, а в патологических случаях - инородные частицы и микроорганизмы. Также уже давно доказано, что по лимфатическим сосудам могут распрост раняться и клетки злокачественных опухолей. Лимфатические капилляры представляют собой систему замкнутых и анастомози рующих друг с другом и пронизывающих весь организм. Диаметр

Раздел 2. Частная гистология

лимфатических капилляров может быть больше кровеносных. Стенка лимфатических капилляров представлена эндотелиаль ными клетками, которые, в отличие от подобных клеток крове носных капилляров, не имеют базальной мембраны. Границы клеток извилистые. Эндотелиальная трубка лимфатического ка пилляра тесно связана с окружающей соединительной тканью. У лимфатических сосудов, приводящих лимфатическую жид кость к сердцу, отличительной особенностью строения является наличие в них клапанов и хорошо развитой наружной оболочки. Это можно объяснить сходством лимфо и гемодинамических условий функционирования этих сосудов: наличием низкого дав ления и направлением тока жидкости от органов к сердцу. По размерам диаметра все лимфатические сосуды делятся на мел кие, средние и крупные. Как и вены, эти сосуды по своему строе нию могут быть безмышечными и мышечными. Мелкие сосуды главным образом являются внутриорганными лимфатическими сосудами, мышечные элементы в них отсутствуют, и их эндоте лиальная трубка окружена только соединительно тканной обо лочкой. Средние и крупные лимфатические сосуды имеют три хо рошо развитые оболочки - внутреннюю, среднюю и наружную. Во внутренней оболочке, покрытой эндотелием, находятся про дольно и косо направленные пучки коллагеновых и эластических волокон. На внутренней оболочке сосудов имеются клапаны. Они состоят из центральной соединительно тканной пластинки, покрытой с внутренней и наружной поверхностей эндотелием. Границей между внутренней и средней оболочеками лимфатиче ского сосуда является не всегда четко выраженная внутренняя эла стическая мембрана. Средняя оболочка лимфатических сосудов слабо развита в сосудах головы, верхней части туловища и верх них конечностей. В лимфатических сосудах нижних конечностей она, наоборот, выражена очень отчетливо. В стенке этих сосудов находятся пучки гладких мышечных клеток, имеющие циркуляр ное и косое направление. Мышечный слой стенки лимфатическо го сосуда достигает хорошего развития в коллекторах подвздош

Тема 19. Сердечно*сосудистая система

ного лимфатического сплетения, около аортальных лимфатиче ских сосудов и шейных лимфатических стволов, сопровождающих яремные вены. Наружная оболочка лимфатических сосудов обра зована рыхлой волокнистой неоформленной соединительной тканью, которая без резких границ переходит в окружающую сое динительную ткань.

Васкуляризация . Все крупные и средние кровеносные сосуды имеют для своего питания собственную систему, носящую назва ние «сосуды сосудов». Эти сосуды необходимы для питания самой стенки крупного сосуда. В артериях сосуды сосудов проникают до глубоких слоев средней оболочки. Внутренняя оболочка артерий получает питательные вещества непосредственно из крови, про текающей в данной артерии. В диффузии питательных веществ через внутреннюю оболочку артерий большую роль играют бел ково мукополисахаридные комплексы, входящие в состав основ ного вещества стенок этих сосудов. Иннервация сосудами полу чается от вегетативной нервной системы. Нервные волокна этого отдела нервной системы, как правило, сопровождают сосуды

и заканчиваются в их стенке. По строению нервы сосудов являют ся либо миелиновыми, либо безмиелиновыми. Чувствительные нервные окончания в капиллярах многообразны по форме. Арте риоловенулярные анастомозы имеют сложные рецепторы, распо ложенные одновременно на анастомозе, артериоле и венуле. Конечные разветвления нервных волокон заканчиваются на глад ких мышечных клетках маленькими утолщениями - нервно мы шечными синапсами. Эффекторы на артериях и венах однотип ны. По ходу сосудов, особенно крупных, встречаются отдельные нервные клетки и небольшие ганглии симпатической природы. Регенерация. Кровеносные и лимфатические сосуды обладают высокой способностью к восстановлению как после травм, так

и после различных патологических процессов, происходящих в организме. Восстановление дефектов сосудистой стенки после ее повреждения начинается с регенерации и роста ее эндотелия. Уже через 1-2 дня на месте бывшего повреждения наблюдается

Раздел 2. Частная гистология

массовое амитотическое деление эндотелиальных клеток, а на 3- 4 й день появляется митотический вид размножения эндоте лиальных клеток. Мышечные пучки поврежденного сосуда, как правило, восстанавливаются более медленно и неполно по срав нению с другими тканевыми элементами сосуда. По скорости восстановления лимфатические сосуды несколько уступают кро веносным.

Сосудистые афференты

Изменения рО2 , рСО2 крови, концентрация Н+, молочной кислоты, пирувата и ряда других метаболитов оказывают как локальное воздействие на стенку сосудов, так и регистрируются встроенными в стенку сосудов хеморецепторами, а также баро рецепторами, реагирующими на давление в просвете сосудов. Эти сигналы достигают центров регуляции кровообращения и дыхания. Ответы центральной нервной системы реализует дви гательная вегетативная иннервация гладкомышечной клетки стенки сосудов и миокарда. Кроме того, существует мощная система гуморальных регуляторов гладкомышечных клеток стен ки сосудов (вазоконстрикторы и вазодилататоры) и проницаемо сти эндотелия. Барорецепторы особенно многочисленны в дуге аорты и в стенке крупных вен, лежащих близко к сердцу. Эти нерв ные окончания образованы терминалями волокон, проходящих в составе блуждающего нерва. В рефлекторной регуляции крово обращения участвуют каротидный синус и каротидное тельце, а также подобные им образования дуги аорты, легочного ствола, правой подключичной артерии.

Строение и функции каротидного синуса. Каротидный синус расположен вблизи бифуркации общей сонной артерии. Это рас ширение просвета внутренней сонной артерии тотчас у места ее ответвления от общей сонной артерии. В области расширения средняя оболочка истончена, а наружная, напротив, утолщена. Здесь, в наружной оболочке, присутствуют многочисленные баро рецепторы. Если учесть, что средняя оболочка сосуда в пределах

Тема 19. Сердечно*сосудистая система

каротидного синуса относительно тонка, то легко представить, что нервные окончания в наружной оболочке высокочувстви тельны к любым изменениям артериального давления. Отсюда информация поступает в центры, регулирующие деятельность сердечно сосудистой системы. Нервные окончания барорецепто ров каротидного синуса - терминали волокон, проходящих в со ставе синусного нерва - ветви языкоглоточного нерва.

Каротидное тельце . Каротидное тельце реагирует на измене ния химического состава крови. Тельце расположено в стенке внутренней сонной артерии и состоит из клеточных скоплений, погруженных в густую сеть широких капилляров синусоидопо добного типа. Каждый клубочек каротидного тельца (гломус) со держит 2-3 гломусные клетки (или клетки типа I), а на перифе рии клубочка расположены 1-3 клетки типа II. Афферентные волокна для каротидного тельца содержат вещество Р и относя щиеся к кальцитониновому гену пептиды.

Клетки типа I образуют синаптические контакты с термина лями афферентных волокон. Для клеток типа I характерно обилие митохондрий, светлых, и электроноплотных синаптических пу зырьков. Клетки типа I синтезируют ацетилхолин, содержат фер мент синтеза этого нейромедиатора (холинацетилтрансфераза), а также эффективно работающую систему захвата холина. Физио логическая роль ацетилхолина остается неясной. Клетки типа I имеют Н и М холинорецепторы. Активация любого из этих типов холинорецепторов вызывает или облегчает освобождение из кле ток типа I другого нейромедиатора - дофамина. При снижении рО2 секреция дофамина из клеток типа I возрастает. Клетки типа I могут формировать между собой контакты, похожие на синапсы.

Эфферентная иннервация

На гломусных клетках заканчиваются волокна, проходящие в составе синусного нерва (Херинга), и постганглионарные во локна из верхнего шейного симпатического ганглия. Терминали этих волокон содержат светлые (ацетилхолин) или гранулярные (катехоламины) синаптические пузырьки.

Раздел 2. Частная гистология

Каротидное тельце регистрирует изменения рСО2 и рО2 , а также сдвиги рН крови. Возбуждение передается через синапсы на афферентные нервные волокна, по которым импульсы посту пают в центры, регулирующие деятельность сердца и сосудов. Афферентные волокна от каротидного тельца проходят в составе блуждающего и синусного нервов (Херинга).

Главные клеточные типы сосудистой стенки

Гладкомышечная клетка . Просвет кровеносных сосудов умень шается при сокращении гладкомышечных клеток средней обо лочки или увеличивается при их расслаблении, что изменяет кро воснабжение органов и величину артериального давления.

Гладкомышечные клетки сосудов имеют отростки, образую щие с соседними ГМК многочисленные щелевые контакты. Такие клетки электрически сопряжены, через контакты возбуж дение (ионный ток) передается от клетки к клетке, Это обстоя тельство важно, так как в контакте с двигательными терминалями находятся только ГМК, расположенные в наружных слоях t. me dia. ГМК стенки сосудов (в особенности артериол) имеют рецеп торы к разным гуморальным факторам.

Вазоконстрикторы и вазодилататоры. Эффект вазоконстрик ции реализуется при взаимодействии агонистов с α адренорецеп торами, рецепторами серотонина, ангиотензина II, вазопрессина, тромбоксана. Стимуляция α адренорецепторов приводит к со кращению гладкомышечных клеток сосудов. Норадреналин - по преимуществу антагонист α адренорецепторов. Адреналин - антагонист α и β адренорецепторов. Если сосуд имеет гладкомы шечные клетки с преобладанием α адренорецепторов, то адрена лин вызывает сужение просвета таких сосудов.

Вазодилататоры. Если в ГМК преобладают α адренорецепто ры, то адреналин вызывает расширение просвета сосуда. Антаго нисты, вызывающие в большинстве случаев расслабление ГМК: атриопептин, брадикинин, VIP, гистамин, относящиеся к кальци тониновому гену пептиды, простагландины, оксид азота NО.

Тема 19. Сердечно*сосудистая система

Двигательная вегетативная иннервация. Вегетативная нерв ная система регулирует величину просвета сосудов.

Адренергическая иннервация расценивается как преимущест венно сосудосуживающая. Сосудосуживающие симпатические волокна обильно иннервируют мелкие артерии и артериолы кожи, скелетных мышц, почек и чревной области. Плотность иннервации одноименных вен значительно меньше. Сосудосужи вающий эффект реализуется при помощи норадреналина - антагониста α адренорецепторов.

Холинергическая иннервация. Парасимпатические холи нергические волокна иннервируют сосуды наружных половых органов. При половом возбуждении вследствие активации пара симпатической холинергической иннервации происходит выра женное расширение сосудов половых органов и увеличение в них кровотока. Холинергический сосудорасширяющий эффект про слежен также в отношении мелких артерий мягкой мозговой обо лочки.

Пролиферация

Численность популяции ГМК сосудистой стенки контроли руют факторы роста и цитокины. Так, цитокины макрофагов и В лимфоцитов (трансформирующий фактор роста ИЛ 1,) сдер живают пролиферацию ГМК. Эта проблема имеет важное значе ние при атеросклерозе, когда пролиферация ГМК усиливается под действием факторов роста, вырабатываемых в сосудистой стенке (тромбоцитарного фактора роста , щелочного фак тора роста фибробластов, инсулиноподобного фактора роста 1 и фактора некроза опухоли).

Фенотипы ГМК

Различают два варианта ГМК сосудистой стенки: сократи тельный и синтетический.

Сократительный фенотип. ГМК имеют многочисленные миофиламенты и отвечают на воздействие вазоконстрикторов

Раздел 2. Частная гистология

и вазодилататоров. Гранулярная эндоплазматическая сеть в них выражена умеренно. Подобные ГМК не способны к миграции

и не вступают в митозы, так как нечувствительны к эффектам факторов роста.

Синтетический фенотип. ГМК имеют хорошо развитые гра нулярную эндоплазматическую сеть и комплекс Гольджи, клетки синтезируют компоненты межклеточного вещества (коллаген, эластин, протеогликан), цитокины и факторы. ГМК в области атеросклеротического поражения сосудистой стенки перепрограм мируются с сократительного на синтетический фенотип. При ате росклерозе ГМК вырабатывают факторы роста (например, тромбоцитарный фактор PDGF], щелочной фактор роста фиб робластов , усиливающие пролиферацию соседних ГМК.

Регуляция фенотипа ГМК . Эндотелий вырабатывает и секре тирует гепариноподобные вещества, поддерживающие сократи тельный фенотип ГМК. Факторы паракринной регуляции, про дуцируемые эндотелиальными клетками, контролируют тонус сосудов. Среди них - производные арахидоновой кислоты (проста гландины, лейкотриены и тромбоксаны), эндотелин 1, оксид азо та NО и др. Одни из них вызывают вазодилатацию (например, простациклин, оксид азота NО), другие - вазоконстрикцию (на пример, эндотелин 1, ангиотензин II). Недостаточность NО вы зывает повышение АД, образование атеросклеротических бляшек избыток NО может привести к коллапсу.

Эндотелиальная клетка

Стенка кровеносного сосуда очень тонко реагирует на изме нения гемодинамики и химического состава крови. Своеобраз ным чувствительным элементом, улавливающим эти измене ния, является эндотелиальная клетка, которая с одной стороны омывается кровью, а другой обращена к структурам сосудистой стенки.

Тема 19. Сердечно*сосудистая система

Восстановление кровотока при тромбозе.

Воздействие лигандов (АДФ и серотонина, тромбинтром бина) на эндотелиальную клетку стимулирует секрецию NO. Его мишени - расположенные поблизости ГМК. В результате рас слабления гладкомышечной клетки просвет сосуда в области тромба увеличивается, и кровоток может восстановиться. К ана логичному эффекту приводит активация других рецепторов эндо телиальной клетки: гистамина, М холинорецепторов, α2 адрено рецепторов.

Свертывание крови . Эндотелиальная клетка - важный ком понент процесса гемокоагуляции. На поверхности эндотелиаль ных клеток может происходить активация протромбина фактора ми свертывания. С другой стороны, эндотелиальная клетка проявляет антикоагуляционные свойства. Прямое участие эндо телия в свертывании крови состоит в секреции эндотелиальными клетками некоторых плазменных факторов свертывания (напри мер, фактора Виллебранда). В нормальных условиях эндотелий слабо взаимодействует с форменными элементами крови, как и с факторами свертывания крови. Эндотелиальная клетка выра батывает простациклин PGI2, тормозящий адгезию тромбоцитов.

Факторы роста и цитокины . Эндотелиальные клетки синте зируют и секретируют факторы роста и цитокины, влияющие на поведение других клеток сосудистой стенки. Этот аспект имеет важное значение в механизме развития атеросклероза, когда в ответ на патологическое воздействие со стороны тромбоцитов, макрофагов и ГМК эндотелиальные клетки вырабатывают тром боцитарный фактор роста (PDGF), щелочной фактор роста фи бробластов (bFGF), инсулиноподобный фактор роста 1 (IGF 1), ИЛ 1, трансформирующий фактор роста. С другой стороны, эн дотелиальные клетки являются мишенями факторов роста и цитокинов. Например, митозы эндотелиальных клеток индуци руются щелочным фактором роста фибробластов (bFGF), а про лиферацию только эндотелиальных клеток стимулирует фактор роста эндотелиальных клеток, вырабатываемый тромбоцитами.

Раздел 2. Частная гистология

Цитокины из макрофагов и В лимфоцитов - трансформирую щий фактор роста (TGFp), ИЛ 1 и α ИФН - угнетают пролифе рацию эндотелиальных клеток.

Процессинг гормонов . Эндотелий участвует в модификации циркулирующих в крови гормонов и других биологически актив ных веществ. Так, в эндотелии сосудов легких происходит кон версия ангиотензина I в ангиотензин II.

Инактивация биологически активных веществ. Эндотелиаль ные клетки метаболируют норадреналин, серотонин, брадикинин, простагландины.

Расщепление липопротеинов . В эндотелиальных клетках проис ходит расщепление липопротеинов с образованием триглицери дов и холестерина.

Хоминг лимфоцитов . Венулы в паракортикальной зоне лимфа тических узлов, миндалин, пейеровой бляшки подвздошной кишки, содержащие скопление лимфоцитов, имеют высокий эндотелий, экспрессирующий на своей поверхности сосудистый адрессин, узнаваемый молекулой CD44 циркулирующих в крови лимфоцитов. В этих областях лимфоциты прикрепляются к эндо телию и выводятся из кровотока (хоминг).

Барьерная функция . Эндотелий контролирует проницаемость сосудистой стенки. Наиболее наглядно эта функция проявляется в гематоэнцефалическом и гематотимическом барьерах.

Развитие

Сердце закладывается на 3 й неделе внутриутробного разви тия. В мезенхиме между энтодермой и висцеральным листком спланхиотомы образуются две эндокардиальные трубки, выст ланные эндотелием. Эти трубки - зачаток эндокарда. Трубки ра стут и окружаются висцеральной спланхиотомой. Эти участки спланхиотомы утолщаются и дают начало миоэпикардиальным пластинкам. По мере смыкания кишечной трубки обе закладки сближаются и срастаются. Теперь общая закладка сердца (сердеч

Гладкомышечная клетка . Просвет кровеносных сосудов уменьшается при сокращении гладкомышечных клеток средней оболочки или увеличивается при их расслаблении, что изменяет кровоснабжение органов и величину артериального давления.

Гладкомышечные клетки сосудов имеют отростки, образующие с соседними ГМК многочисленные щелевые контакты. Такие клетки электрически сопряжены, через контакты возбуждение (ионный ток) передается от клетки к клетке, Это обстоятельство важно, так как в контакте с двигательными терминалями находятся только ГМК, расположенные в наружных слоях t. media. ГМК стенки сосудов (в особенности артериол) имеют рецепторы к разным гуморальным факторам.

Вазоконстрикторы и вазодилататоры . Эффект вазоконстрикции реализуется при взаимодействии агонистов с α-адренорецепторами, рецепторами серотонина, ангиотензина II, вазопрессина, тромбоксана. Стимуляция α-адренорецепторов приводит к сокращению гладкомышечных клеток сосудов. Норадреналин – по преимуществу антагонист α-адренорецепторов. Адреналин – антагонист α– и β-адренорецепторов. Если сосуд имеет гладкомышечные клетки с преобладанием α-адренорецепторов, то адреналин вызывает сужение просвета таких сосудов.

Вазодилататоры. Если в ГМК преобладают α-адренорецепторы, то адреналин вызывает расширение просвета сосуда. Антагонисты, вызывающие в большинстве случаев расслабление ГМК: атриопептин, брадикинин, VIP, гистамин, относящиеся к кальцитониновому гену пептиды, простагландины, оксид азота NО.

Двигательная вегетативная иннервация . Вегетативная нервная система регулирует величину просвета сосудов.

Адренергическая иннервация расценивается как преимущественно сосудосуживающая. Сосудосуживающие симпатические волокна обильно иннервируют мелкие артерии и артериолы кожи, скелетных мышц, почек и чревной области. Плотность иннервации одноименных вен значительно меньше. Сосудосуживающий эффект реализуется при помощи норадреналина – антагониста α-адренорецепторов.

Холинергическая иннервация. Парасимпатические холинергические волокна иннервируют сосуды наружных половых органов. При половом возбуждении вследствие активации парасимпатической холинергической иннервации происходит выраженное расширение сосудов половых органов и увеличение в них кровотока. Холинергический сосудорасширяющий эффект прослежен также в отношении мелких артерий мягкой мозговой оболочки.

Пролиферация

Численность популяции ГМК сосудистой стенки контролируют факторы роста и цитокины. Так, цитокины макрофагов и В-лимфоцитов (трансформирующий фактор роста ИЛ-1,) сдерживают пролиферацию ГМК. Эта проблема имеет важное значение при атеросклерозе, когда пролиферация ГМК усиливается под действием факторов роста, вырабатываемых в сосудистой стенке (тромбоцитарного фактора роста , щелочного фактора роста фибробластов, инсулиноподобного фактора роста 1 и фактора некроза опухоли).

Фенотипы ГМК

Различают два варианта ГМК сосудистой стенки: сократительный и синтетический.

Сократительный фенотип. ГМК имеют многочисленные миофиламенты и отвечают на воздействие вазоконстрикторов и вазодилататоров. Гранулярная эндоплазматическая сеть в них выражена умеренно. Подобные ГМК не способны к миграции и не вступают в митозы, так как нечувствительны к эффектам факторов роста.

Синтетический фенотип. ГМК имеют хорошо развитые гранулярную эндоплазматическую сеть и комплекс Гольджи, клетки синтезируют компоненты межклеточного вещества (коллаген, эластин, протеогликан), цитокины и факторы. ГМК в области атеросклеротического поражения сосудистой стенки перепрограммируются с сократительного на синтетический фенотип. При атеросклерозе ГМК вырабатывают факторы роста (например, тромбоцитарный фактор PDGF], щелочной фактор роста фибробластов , усиливающие пролиферацию соседних ГМК.

Регуляция фенотипа ГМК . Эндотелий вырабатывает и секретирует гепариноподобные вещества, поддерживающие сократительный фенотип ГМК. Факторы паракринной регуляции, продуцируемые эндотелиальными клетками, контролируют тонус сосудов. Среди них – производные арахидоновой кислоты (простагландины, лейкотриены и тромбоксаны), эндотелин-1, оксид азота NО и др. Одни из них вызывают вазодилатацию (например, простациклин, оксид азота NО), другие – вазоконстрикцию (например, эндотелин-1, ангиотензин-II). Недостаточность NО вызывает повышение АД, образование атеросклеротических бляшек избыток NО может привести к коллапсу.

Эндотелиальная клетка

Стенка кровеносного сосуда очень тонко реагирует на изменения гемодинамики и химического состава крови. Своеобразным чувствительным элементом, улавливающим эти изменения, является эндотелиальная клетка, которая с одной стороны омывается кровью, а другой обращена к структурам сосудистой стенки.

Восстановление кровотока при тромбозе.

Воздействие лигандов (АДФ и серотонина, тромбинтромбина) на эндотелиальную клетку стимулирует секрецию NO. Его мишени – расположенные поблизости ГМК. В результате расслабления гладкомышечной клетки просвет сосуда в области тромба увеличивается, и кровоток может восстановиться. К аналогичному эффекту приводит активация других рецепторов эндотелиальной клетки: гистамина, М-холинорецепторов, α2-адренорецепторов.

Свертывание крови . Эндотелиальная клетка – важный компонент процесса гемокоагуляции. На поверхности эндотелиальных клеток может происходить активация протромбина факторами свертывания. С другой стороны, эндотелиальная клетка проявляет антикоагуляционные свойства. Прямое участие эндотелия в свертывании крови состоит в секреции эндотелиальными клетками некоторых плазменных факторов свертывания (например, фактора Виллебранда). В нормальных условиях эндотелий слабо взаимодействует с форменными элементами крови, как и с факторами свертывания крови. Эндотелиальная клетка вырабатывает простациклин PGI2, тормозящий адгезию тромбоцитов.

Факторы роста и цитокины . Эндотелиальные клетки синтезируют и секретируют факторы роста и цитокины, влияющие на поведение других клеток сосудистой стенки. Этот аспект имеет важное значение в механизме развития атеросклероза, когда в ответ на патологическое воздействие со стороны тромбоцитов, макрофагов и ГМК эндотелиальные клетки вырабатывают тромбоцитарный фактор роста (PDGF), щелочной фактор роста фибробластов (bFGF), инсулиноподобный фактор роста-1 (IGF-1), ИЛ-1, трансформирующий фактор роста. С другой стороны, эндотелиальные клетки являются мишенями факторов роста и цитокинов. Например, митозы эндотелиальных клеток индуцируются щелочным фактором роста фибробластов (bFGF), а пролиферацию только эндотелиальных клеток стимулирует фактор роста эндотелиальных клеток, вырабатываемый тромбоцитами. Цитокины из макрофагов и В-лимфоцитов – трансформирующий фактор роста (TGFp), ИЛ-1 и α-ИФН – угнетают пролиферацию эндотелиальных клеток.

Процессинг гормонов . Эндотелий участвует в модификации циркулирующих в крови гормонов и других биологически активных веществ. Так, в эндотелии сосудов легких происходит конверсия ангиотензина-I в ангиотензин-II.

Инактивация биологически активных веществ . Эндотелиальные клетки метаболируют норадреналин, серотонин, брадикинин, простагландины.

Расщепление липопротеинов . В эндотелиальных клетках происходит расщепление липопротеинов с образованием триглицеридов и холестерина.

Хоминг лимфоцитов . Венулы в паракортикальной зоне лимфатических узлов, миндалин, пейеровой бляшки подвздошной кишки, содержащие скопление лимфоцитов, имеют высокий эндотелий, экспрессирующий на своей поверхности сосудистый адрессин, узнаваемый молекулой CD44 циркулирующих в крови лимфоцитов. В этих областях лимфоциты прикрепляются к эндотелию и выводятся из кровотока (хоминг).

Барьерная функция . Эндотелий контролирует проницаемость сосудистой стенки. Наиболее наглядно эта функция проявляется в гематоэнцефалическом и гематотимическом барьерах.

Сердце

Развитие

Сердце закладывается на 3-й неделе внутриутробного развития. В мезенхиме между энтодермой и висцеральным листком спланхиотомы образуются две эндокардиальные трубки, выстланные эндотелием. Эти трубки – зачаток эндокарда. Трубки растут и окружаются висцеральной спланхиотомой. Эти участки спланхиотомы утолщаются и дают начало миоэпикардиальным пластинкам. По мере смыкания кишечной трубки обе закладки сближаются и срастаются. Теперь общая закладка сердца (сердечная трубка) имеет вид двухслойной трубки. Из эндокардиальной ее части развивается эндокард, а из миоэпикардиальной пластинки – миокард и эпикард. Мигрирующие из нервного гребня клетки участвуют в формировании выносящих сосудов и клапанов сердца (дефекты нервного гребня – причина 10% врожденных пороков сердца, например транспозиции аорты и легочного ствола).

В течение 24 – 26 суток первичная сердечная трубка быстро удлиняется и приобретает s-образную форму. Это оказывается возможным благодаря локальным изменениям формы клеток сердечной трубки. На этом этапе выделяются следующие отделы сердца: венозный синус – камера на каудальном конце сердца, в нее впадают крупные вены. Краниальнее венозного синуса располагается расширенная часть сердечной трубки, образующая область предсердия. Из средней изогнутой части сердечной трубки развивается желудочек сердца. Желудочковая петля изгибается в каудальном направлении, что перемещает будущий желудочек, находившийся краниальнее предсердия, в дефинитивное положение. Область сужения желудочка и его перехода в артериальный ствол – конус. Между предсердием и желудочком просматривается отверстие – атриовентрикулярный канал.

Разделение на правое и левое сердце . Сразу же после образования предсердия и желудочка появляются признаки разделения сердца на правую и левую половины, которое протекает на 5 и 6-й неделе. На этом этапе формируются межжелудочковая перегородка, межпредсердная перегородка и эндокардиальные подушки. Межжелудочковая перегородка растет из стенки первичного желудочка в направлении от верхушки к предсердию. Одновременно с формированием межжелудочковой перегородки в суженной части сердечной трубки между предсердием и желудочком образуются две большие массы рыхло организованной ткани – эндокардиальные подушечки. Эндокардиальные подушки, состоящие из плотной соединительной ткани, участвуют в образовании правого и левого атриовентрикулярных каналов.

"В конце 4-й недели внутриутробного развития на краниальной стенке предсердия появляется срединная перегородка в форме полукруглой складки – первичная межпредсердная перегородка.

Одна дуга складки проходит по вентральной стенке предсердий, а другая – по дорсальной. Дуги сливаются вблизи атриовентрикулярного канала, но между ними остается первичное межпредсердное отверстие. Одновременно с этими изменениями венозный синус перемещается вправо и открывается в предсердие справа от межперсердной перегородки. В этом месте формируются венозные клапаны.

Полное разделение сердца . Полное разделение сердца происходит после развития легких и их сосудистой сети. Когда первичная перегородка сливается с эндокардиальными подушками атриовентрикулярного клапана, первичное предсердное отверстие закрывается. Массовая гибель клеток в краниальной части первичной перегородки приводит к образованию множества мелких отверстий, образующих вторичное межпредсердное отверстие. Оно контролирует равномерное поступление крови в обе половины сердца. Вскоре в правом предсердии между венозными клапанами и первичной межпредсердной перегородкой формируется вторичная межпредсердная перегородка. Вогнутый ее край направлен вверх к месту впадения синуса, а в дальнейшем – нижней полой вены. Формируется вторичное отверстие овальное окно. Остатки первичной межпредсердной перегородки, закрывающие овальное отверстие во вторичной межпредсердной перегородке, формируют клапан, распределяющий кровь между предсердиями.

Направление движения крови

Так как выходное отверстие нижней полой вены лежит вблизи овального отверстия, то кровь из нижней полой вены попадает в левое предсердие. При сокращении левого предсердия кровь прижимает створку первичной перегородки к овальному отверстию. В результате кровь не поступает из правого предсердия в левое, а перемещается из левого предсердия в левый желудочек.

Первичная перегородка функционирует как односторонний клапан в овальном отверстии вторичной перегородки. Кровь поступает из нижней полой вены через овальное отверстии в левое предсердие. Кровь из нижней полой вены смешивается с кровью, поступающей в правое предсердие из верхней полой вены.

Кровоснабжение плода . Обогащенная кислородом кровь плаценты с относительно низкой концентрацией СО2 по пупочной вене поступает в печень, а из печени – в нижнюю полую вену. Часть крови из пупочной вены через венозный проток, минуя печень, сразу поступает в систему нижней полой вены. В нижней полой вене кровь перемешивается. Кровь с высоким содержанием СО 2 поступает в правое предсердие из верхней полой вены, которая собирает кровь из верхней части тела. Через овальное отверстие часть крови поступает из правого предсердия в левое. При сокращении предсердий клапан закрывает овальное отверстие, и кровь из левого предсердия поступает в левый желудочек и далее в аорту, т. е. в большой круг кровообращения. Из правого желудочка кровь направляется в легочный ствол, который артериальным или боталловым протоком связан с аортой. Следовательно, через артериальный проток сообщаются малый и большой круги кровообращения. На ранних этапах внутриутробного развития потребность в крови в несформированных легких еще невелика, кровь из правого желудочка поступает в бассейн легочной артерии. Поэтому уровень развития правого желудочка будет определяться уровнем развития легкого.

По мере развития легких и увеличения их объема все больше крови направляется к ним и все меньше проходит через артериальный проток. Артериальный проток закрывается вскоре после рождения, когда легкие забирают всю кровь из правого сердца. После рождению перестают функционировать и редуцируются, превращаясь в соединительно-тканные тяжи и другие сосуды – пуповина, венозный проток. Овальное окно закрывается также вскоре после рождения.

Сердце – основной орган, приводящий в движение кровь по кровеносным сосудам, своего рода «насос».

Сердце представляет собой полый орган, состоящий из двух предсердий и двух желудочков. Стенка его состоит их трех оболочек: внутренней (эндокарда), средней, или мышечной (миокарда) и наружной, или серозной (эпикарда).

Внутренняя оболочка сердца – эндокард – изнутри покрывает все камеры сердца, а также клапаны сердца. На различных участках толщина его различна. Наибольших размеров он достигает в левых камерах сердца, особенно на межжелудочковой перегородке и у устья крупных артериальных стволов – аорты и легочной артерии. В то время как на сухожильных нитях он значительно тоньше.

Эндокард состоит из нескольких видов клеток. Так, на стороне, обращенной в полость сердца, эндокард выстлан эндотелием, состоящим из полигональных клеток. Далее идет подэндотелиальный слой, образованный соединительной тканью, богатой малодифференцированными клетками. Глубже располагаются мышцы.

Самый глубокий слой эндокарда, лежащий на границе с миокардом, носит название наружного соединительно-тканного слоя. Он состоит из соединительной ткани, содержащей толстые эластические волокна. Кроме эластических волокон, в эндокарде имеются длинные извитые коллагеновые и ретикулярные волокна.

Питание эндокарда осуществляется в основном диффузно за счет крови, находящейся в камерах сердца.

Далее идет мышечный слой клеток – миокард (его свойства описывались в главе о мышечной ткани). Мышечные волокна миокарда прикрепляются к опорному скелету сердца, который образован фиброзными кольцами между предсердиями и желудочками и плотной соединительной тканью в устьях крупных сосудов.

Наружная оболочка сердца, или эпикард , представляет собой висцеральный листок перикарда, сходный по строению с серозными оболочками.

Между перикардом и эпикардом имеется щелевидная полость, в которой находится небольшое количество жидкости, благодаря которой при сокращении сердца уменьшается сила трения.

Между предсердиями и желудочками сердца, а также желудочками и крупными сосудами располагаются клапаны. При этом они имеют специфические названия. Так, предсердно-желудочковый (атриовентрикулярный) клапан в левой половине сердца – двустворчатый (митральный), в правой – трехстворчатый . Они представляют собой покрытые эндотелием тонкие пластинки плотной волокнистой соединительной ткани с небольшим количеством клеток.

В подэндотелиальном слое клапанов обнаружены тонкие коллагеновые фибриллы, которые постепенно переходят в фиброзную пластинку створки клапана, а в месте прикрепления дву-и трехстворчатого клапанов – в фиброзные кольца. В основном веществе створок клапанов обнаружено большое количество гликозаминогликанов.

При этом надо знать, что строение предсердной и желудочковой сторон створок клапанов неодинаково. Так, предсердная сторона клапана, гладкая с поверхности, имеет в подэндотелиальном слое густое сплетение эластических волокон и пучки гладких мышечных клеток. Количество мышечных пучков заметно увеличивается в основании клапана. Желудочковая сторона неровная, снабжена выростами, от которых начинаются сухожильные нити. Эластические волокна в небольшом количестве располагаются на желудочковой стороне лишь непосредственно под эндотелием.

Клапаны также имеются и на границе между восходящей частью дуги аорты и левым желудочком сердца (аортальные клапаны), между правым желудочком и легочным стволом расположены клапаны полулунные (названные так из-за специфического строения).

На вертикальном разрезе в створке клапана можно различить три слоя внутренний, средний и наружный.

Внутренний слой , обращенный к желудочку сердца, представляет собой продолжение эндокарда. В нем под эндотелием продольно и поперечно идут эластические волокна, за которыми следует смешанная эластико-коллагеновая прослойка.

Средний слой тонкий, состоит из рыхлой волокнистой соединительной ткани, богатой клеточными элементами.

Наружный слой , обращенный к аорте, содержит коллагеновые волокна, которые берут начало от фиброзного кольца вокруг аорты.

Питательные вещества сердце получает из системы венечных артерий.

Кровь из капилляров собирается в коронарные вены, впадающие в правое предсердие, или венозный синус. Лимфатические сосуды в эпикарде сопровождают кровеносные.

Иннервация . В оболочках сердца обнаруживаются несколько нервных сплетений и небольшие нервные ганглии. Среди рецепторов имеются как свободные, так и инкапсулированные окончания, располагающиеся в соединительной ткани, на мышечных клетках и в стенке венечных сосудов. Тела чувствительных нейронов лежат в спинномозговых узлах (С7 – Th6), а их аксоны, покрытые миелиновой оболочкой, вступают в продолговатый мозг. Также имеется внутрисердечная проводящая система – так называемая автономная проводящая система, генерирующая импульсы для сокращения сердца.

  • Возрастные особенности реакции сердечно-сосудистой системы на физическую нагрузку
  • География транспорта. Главные магистрали и узлы. Внешняя торговля
  • Глава 1. Вегетативная нервная система. Средство от вегетососудистой дистонии

  • Подробности

    Страница 1 из 2

    Сосуды - это важный компонент сердечно-сосудистой системы. Они участвуют не только в доставке крови и кислорода к тканям и органам, но и осущевтляют регуляцию этих процессов.

    1. Отличия в структуре стенки артерий и вен.

    У артерий толстая мышечная медия, выраженный эластический слой.

    Стенка вен менее плотная и более тонкая. Наиболее выраженный слой - адвентиция.

    2. Типы мышечных волокон.

    Многоядерные скелетные поперечно-полосатые мышечные волокна (по сути состоят не из отдельных клеток, а из синцитиев).

    Кардиомиоциты тоже относятся к поперечно-полосатой мускулатуре, однако в них волокна связаны между собой контактами - нексусами, это обеспечивает распространение возбуждения по миокарду при его сокращении.

    Гладкомышечные клетки имеют веретеновидную форму, они одноядерные.

    3. Электронномикроскопическоая структура гладкой мышцы.

    4. Фенотип гладкомышечной клетки.

    5. Щелевые контакты в гладкой мышце осуществляют передачу возбуждения от клетки к клетке в унитарном типе гладких мышц.

    6. Сравнительное изображение трех типов мышц.

    7. Потенциал действия гладких мышц сосудов.

    8. Тонический и фазический тип сокращений гладких мышц.

    Поделиться: