Метод измерения - это что такое? Виды и средства измерений. Измерение. Виды измерений

Измерение - идентификация величины во множестве еѐ качественных и количественных проявлений.

Измерения выполняют с целью:
- получения информации о величине;
- установления взаимосвязи между величинами;
- оценки качества продукции;
- определения или подтверждения характеристик средств измерений и методик выполнения измерений.

Измерение это нахождение значения физической величины опытным путем с помощью специальных технических средств.

Это определение содержит четыре признака данного понятия:

1. Измерять можно только физические величины (т. е. свойства материальных объектов, явлений или процессов). Поэтому социологические, экономические, психологические, филологические и другие количественные оценки нефизических величин остаются за пределами метрологии.

2. Измерение — это оценивание величины опытным путем , т. е. это всегда эксперимент. Следовательно, измерением нельзя называть расчетное определение величины по формуле и известным исходным данным, статистическую оценку показателей качества изделия на основании социологического исследования и другие подобные процедуры.

3. Измерение осуществляется с помощью специальных технических средств — носителей размеров единиц или шкал, называемых средствами измерений. Следовательно, под это определение непопадают другие способы оценивания, не использующие технические средства (в частности, органолептические и экспертные способы оценивания).

Необходимо отметить, что широкое распространение аналитических измерений и повышение значимости этой области измерений привело к необходимости расширения трактовки этого признака. Многие аналитические измерения проводятся путем выполнения последовательности операций, среди которых операция применения средства измерений является, с точки зрения точности результата, далеко не определяющей. Например, лабораторные измерения показателей качества газа, находящегося в газопроводе, включают следующие обязательные операции:

  • отбор пробы,
  • доставка пробы в лабораторию,
  • подготовка пробы,
  • измерение.

Качество выполнения каждой из этих операций влияет на точность измерения, ошибка при выполнении любой из них может быть решающей.

Жесткие правила проведения этих операций излагаются в метрологическом документе, называемом методикой выполнения измерений (МВИ) . По аналогии с медицинской терминологией можно сказать, что МВИ — это «пропись» процедур измерения, которая должна соблюдаться самым неукоснительным образом. Очевидно, что в таких измерениях не столько средство измерений, сколько МВИ в целом играет решающую роль в обеспечении необходимой точности измерений. Поэтому в таких случаях под «специальным техническим средством» логично понимать МВИ в целом (включая и применяемые в ней средства измерений).

4. Измерение — это определение значения величины. Следовательно, измерение — это сопоставление величины с ее единицей или шкалой. Такой подход выработан практикой измерений, исчисляемой сотнями лет. Он вполне соответствует содержанию понятия «измерение», определенному более 200 лет назад великим математиком Л. Эйлером: «Невозможно определить или измерить одну величину иначе, как приняв в качестве известной другую величину этого же рода и указав соотношение, в котором она находится к ней».

Экономический словарь терминов

Толковый словарь русского языка. Д.Н. Ушаков

измерение

измерения, ср.

    Действие по глаг. измерить-измерять. Измерение роста.

    Измеряемая величина, протяжение (мат.). Куб имеет три измерения: длину, высоту и ширину. Четвертое измерение (ирон.) - перен. сверхъестественная и бесплодно искомая величина, нечто непонятное и неразгадываемое.

Толковый словарь русского языка. С.И.Ожегов, Н.Ю.Шведова.

измерение

Протяженность измеряемой величины в каком-н. направлении (спец.). Три измерения тела, два измерения фигуры, одно и. линии. Одно и. времени.

Новый толково-словообразовательный словарь русского языка, Т. Ф. Ефремова.

Энциклопедический словарь, 1998 г.

измерение

совокупность действий, выполняемых при помощи средств измерений с целью нахождения числового значения измеряемой величины в принятых единицах измерения. Различают прямые измерения (напр., измерение длины проградуированной линейкой) и косвенные измерения, основанные на известной зависимости между искомой величиной и непосредственно измеряемыми величинами.

Измерение

операция, посредством которой определяется отношение одной (измеряемой) величины к другой однородной величине (принимаемой за единицу); число, выражающее такое отношение, называется численным значением измеряемой величины. И. ≈ одна из древнейших операций, применявшаяся человеком в практической деятельности (при распределении земельных участков, в строительном деле, при ирригационных работах и т. д.); современная хозяйственно-экономическая и общественная жизнь немыслима без И. Для точных наук характерна органическая связь наблюдений и эксперимента с определением численных значений характеристик исследуемых объектов и процессов. Д. И. Менделеев не раз подчёркивал, что наука начинается с тех пор, как начинают измерять. Законченное И. включает следующие элементы: объект И., свойство или состояние которого характеризует измеряемая величина; единицу И.; технические средства И., проградуированные в выбранных единицах; метод И.; наблюдателя или регистрирующее устройство, воспринимающее результат И.; окончательный результат И. Простейшим и исторически первым известным видом И. является прямое И., при котором результат получается непосредственно из И. самой величины (например, И. длины проградуированной линейкой, И. массы тела при помощи гирь и т. д.). Однако прямые И. не всегда возможны. В этих случаях прибегают к косвенным И., основанным на известной зависимости между искомой величиной и непосредственно измеряемыми величинами. Установленные наукой связи и количественные отношения между различными по своей природе физическими явлениями позволили создать самосогласованную систему единиц, применяемую во всех областях И. (см. Международная система единиц). И. следует отличать от других приёмов количественной характеристики величин, применяемых в тех случаях, когда нет однозначного соответствия между величиной и её количественным выражением в определённых единицах. Так, визуальное определение скорости ветра по Бофорта шкале или твёрдости минералов по Мооса шкале следует считать не И., а оценкой. Всякое И. неизбежно связано с погрешностями измерений. Погрешности, порожденные несовершенством метода И., неточной градуировкой и неправильной установкой измерительной аппаратуры, называют систематическими. Систематические погрешности исключают введением поправок, найденных экспериментально. Погрешности другого типа ≈ случайные ≈ обусловлены влиянием на результат И. неконтролируемых факторов (ими могут быть, например, случайные колебания температуры, вибрации и т. д.). Случайные погрешности оцениваются методами математической статистики по данным многократных И. (см. Наблюдений обработка). В некоторых случаях ≈ особенно часто встречающихся в атомной и ядерной физике ≈ разброс результатов И. связан не только с погрешностями аппаратуры, но и с характером самих исследуемых явлений. Например, если пучок одинаково ускоренных электронов пропустить через щель дифракционной решётки, то электроны с определённой вероятностью попадут в разные точки поставленного за решёткой экрана (см. Дифракция частиц). Приведённый пример показывает, что распространение И. на новые области физики требует пересмотра и уточнения понятий, которыми оперируют при И. в других областях. С развитием науки и техники возникла ещё одна важная проблема ≈ автоматизация И. Это связано, с одной стороны, с условиями, в которых осуществляются современные И. (ядерные реакторы, открытый космос и т. д.), с другой стороны ≈ с несовершенством органов чувств человека. В современном производстве, особенно в условиях высоких скоростей, давлений, температур, непосредственное соединение измерительных устройств с регулирующими, минуя человека, позволяет перейти к наиболее совершенной форме производства ≈ автоматизированному производству. И. в метрологии подразделяются на прямые, косвенные, совокупные и совместные. Прямыми называются И., при которых мера или прибор применяются непосредственно для И. данной величины (например, И. массы на циферблатных или равноплечных весах, И. температуры термометром). Косвенными называются И., результаты которых находят на основании известной зависимости между искомой величиной и непосредственно измеряемыми величинами (например, И. плотности однородного тела по его массе и геометрическим размерам). Совокупными называются И. нескольких одноимённых величин, значения которых находят решением системы уравнений, получаемых в результате прямых И. различных сочетаний этих величин (например, калибровка набора гирь, когда значения масс гирь находят на основании прямого И. массы одной из них и сравнения масс различных сочетаний гирь). Совместные И. ≈ производимые одновременно И. двух или нескольких разноимённых величин с целью нахождения зависимости между ними (например, нахождение зависимости удлинения тела от температуры). Различают также абсолютные и относительные И. К первым относят косвенные И., основанные на И. одной или нескольких основных величин (например, длины, массы, времени) и использовании значений фундаментальных физических постоянных, через которые измеряемая физическая величина может быть выражена. Под вторыми понимают И. либо отношения величины к одноимённой величине, играющей роль произвольной единицы, либо изменения величины относительно другой, принимаемой за исходную. Найденное в результате И. значение измеряемой величины представляет собой произведение отвлечённого числа (числового значения) на единицу данной величины. Результаты И. из-за погрешностей всегда несколько отличаются от истинного значения измеряемой величины, поэтому результаты И. обычно сопровождают указанием оценки погрешности (см. Погрешности измерений). Обеспечение единства И. в стране возлагается на метрологическую службу, хранящую эталоны единиц и производящую поверку применяемых средств И. Широкое распространение получила классификация И. по объектам И. Согласно ей, различают И. линейные (И. длины, площади, объёма), механические (И. силы, давления и пр.), электрические и т. д. В общем эта классификация соответствует основным разделам физики. Лит.: Маликов С. Ф., Тюрин Н. И., Введение в метрологию, 2 изд., М., 1966; Маликов С. Ф., Введение в технику измерений, 2 изд., М., 1952; Яноши Л., Теория и практика обработки результатов измерений, пер. с англ., 2 изд., М., 1968; «Измерительная техника», 1961, ╧ 12: 1962, ╧ 4, 6, 8, 9, 10. К. П. Широков. В математической теории И. отвлекаются от ограниченной точности физических И. Задача И. величины Q при помощи единицы меры U состоит в нахождении числового множителя q в равенстве ════════════════════(

    при этом Q и U считаются положительными скалярными величинами одного и того же рода (см. Величина), а множитель q ≈ положительное действительное число, которое может быть как рациональным, так и иррациональным. Для рационального q = m/n (m и n ≈ натуральные числа) равенство (1) имеет весьма простой смысл: оно означает, что существует такая величина V (n-я доля от U), которая, будучи взята слагаемым n раз, даёт U, будучи же взята слагаемым m раз, даёт Q:

    В этом случае величины Q и U называются соизмеримыми. Для несоизмеримых величин U и Q множитель q иррационален (например, равен числу p, если Q есть длина окружности, а U ≈ её диаметр). В этом случае самое определение смысла равенства (1) несколько сложнее. Можно определить его так: равенство (1) обозначает, что для любого рационального числа r

    ═══════════════════════(

    Достаточно потребовать, чтобы условие (2) выполнялось для всех десятичных приближений к q по недостатку и по избытку. Следует отметить, что исторически само понятие иррационального числа возникло из задачи И., так что первоначальная задача в случае несоизмеримых величин заключалась собственно не в том, чтобы определить смысл равенства (1), исходя из готовой теории действительных чисел, а в том, чтобы установить смысл символа q, отображающего результат сравнения величины Q с единицей меры U. Например, по определению немецкого математика Р. Дедекинда, иррациональное число есть «сечение» в системе рациональных чисел. Такое сечение и появляется естественно при сравнении двух несоизмеримых величин Q и U. По отношению к этим величинам все рациональные числа разделяются на два класса: класс R1 рациональных чисел r, для которых Q > rU, и класс R2 рациональных чисел r, для которых Q < rU.

    Большое значение имеет приближённое И. величин при помощи рациональных чисел. Ошибка приближённого равенства Q » rU равна D = (r ≈ qU). Естественно искать такие r = m/n, для которых ошибка меньше, чем при любом числе r" = m▓/n▓ с знаменателем n" £ n. Такого рода приближения доставляются подходящими дробями r1, r2, r3,... к числу q, которые находятся при помощи теории непрерывных дробей. Например, для длины окружности S, измеряемой диаметром U, приближения таковы:

    и т. д.; для длины года Q, измеряемой сутками U, приближения таковы:

    А. Н. Колмогоров.

    И. в социальном исследовании (в статистике, социологии, психологии, экономике, этнографии), способ упорядочения социальной информации, при котором системы чисел и отношений между ними ставятся в соответствие ряду измеряемых социальных фактов. Различные меры повторяемости, воспроизводимости социальных фактов и являются социальными измерениями, или шкалами. С развитием общества получают распространение простые шкалы ≈ денежная оценка труда, разряды квалификации, оценка успехов в обучении (система баллов), спорте и др. И. в общественных науках отличается от таких «естественных» шкал точным определением измеряемых признаков и правил построения шкалы.

    В социальных исследованиях И. впервые вошли в употребление в 1920≈30, когда исследователи столкнулись с проблемой достоверности при изучении общественного сознания, социально-психологических установок (отношений), социального и профессионального статусов, общественного мнения, качественных характеристик условий труда и быта и т. д. Эти И. являются примером стандартизованной групповой оценки, когда с помощью методов выборочной статистики измеряется «интенсивность» общественного мнения.

    И. разделяются на три типа: 1) номинальное ≈ числа, приписываемые объектам на номинальной шкале, лишь констатируют отличие или тождество этих объектов, т. е. номинальная шкала есть, по существу, группировка или классификация. 2) порядковое ≈ числа, приписываемые объектам на шкале, упорядочивают их по измеряемому признаку, но указывают лишь на порядок размещения объектов на шкале, а не на расстояние между объектами или, тем более, координаты;

    интервальное ≈ числа, приписываемые объектам на шкале, указывают не только на порядок объектов, но и на расстояние между ними. Интервальным И. является, например, шкала привлекательности профессий. Такая шкала, придавая каждой профессии условный балл, позволяет сравнивать профессии по популярности, т. е. утверждать, что, например, профессия шофёра на М баллов популярнее профессии слесаря и на К баллов менее популярна, чем профессия лётчика. Однако она не позволяет утверждать, что интерес к профессиям шофёра и слесаря превышает интерес к профессии лётчика, если сумма соответствующих баллов превышает балл профессии лётчика. Нахождение количественной меры социальных явлений и процессов ограничивается этими тремя типами И. Предпринимаются попытки создания четвёртого типа И. ≈ количественного, с введением единицы И.

    Лит.: Ядов В. А., Методология и процедуры социологических исследований, Тарту, 1968; Здравомыслов А. Г., Методология и процедура социологических исследований, М., 1969.

    Ю. Б. Самсонов.

Википедия

Измерение (квантовая механика)

Измерение в квантовой механике - концепция , описывающая возможность получения информации о состоянии системы путём проведения физического эксперимента.

Результаты измерения интерпретируются как значения физической величины, которой ставится в соответствие эрмитов оператор физической величины, называемый традиционно наблюдаемой. Сами значения измерений являются собственными значениями этих операторов, а после проведения селективного измерения состояние системы оказывается в соответственном полученному значению собственном подпространстве, что называется редукцией фон Неймана. При идеализированном «абсолютно точном» измерении могут быть получены только лишь такие значения физической величины, которые принадлежат спектру соответствующего этой величине оператора, и никакие другие. Пример: собственными значениями оператора проекции спина частицы со спином 1/2 на произвольное направление являются только величины $\pm\frac12\hbar$, поэтому в эксперименте Штерна - Герлаха пучок таких частиц разделится только на два - не больше и не меньше - пучка с положительной и отрицательной проекцией спина на направление градиента магнитного поля.

Если же результат измерения остался неизвестным экспериментатору (такое измерение называют неселективным ), то квантовая система переходит в состояние, которое в общем случае описывается матрицей плотности (даже если исходное состояние было чистым), диагональной в базисе оператора измеренной физической величины, причём величина каждого из диагональных элементов в этом базисе равна вероятности соответствующего исхода измерения.

Вероятность получить то или иное собственное значение как результат измерения равна квадрату длины проекции исходного нормированного на единицу вектора состояния на соответственное собственное подпространство.

В более общей форме среднее значение измеряемой величины равно следу произведения оператора матрицы плотности квантовой системы и оператора соответствующей величины.

Измерение (значения)

Измерение :

В математике:

  • Количество измерений пространства определяет его размерность .
  • Измерение - любая из координат точки или точечного события в Аналитической геометрии.

В физике:

  • Измерение - определение значения физической величины экспериментальным путём.
  • Измерение - разложение пространства состояний системы по собственным подпространствам оператора наблюдаемой.
  • Измерение - это процесс получения информации,заключающийся в нахождении значения физической величины опытным путём с помощью специальных технических средств.

Измерение

Измерение - совокупность операций для определения отношения одной величины к другой однородной величине, принятой всеми участниками за единицу, хранящуюся в техническом средстве (средстве измерений). Получившееся значение называется числовым значением измеряемой величины, числовое значение совместно с обозначением используемой единицы называется значением физической величины. Измерение физической величины опытным путём проводится с помощью различных средств измерений - мер , измерительных приборов, измерительных преобразователей, систем, установок и т. д. Измерение физической величины включает в себя несколько этапов: 1) сравнение измеряемой величины с единицей; 2) преобразование в форму, удобную для использования.

  • Принцип измерений - физическое явление или эффект, положенный в основу измерений.
  • Метод измерений - приём или совокупность приёмов сравнения измеряемой физической величины с её единицей в соответствии с реализованным принципом измерений. Метод измерений обычно обусловлен устройством средств измерений.

Характеристикой точности измерения является его погрешность или неопределённость . Примеры измерений:

  1. В простейшем случае, прикладывая линейку с делениями к какой-либо детали, по сути сравнивают её размер с единицей, хранимой линейкой, и, произведя отсчёт, получают значение величины.
  2. С помощью измерительного прибора сравнивают размер величины, преобразованной в перемещение указателя, с единицей, хранимой шкалой этого прибора, и проводят отсчёт.

В тех случаях, когда невозможно выполнить измерение практикуется оценивание таких величин по условным шкалам, например, Шкала Рихтера интенсивности землетрясений, Шкала Мооса - шкала твёрдости минералов.

Частным случаем измерения является сравнение без указания количественных характеристик.

Наука, предметом изучения которой являются все аспекты измерений, называется метрологией.

Примеры употребления слова измерение в литературе.

Только к исходу суток аврал завершился, противогазы были сняты, и мне было предложено снова провести контрольные измерения .

Королев, систему автоматизации процессов измерения при продувке изделий в аэродинамических трубах.

Жомов аккуратненько сгреб в охапку замученного тяжким удушьем второгодника церковно-приходской школы драконьего измерения и нежно поставил его на стол.

Мы крутились уже не на турнике, а на какой-то летающей трапеции, это была уже не акробатика, а вольная борьба в воздухе, кетч в трех измерениях , и затрудняюсь сказать, что еще.

Труднее пользоваться записями акселерометра для определения направления движения Все эти координатные системы, аппараты, дифференциальные исчисления, небесные координаты, эклиптики, знаки зодиака, параллаксы, измерения широт, ортогональные проекции, перигелии, афелии, скорости В многочисленных чертежах чертовски трудно разобраться.

Были проведены все измерения , уточнен срок беременности, собран полный акушерский анамнез, выписаны направления на анализы, заведена Обменная карта.

Не имело смысла объяснять, что он имел дело с более изощренными способами уничтожения, в другой жизни и в другом измерении , иначе Альвис решит, что он явный безумец.

Нейтрино всех измерений рождаются в виде копии материнского нейтрино при воздействии амплитудной поверхности гравитационной волны от другого источника, амплитуда которой не ниже амплитуды волны материнского нейтрино.

Люк сердито хмурился, упражняя мышцы лица, а Андерсен вошел в шлюзовую камеру, чтобы произвести какие-то изометрические измерения .

Наконец, четвертая версия такова: Архимед сам отправился к Марцеллу, чтобы отнести ему свои приборы для измерения величины Солнца.

Риллиане были хозяевами в своей части вселенной и не могли адаптироваться к асимптотическим измерениям .

Именно Аэций первым встретил меня в Мире, в одном из своих измерений он был частью общественного подсознания, где мы с ним и соприкасались.

Четвертый из нас, не имевший никогда своего имени, был и в других измерениях буен и несговорчив, и Аэций прямо посоветовал мне не связываться с этим типом.

Если бы благородство пастора Беме имело три обычных геометрических измерения и соответствующий им вес, сему преподобному мужу пришлось бы свои пастырские и приватные путешествия совершать товарным поездом.

Но благородство, являясь свойством духовной субстанции, имеет лишь одно измерение - четвертое, над ним ломают головы математики, а в реальной жизни оно веса не имеет, поэтому пастор Беме мог спокойно путешествовать в маленькой бричке, запряженной одной лошадью.

Измерение – нахождение истинного значения физической величины опытным путём с использованием специальных технологических устройств, имеющих нормированные характеристики.

Существует 4 основных вида измерений:

1)Прямое измерение – измерение, при котором искомое значение физической величины находят непосредственно из опытных данных или с помощью технического средства измерения непосредственно отсчитывающего значение измеряемой величины по шкале. В этом случае уравнение измерения имеет вид: Q=qU .

2)Косвенное измерение – измерение, при котором значение физической величины находят на основании известной функциональной зависимости между этой величиной и величинами, подлежащими прямым измерениям. В этом случае уравнение измерения имеет вид: Q=f(x1,x2,…,xn) , где x1 - xn – физические величины, полученные путём прямых измерений.

3)Совокупные измерения – производятся одновременно измерение нескольких одноименных величин, при котором искомое значение находят путём решения системы уравнений, полученных при прямых измерениях различных сочетаний этих величин.

4)Совместные измерения – производимые одновременно двух или нескольких неодноимённых физических величин для нахождения функциональной зависимости между ними. Как правило, эти измерения проводятся путём клонирования эксперимента и составления таблицы матрицы рангов.

Кроме того измерения классифицируется по: условиям проведения, характеристике точности, числу выполняемых измерений, характеру измерений во времени, выражению результата измерений.

9. Метод измерений. Классификация методов измерения.

Метод измерений – совокупность приёмов использования принципов и средств измерения. Все существующие методы измерений условно делятся на 2 основных вида:Метод непосредственной оценки – значения определяемой величины определяется непосредственно по отчетному устройству прибора или измерительного устройства прямого действия.Метод сравнения с мерой – измеряется величина, сравнивающаяся с величиной заданной мерой. При этом сравнение может быть переходное, равновремённое, разновремённое и другие. Метод сравнения с мерой делится на следующие два метода:- Нулевой метод - предусматривает одновременное сравнение измеряемой величины и меры, а результирующий эффект воздействия доводится с помощью прибора сравнения до нуля.- Дифференциальный - на измерительный прибор воздействует разность измеряемой величины и известной величины, воспроизводимой мерой, пример – схема неуравновешенного моста.

Оба эти метода делятся на следующие:

1) Метод противопоставления – измеряемая величина и величина, воспроизводимая мерой, одновременно воздействуют на прибор сравнения с помощью которого устанавливаются соотношения между этими величинами. (во сколько раз?)

2) Метод замещения – измеряемую величину замещают известной величиной, воспроизводимой мерой. Широко применяется при измерении неэлектрических величин, при этом методе одновременно или периодически сравнивается измеряемая величина с мерной величиной, а далее измеряют разницу между ними, используя совпадение отметок шкалы или совпадение периодических сигналов по времени.

3) Метод совпадений – разность между измеряемой величиной и величиной, воспроизводимой мерой, измеряют, используя совпадения отметок шкал или периодических сигналов.

Из всех методов измерения метод сравнения с мерой является более точным по сравнению с методом непосредственной оценки, причём дифференциальный метод измерения является более точным, чем нулевой метод измерения.

Недостатком нулевого метода измерения является необходимость иметь большой число мер, различных сочетаний для воспроизведения мерных величин кратных измеряемым. Разновидностью нулевого метода является компенсационный метод измерения, при котором происходит измерения физической величины без нарушения процесса в котором она участвует.

Измерение - нахождение значения какой-либо физической величины. Осуществляется этот процесс опытным путем. При этом могут использоваться различные . Рассмотрим в статье, какие из них применяются на практике.

Измерение, методы измерений: определения

Результатом процесса является нахождение значения параметра Q. Оно устанавливается, исходя из числового показателя величины (q) и ее единицы (U). Общая формула выглядит так:

Принципом измерения называют явление либо комплекс феноменов, которые используются в качестве основы процесса. К примеру, масса тела устанавливается с помощью взвешивания с применением силы тяжести, которая пропорциональная весу, а температура - с помощью термоэлектрического эффекта. Методы и средства измерений выбираются в зависимости от характеристик объекта, цели процедуры. Немаловажное значение имеют и возможности исследователя. Метод измерения - комплекс специальных приемов, через которые реализуются принципы процесса. Их группировка производится по различным признакам. Средства измерения имеют метрологические нормированные свойства.

Классификация

Виды и методы измерений различаются, исходя из специфики зависимости исследуемого параметра от времени, типа формулы, условий, влияющих на точность. Существует также классификация по способам выражения результатов процесса. По характеру зависимости искомого параметра от времени выделяют динамическое и статистическое измерения. Последнее предполагается неизменяемость показателя. К таким измерениям относят определение размеров предмета, температуры, постоянного давления и так далее. Динамическими называют процессы нахождения значений, при которых искомый параметр изменяется во времени. К ним относят, например, установление показателя давления при сжатии газа. В зависимости от способа получения результатов различают совместные, косвенные, совокупные, прямые исследования. Рассмотрим их кратко.

Прямые исследования

В ходе таких измерений искомое значение находят из опытных данных. Выразить это можно уравнением

Q=X, в котором:

  • Q - искомый параметр;
  • Х - показатель, полученный из опытных данных.

Такие измерения выполняются рулеткой либо линейкой, штангенциркулем, микрометром, угломером, термометром и так далее.

Косвенные исследования

В ходе них искомое значение устанавливается по известной зависимости между ним и параметрами, находимыми при прямых измерениях. Уравнение при этом выглядит так:

Q = F(x1, x2 ... xN), в котором:

  • Q- искомый показатель;
  • F - зависимость;
  • x1, x2, … , xN - параметры, полученные прямым измерением.

Таким способом, например, устанавливается объем объекта при заданных геометрических размерах. Методы измерения сопротивления проводников также предполагают применение этого уравнения. Косвенные исследования используются чаще всего тогда, когда прямым способом найти параметр затруднительно или невозможно. На практике возникают ситуации, когда этот прием является единственным. Так, например, находятся размеры внутриатомного или астрономического порядка.

Совокупные исследования

В ходе них используются , предполагающие повторное нахождение одного или нескольких одноименных параметров при разных их сочетаниях или их мерах. Искомый показатель устанавливается при решении системы уравнений. Они, в свою очередь, составляются по параметрам, полученным при нескольких прямых измерениях.

Рассмотрим пример. Необходимо определить массу отдельных гирь в наборе. То есть, нужно провести калибровку по известному весу одной из них, полученному при прямых измерениях, и сравнить показатели при разных сочетаниях объектов. В наборе присутствуют гири, масса которых 1, 2, 2*, 5, 10, 20 кг. Все они, за исключением третьей, представляют собой образцы разного веса. Гиря со звездочкой имеет параметры, отличающиеся от точного показателя 2 кг. Калибровка заключается в установлении массы каждого предмета по одному образцу, к примеру, по объекту, весом в 1 кг. Нахождение параметра осуществляется в процессе изменения комбинации гирь. Необходимо составить уравнения, в которых цифрами обозначаются массы отдельных объектов. К примеру, 1 образец соответствует весу в 1 кг. В таком случае 1=1об + а; 1+ 1 об = 2 + b; 2* = 2 + с и так далее. Дополнительные массы, которые нужно прибавлять к весу гири, стоящему в правой части или отнимать от нее для уравновешивания, обозначаются а, b, с. При решении системы уравнений можно установить значение массы для каждой гири.

Совместные исследования

Они предполагают измерение двух либо нескольких разноименных параметров одновременно. Это позволяет выявить функциональную зависимость между ними. В качестве примера таких исследований выступает установление длины стержня исходя из его температуры.

Классы

Они устанавливаются в зависимости от условий, определяющих точность показателя. Выделяют следующие классы:


Способ отражения результата

По этому признаку различают относительные и абсолютные измерения. Последними называют те, которые базируются на прямых исследованиях одного или нескольких показателей, либо на применении значений констант. К таким исследованиям относят нахождение длины в метрах, показателя силы тока в амперах, ускорения в м/сек. Относительными считаются измерения, в рамках которых искомый показатель сравнивается с одноименным параметром, выступающим в качестве единицы, или принятым за исходный. Так, например, находят диаметр обечайки по количеству оборотов ролика, показатель влажности, которая устанавливается по соотношению объема пара в 1 м 3 воздуха к количеству паров, насыщающих его при заданной температуре.

Какие методы измерения чаще всего используют на практике?

Стоит отметить, что в исследованиях применяется два приема. Основные методы измерений - непосредственная оценка и сравнение с мерой. В первом случае искомый параметр находится непосредственно по отсчетной шкале прибора прямого действия - по линейке, манометру, термометру и пр. Второй предполагает сравнение искомого показателя с параметром, воспроизводимым мерой. К примеру, чтобы установить диаметр калибра, оптиметр фиксируется на нулевой отметке по блоку концевых значений длины. Результат получают по показателям стрелки, отклоняющейся от 0. Искомый параметр сравнивается с концевыми значениями.

Подтипы

Метод измерения путем с равнения может реализовываться разными способами:

  1. Противопоставлением . В этом случае искомый показатель и параметр, который воспроизводится мерой, действуют на прибор сравнения одновременно. В результате устанавливается соотношение между значениями.
  2. Дифференциацией . В этом случае искомый показатель сравнивается с известным значением, воспроизводимым мерой. Такойприменяется при установлении отклонения контролируемого диаметра заготовки на оптиметре после настройки его на 0.
  3. Совпадением . В этом случае между искомым показателем и значением, воспроизводимым мерой, устанавливается разность. Она определяется по совпадению отметок периодических сигналов или шкал.

Существуют и другие приемы. Например, нулевой . Он предполагает доведения до 0 результирующего эффекта влияния параметров на прибор сравнения. Такой прием используется при измерении сопротивления по мостовой схеме с полным уравновешиванием. По способу получения информации исследования могут быть бесконтактными или контактными.

Дополнительно

В зависимости от используемых средств, различают органолептический, эвристический, экспертный, инструментальный методы измерения. Последний основывается на использовании технических устройств. Они могут быть механическими, автоматическими, автоматизированными. Например, часто используются инструментальные методы измерения уровня давления. Экспертное исследование основывается на мнении группы специалистов. Эвристический метод базируется на интуиции. Органолептические исследования предполагают использование органов чувств. Изучение состояния объекта проводится также комплексными и поэлементными методами. Последний предполагает изучение каждого параметра предмета в отдельности. К примеру, могут оцениваться овальность, огранка цилиндрического вала и пр. Комплексный метод предполагает измерение суммарного показателя, на который влияют отдельные свойства объекта. К примеру, может выполняться исследование радиального биения, находящегося в зависимости от эксцентриситета, овальности и так далее.

Международная система

Она была принята в 1960 г. на XI Генеральной конференции. Система предусматривает перечень семи ключевых единиц измерения. К ним относятся метр, секунда, ампер, моль, килограмм, кельвин, кандела. В системе также предусмотрены две дополнительные единицы - стерадиан, радиан, а также приводятся приставки для образования дольных и кратных параметров. В СИ определены и производные значения. Они образуются при помощи простейших уравнений физических параметров, числовые коэффициенты которых равны 1. Эти значения применяются, например, при определении равномерности в линейной скорости при прямолинейном движении. Допустим, длина пути, который был пройден, v = l/t (м), время, потраченное на это, - t (с). Скорость получится в метрах в секунду. На практике принято использовать сокращение - м/с. Эта единица, таким образом, выражает скорость равномерно и прямолинейно перемещающейся точки, при которой она за секунду продвигается на метр. Аналогично образуются и остальные показатели, в том числе те, коэффициент в которых - не единица.

"Кто не имел опытов - мало знает"

Объект познается через свойства, которые мы наблюдаем. В быту свойства задаются качественно. Стоит задача перевода их в количественную форму. Возьмем в качестве объекта палку. Перечислим свойства палки: длинная, тонкая, прямая, твердая, холодная, серая, приятная, удобная... Эти свойства надо перевести в количественные. Возьмем и рассмотрим свойство "длинная". Введем количественную характеристику «длина», определив ее как расстояние между крайними граничными точками палки, обозначим ее L. Длина L есть расстояние между точками А и В:

Рис.134

Надо задать длине числовое значение, если мы хотим получить количественную характеристику. Надо это сделать так, чтобы она была объективной. Для этого возьмем другое тело: твердое, прямое, с резкими границами A"B" и назовем его эталоном. Примем длину этого тела l за единичную. Сравним длину АВ с длиной A"B", составив отношение B", мы получим для каждого тела его длину Li выраженную в единицах l. Эта величина будет объективной и количественной. Количественной - поскольку имеется ее численное значение. Объективной - так как данное число есть отношение одинаковых свойств двух реальных объектов мира.

Субъективность проявляется в том, что волевым методом вводится единица меры - это не страшно; важно, чтобы длины всех объектов были измерены относительно одного эталона. Количественная характеристика объекта, полученная с помощью измерений, называется физической величиной.

Эталон должен обладать свойствами, обеспечивающими ему воспроизведение и хранение принятой единицы физической величины. Так, например, эталон метра (принятый в 1889 г.) представляет собой платиноиридиевый брусок, на который нанесены две параллельные метки. Расстояние между этими метками равно однодесятимиллионной доли расстояния от экватора до северного полюса вдоль меридиана, проходящего через Париж. Это и есть единица длины - метр. Эталон обеспечивает точность измерений длины до 10-7 По мере возникновения новых требований к точности измерений используются другие эталоны. Например, с 1983 г. метр определяется как длина пути, проходимого в вакууме светом за 1/ секунды. Этот эталон обеспечивает точность измерений длины 10-10.

Итак, физическая величина задается способом измерений. Общий смысл ее - мера свойства. Смысл конкретной физической величины вытекает из интерпретации свойства, мерой которого является данная физическая величина. Интерпретация свойства должна строго соответствовать формальному определению этой величины. Измерения физических величин производят с помощью приборов. Измерительный прибор - искусственно созданный физический объект, имеющий шкалу, на которой в результате взаимодействия прибора с физическим объектом фиксируется число, являющееся результатом измерений. Это число и является значением физической величины, как свойства измеряемого объекта в конкретных условиях наблюдения.

Tехническиe приборы могут иметь разные фиксирующие устройства: ранее широко использовались шкалы, представляющие собой линейки, градуированные в единицах измеряемой длины. При этом указатель в виде стрелки или светового луча отмечал на шкале значение измеряемой величины. Современные приборы имеют цифровые индикаторы.

Итак, измерения проводят, чтобы получить численные значения физической величины. При прямых измерениях эти значения получают непосредственно, а при косвенных - вначале определяют одну или несколько исходных величин, а затем по их значениям вычисляют нужную величину.

В силу различных причин результат измерения всегда определяется приближенно. Всякое измерение устанавливает, что физическая величина имеет значение в интервале от - DА до https://pandia.ru/text/78/001/images/image003_71.gif" width="16" height="20">, а величина интервала DА - абсолютной погрешностью измерения или его ошибкой. Отношение абсолютной погрешности DА к измеренному значению Единица измерения" href="/text/category/edinitca_izmereniya/" rel="bookmark">единицей измерения [A]. Число, которое получается при измерениях, называют численным значением {A} физической величины, т. е. A = {A} [A] - любая физическая величина равна произведению численного значения и единицы измерения.

Физические величины связаны математическими зависимостями. Можно выделить несколько независимых величин, которые не сводятся одна к другой. Их называют основными физическими величинами и они могут быть выбраны произвольно.

Существуют международные соглашения, которые определяют основные физические величины. Все остальные величины называются производными. Они определяются математическими соотношениями, в которые входят основные физически величины или их комбинации.

Производные физически величины можно представить через произведение основных величин (обозначим основные величины через Вi)

A = B1b1 B2b2 B3b3 ... Bnbn , где показатели степени bn это положительные или отрицательные рациональные числа. В 1960 г. было заключено соглашение о выборе основных физических величин. Они составляют основу Международной системы единиц (СИ). Основными физическими величинами и единицами измерения являются:

В системе СИ размерность некоторой величины в общем виде выражается как

dim A = Lb1 Mb2 Tb3 Ib4 Qb5 Nb6 Jb7.

В этом выражении все показатели степени b - целые числа. Так, размерность кинетической энергии Екин имеет вид

Екин= dim = ML2 T-2 кг м/сек2,

а коэффициент трения m имеет нулевую размерность. Физическая величина и ее размерность - это не одно и то же. Одинаковую размерность могут иметь разные по своей природе физически величины, например: работа и момент силы.. Однако она важна для проверки правильности соотношений между физическими величинами.

1.9. Физические модели

Для получения объективного количественного описания объекта надо его качественные характеристики перевести в количественные, т. е. в физические величины. Не для всех свойств можно найти способ измерений и потому число физических свойств объекта всегда меньше совокупности всех свойств, присущих данному объекту. Поэтому для объективного описания надо перевести объект в объект физический, т. е. оставить у него для рассмотрения только свойства физически и отбросить все остальные.

Заметим, что объективные эталоны (как объекты реального мира) имеются только для измерения физических свойств и потому физика является единственной фундаментальной основой других наук, которые, по сути, являются ее следствиями, работающими на более высоких этажах: химия, биология, психология, физиология...

Измерения физических величин объекта проводятся всегда в конкретных условиях наблюдения и в рамках определенных требований.

Например, требуется определить расстояние между двумя объектами. При этом требуется точность измерений d = 0,01. Пусть один объект лошадь, длина которой l = 2 м, а другой - дорожный столбик диаметром d = 5 см. Пусть лошадь находится от столбика на расстоянии более одного километра: L ³ 1 км. Учитывая заданную точность мы получим, что погрешность измерений DL = dL мин = 10-2 ·103 м = 10 м. Лошадь имеет длину l= 2 м, столбик d = 5 см, т. е. d << l < DL и DL << L

Это значит, что длина лошади не играет роли и за точки измерения можно взять любые точки на объекте (лошади и столбика).

Если же лошадь находится от столбика на минимальном расстоянии L = 10 м, то в пределах заданной точности DL = 10-2 ·10 = 10-1 м = 10 см, т. е. DL << L и d < DL, но l > DL.

В этом случае условия наблюдения не позволяют определить L с заданной точностью. Надо вводить дополнительные требования: например, договариваться о конкретной точке на лошади или изменять d.

Объективно в пределах заданной точности можно измерить расстояние между объектами, если выполняется условие l << L. Это значит, что у всех объектов, удовлетворяющих этому условию, можно не учитывать форму, размеры..., т. е. заменить реальные тела (лошадь, столбик и любое другое) такими реальными телами, для которых форма и размеры при данных условиях не имеют никакого значения. То есть имеется лошадь, но мы считаем ее телом, форма и размеры которого не играют роли, а потому мы можем взять произвольную точку на теле лошади и вести относительно нее измерения.

Такое тело называется материальной точкой и является упрощением конкретного тела, т. е. физической моделью. Физические модели могут отличаться от объектов размерами, типом материала и другими характеристиками.

Физическая модель объекта - реальное тело (или система тел), в котором некоторые свойства берутся с упрощениями.

Использование физических моделей позволяет результаты измерений, полученные для данной модели, использовать для описания поведения любых объектов, описываемых этой моделью и делать обобщения, т. е. получать феноменологически законы: функциональную связь физических характеристик объекта (или процесса), имеющую место в жестко определенных условиях.

Вспомним задачу физики: объективное описание объектов материального мира. Как описывать свойства объектов материального мира мы рассмотрели: посредством измерения физических свойств объектов. Однако между физическими свойствами объекта и физическими свойствами различных объектов существуют устойчивые функциональные связи.

Описание материального мира требует и нахождения этих связей. Именно посредством этих связей и описывается совокупность закономерно связанных между собой изменений, происходящих с объектами с течением времени, т. е. описывается то, что мы называем физическим явлением (или процессом). Возникает вопрос - а почему существуют функциональные связи между свойствами объектов и объектами - опять же в силу исторического развития - так утверждает христианский принцип математического построения мира.

Для нахождения связей физических величин (т. е. для описания физического явления) измеряются физически величины, строятся графики зависимостей этих величин друг от друга и выявляется функциональная связь.

Например, будем кидать с башни камни, для которых выполнено условие представления их моделями материальных точек и для каждого камня будем измерять расстояние L, проходимое им за время t (при этом будем изменять и время). Получим набор расстояний Li и соответствующий набор времен ti Построим график L = f(t) - расстояния как функции времени. График описывается функциональной завсимостью
L = kt2, где , a g = 9,8 м/сек для всех камней.

Это и есть феноменологический закон - связь физических величин явления, имеющая место в жестких определенных условиях. Среди этих условий: нет учета связи с окружающей средой, значение g считается одинаковым для всех точек земной поверхности и н зависит от высоты башни и т. д. Используя измерительные процессы, можно получить много феноменологических законов и использовать их для решения многих практических проблем.

1.10. Физические модели тел в механике.

1. Материальная точка - тело, размерами которого в условиях конкретной задачи можно пренебречь. Математической моделью материальной точки является геометрическая точка. Положение материальной точки в пространстве определяется положением отображающей ее геометрической точки.

2. Абсолютно твердое тело - твердое тело, изменением формы и размеров которого при его движении в условиях конкретной задачи можно пренебречь. Эту модель можно рассматривать как систему материальных точек, расстояние между которыми остаются неизменными.

3. Упругое твердое тело - твердое тело, движение которого или его взаимодействие с другими телами сопровождается такими изменениями формы, что при прекращении взаимодействия или возврате к исходному механическому состоянию его первоначальная форма сохраняется. Во многих случаях упругое твердое тело можно рассматривать как систему материальных точек, связанных пружинами.

Пружина - специальная модель деформируемого тела, обладающего пренебрежимой массой и двумя параметрами - длиной в недеформированном состоянии l и коэффициентом упругости k. Деформация пружины точно следует закону Гука.

Закон Гука выражается формулой F = k Dl , где Dl = l - l0 и l - длина в деформированном состоянии, F - величина силы.

4. Неупруго деформированное тело - тело, форма которого не восстанавливается после прекращения воздействия.

5. Математический маятник - система, состоящая из материальной точки, прикрепленной к концу невесомого стержня (подробнее в параграфе "Колебания").

1.11. ВОПРОСЫ ДЛЯ ОСВОЕНИЯ ТЕОРЕТИЧЕСКОГО МАТЕРИАЛА ПО КУРСУ "МЕХАНИКА"

1. Дайте определение физической величины.

2. Как задается физическая величина?

3. Как интерпретируется физическая величина?

4. Что называют смыслом физической величины?

5. Определить физический смысл механических величин - тех, которые вы знаете.

6. Что такое математический образ физической величины? Приведите примеры.

7. Что называют физическим измерением?

8. В чем состоит объективность физической величины?

9. Существуют ли в науке объективные нефизические величины? Если да - то приведите примеры, если нет - то объясните почему.

10.Что такое эталон?

11.Что такое мера?

12.Как определяется размерность физической величины?

13.Что называют системой единиц измерений?

14.Какие величины называют основными? Приведите основные величины системы СИ.

15.Что такое точность измерений?

16.Что называют физической моделью объекта? Что такое математическая модель объекта?

17.Как перевести объект в его физическую модель?

18.Как перевести физическую модель объекта в математическую модель?

19.В чем принципиальная разница физической и математической моделей?

20.Объективна ли математическая модель объекта? Если да - объяснить; если нет - объяснить.

21.Какой закон называют феноменологическим?

22.Какой закон называют фундаментальным?

23.Что называют общим принципом физики? Приведите примеры общих принципов.

24.Что является обоснованием принципа математического построения материального мира?

25.Что в науке понимают под термином "материя"?

26.Зачем в физике используются векторные величины?

27.Как разложить вектор на составляющие и на проекции?

28.Дать определение физической модели "материальная точка".

29.Дать определение математического движения точки.

30.Какие модели механики вы знаете? Перечислить и дать определение каждой.

31.Что такое система отсчета: состав и назначение.

32.Как используя систему отсчета, измерить расстояние до звезды?

33.Как ввести радиус-вектор и записать его выражение в заданной системе координат?

34.Зависит ли величина радиус-вектора от выбора системы отсчета; если зависит - то как связать радиусы-векторы одной точки относительно двух систем координат?

35.Что называют траекторией движения и как ее найти?

36.Что такое путь, пройденный точкой, и как его найти?

37.Что называют средней скоростью материальной точки?

38.Что называют мгновенной скоростью?

39.Что называют средним ускорением?

40.Что называют мгновенным ускорением?

41.Как определяется мгновенная скорость как физическая величина?

42.Как определяется мгновенная скорость как математическая модель?

43.Что называют абсолютной, относительной и переносной скоростями? Какая связь существует между ними?

44.Как, зная значение радиус-вектора как функции времени R = f(t) определить значение скорость и ускорения в те же моменты времени?

45.Как, зная значение ускорения как функции времени, определить значение скорости и положения точки в те же моменты времени?

46.Записать уравнение движения материальной точки при равномерном прямолинейном движении. Уравнение дать в векторной и скалярной формах.

47.Записать уравнение движения материальной точки при движении с постоянным ускорением. Уравнение дать в векторной и скалярной форме.

48.Записать уравнение движения материальной точки по окружности. Уравнение дать в векторной и скалярной форме.

49.Записать уравнение движения материальной точки, совершающей гармонически колебания. Записать связь между амплитудами ускорения, скорости и смещения.

50.Что называют фазой колебаний?

51.Что называют угловой скоростью?

52.Дать определение углового ускорения.

53.Записать связь между линейными и угловыми кинематическими величинами.

54.Что называют циклической частотой и круговой частотой?

55.Дать определение периода колебаний.

56.Записать полное ускорение при вращении тела по окружности.

57.Записать выражение для смещения при гармоническом колебании материальной точки с учетом начальных условий.

58.Дать определение физической величине "масса".

59.Что такое инертность?

60.Что такое инерция?

61.Дать определение гравитационной массе.

62.Можно ли логическими средствами доказать эквивалентность гравитационной и инертной массы?

63.Что называют инерциальной системой отсчета?

64.Почему в изначальной системе законов Ньютона ничего не говорится об инерциальной системе отсчета?

65.Дать формулировки законов Ньютона.

66.Почему постоянную G в законе всемирного тяготения называют универсальной?

67.Чем доказывается универсальность постоянной G?

68.Дать определение величине "импульс".

69.Дать определение величине "сила".

70.Какие виды и типы сил вам известны?

71.Дать определение силам упругости, трения, гравитации, тяжести, веса.

72.Объясните, что означает утверждение о полной аксиоматике механической системы Ньютона?

73.Для каких объектов аксиоматика Ньютона делается полной?

74.Какие постулаты являются доказательством правильности системы Ньютона в целом?

75.Как определяются (каким способом) границы области действий физической системы Ньютона?

76.Для каких объектов система законов механики Ньютона не применима?

77.Используя какие методы можно развивать механику Ньютона? Что конкретно можно развивать?

78.Дайте классификацию движений в механике и определение видом движения.

79.Определите величину: момент сил материальной точки.

80.Определите величину: момент инерции точки.

81.Определите величину: момент импульса материальной точки.

82.Что такое энергия материальной точки? Какая она бывает?

83.Определить величину "работа".

84.Зависит ли знак работы от направления координаты осей?

85.Что такое система материальных точек? Чем она отличается от совокупности материальных точек?

86.Назовите типы систем материальных точек, которые известны вам, и дайте им определение.

87.Дать определение следующим величинам, характеризующим систему материальных точек в целом: а) импульс системы; б) момент импульса системы; в) центр масс; г) момент инерции; д) полная механическая энергия системы точек.

88.Записать уравнение движения тел с переменной массой.

89.Что называют реактивной силой?

90.Дать определение потенциальной энергии.

91.Записать связь между приращением потенциальной энергии и работой консервативных сил.

92.Дать формулировку теоремы о кинетической энергии для системы материальных точек.

93.Записать потенциальную энергию упругих сил, сил тяжести, сил тяготения.

94.Записать полную механическую энергию системы материальных точек, если известны массы частиц, их скорости и расстояния между частицами.

95.Дать формулировки закона сохранения: импульса, момента импульса, механической энергии для системы материальных точек.

96.Дать определение физической модели "абсолютно твердое тело".

97.Записать общие формулы нахождения моментов инерции твердых тел.

98.Дать определение физического маятника.

99.Дать формулировку теоремы Штернера.

100.Сформулировать закон изменения момента импульса для твердого тела.

101.Дать определение гидростатического давления.

102.Нарисовать диаграмму растяжения и указать на ней характерные точки, определив их.

103.Записать основное уравнение движения идеальной жидкости.

104.Сформулировать законы Паскаля, Архимеда.

105.Сформулировать закон Бернулли.

106.Что такое полевое представление сплошной среды?

107.Что называют линией тока, трубкой тока?

108.Основные величины поля: поток вектора, циркуляция - дать определения.

109.Какое движение называют стационарным?

110.Что такое волна?

111.Какими параметрами характеризуются волны?

112.Записать уравнение плоской бегущей волны и его решение.

113.Энергия волны, бегущие и стоячие волны.

ВОПРОСЫ ПО ТЕМЕ.

ОБЩИЕ ПРОБЛЕМЫ РЕШЕНИЯ ЗАДАЧ

1. Какие задачи называют детерминированными?

2. Какие задачи называют задачи с риском? Приведите примеры.

3. Какие задачи называют закрытыми? Приведите примеры.

4. Какие задачи называют открытыми? Приведите примеры.

5. Как символически представить структуру задачи

6. Приведите общую структурную схему решения задач классической механики Ньютона.

7. Используя структурную схему решения, объясните процесс решения задачи в целом.

8. Как определить этапы процесса, заданного в условии задачи?

9. Как определяют возможные варианты решения задачи?

10.Почему необходим перевод изначальной ситуации в физический процесс?

11.Как переводится начальная ситуация в физический процесс?

12.Почему необходимо физический процесс перевести в его математический образ?

13.Как из физической модели ситуации перейти к математической модели ситуации?

14.Как решить задачу, оставаясь в рамках только физической модели ситуации?

15.Как возможно решение задачи в рамках математической модели процесса?

16.Какую систему уравнений называют полной?

17.Какие уравнения могут входить в полную систему уравнений при решении задач классической механики?

18.Что такое математическое решение задачи?

19.Как осуществляют перевод математического представления решения в физическое?

20.Как упорядочивают изначальную ситуацию, заданную в задачах?

21.Как производится выбор физической модели объекта?

22.Как перевести векторные уравнения в скалярные на математическом этапе решения задачи.

23.Как получить конечное значение физической величины?

24.Что означает проверка величины на размерность и реальность?

25.Зачем нужен поиск дополнительной информации и какие способы поиска вы знаете? (Перечислить.)

26.Как построить систему из первоначально заданных в условии задачи объектов?

27.Приведите примеры свойств моделей, которые дают дополнительную информацию в процессе решения задачи.

28.Приведите примеры условий, накладываемых на физически свойства объектов (или их систем), которые дают дополнительную информацию в процессе решения задачи.

29.Что такое уравнение кинематической связи, как и какую информацию находят при его использовании?

СОДЕРЖАНИЕ КОНТРОЛЬНОЙ ДЛЯ ПОЛУЧЕНИЯ ЗАЧЕТА

Контрольная включает три вопроса:

1. Вопрос - из вопросов по освоению теоретического материала.

2. Вопрос - из вопросов по освоению проблемы решения задач.

3. Вопрос - на вычисление физической величины или использования физического закона.

Примеры вариантов

№ 1.

1. Записать уравнение движения материальной точки, совершающей колебательное движение, его решение с учетом заданных начальных условий.

2. Приведите общую структурную схему решения задач классической физики Ньютона.

3. Частица движется по закону х = -19 + 20t - t2 Найти путь, пройденный частицей за время t.

№ 2.

1. Записать уравнение движения тел с переменной массой. Дать определение реактивной силы.

2. Какие уравнения могут входить в полную систему уравнений при решении задач классической механики Ньютона?

3. Частица, положение которой задается радиус-вектором (-4, 2, -10), имеет импульс (2, 4, 6). Определить момент импульса частицы относительно оси Z - MZ

Поделиться: