Эпидермис. Жизненный путь клетки. Меланоциты. Клетки Лангерганса Клетки лангерганса находятся

Наша кожа защищает нас от порезов, кислот, низких и высоких температур… пожалуй, это всё, что мы сможем услышать о свойствах кожи от случайно спрошенного человека. И как видим, тут речь идет о чисто механических функциях защиты. Кожа воспринимается нами чем-то наподобие био-чехла, механически нас защищающего.
Это несомненно так и есть. Но это далеко не всё, чем является наша кожа.

На самом деле, кожа является по сути отдельным органом нашего тела. Этой фразы достаточно, наверное, чтобы указать на то — насколько сложным объектом она является. И конечно, в одном посте мы не сможем даже близко описать все ее удивительные свойства, поэтому сейчас давай рассмотрим только один аспект.

Наша кожа выполняет иммунологические функции. Она выявляет патогенов и борется с ними. Как именно? В составе кожи есть особые клетки — КЛЕТКИ ЛАНГЕРГАНСА (не путать с островками Лангерганса в хвосте поджелудочной железы). Она является внутридермальным макрофагом. «Внутридермальный» — значит внутри дермы — среднего слоя кожи. «Макрофаг» — значит она охотится на патогенов и пожирает их.

Клетка Лангерганса ведет себя как настоящий сторож — она может мигрировать из дермы в эпидермис (самый верхний слой кожи) и обратно. По пути может заглядывать в лимфатические узлы. В общем — сторожит, бодрствует, на посту.

Иногда болезнетворная бактерия натыкается на клетку Лангерганса, если ей удалось пробраться через плотный слой КЕРАТИНОЦИТОВ (роговые чешуйки на самой поверхности кожи), скрепленных МЕЖКЛЕТОЧНЫМ ЦЕМЕНТОМ. И тогда клетка Лангерганса, будучи хорошо подготовленным макрофагом, пожирает бактерию и выставляет на своей наружной мембране её фрагменты.

Для чего? Таким образом она показывает фрагменты патогена Т-лимфоцитам, которые живут тут же, рядом, в эпидерме и лимфатических узлах. А дальше запускается обычная иммунная реакция с участие Т-хелперов, Т-киллеров и т.д.

Клеток Лангерганса в нашем эпидермисе (верхнем слое кожи) очень много, иногда до 8% от всего количества клеток! Так что армия стоит у нас на защите очень мощная, и кроме того у них есть и помощники — другие макрофаги — КЛЕТКИ ГРИНСТЕЙНА.

Вот так — рука об руку, копье к копью, так сказать:) клетки Лангерганса, клетки Гринстейна и Т-лимфоциты, живущие внутри нашей кожи, предохраняют нас от патогенов, достаточно сильных и хитрых, чтобы преодолеть первый, механический барьер на своем пути. И поскольку бактерий вокруг очень много, работы нашим защитникам хватает, и они постоянно выделяют биоактивные вещества, которые убийственно действуют на врага. И поэтому нашей коже нужна защита от этих наших собственных химикатов, чтобы они не повредили лежащие ниже собственные наши клетки. И этим занимаются другие клетки кожи с помощью особых белков.


Клетки Лангерганса являются разновидностью макрофагов. Кроме эпидермиса они наблюдаются также в составе слизистых оболочек рта, ануса, влагалища, мочевых путей, бронхов и роговицы глаза. В кожу мигрируют из костного мозга. Эти клетки образуют разветвленные цитоплазматические отростки - так называемые дендриты, в цитоплазме содержат значительное количество лизосом, а также фагоцитированные гранулы меланина. Они могут захватывать антигены и передавать T-гелперам, а также способны индуцировать пролиферацию Т-лимфоцитов; первыми из иммунокомпетентных клеток контактируют с антигенами внешней среды, а также участвуют в противоопухолевых реакциях организма, обеспечивая местные защитные реакции эпидермиса. Клетки Меркеля вместе с прилегающими к ним видоизмененными дендритами чувствительных нейронов (дисками Меркеля) обеспечивают тактильную чувствительность.

Клетки Лангерганса являются антигенными клетками, которые составляют менее 5 % всех эпидермальных клеток. Они улавливают кожные антигены, усваивают, перерабатывают их и в дальнейшем образуют комплекс гистосовместимости. В течение нескольких часов контакта клетки Лангерганса покидают эпидермис и мигрируют по лимфатической системе по направлению к лимфатическим дренирующим узлам.

За последние 10 лет наши представления о дендритных клетках, их происхождении и функциях значительно уточнились. Доказано костно-мозговое происхождение дендритных клеток. Однако конкретный этап начала дифференцировки дендритных клеток еще нуждается в уточнении. Возможны два пути дифференцировки: из отдельной клетки-предшественника дендритной клетки или из общего предшественника миело-моноцитарной серии, который дифференцируется до стадии моноцита, а моноцит может дифференцироваться либо в тканевой макрофаг, либо в дендритную клетку. Возможно, что предшественники дендритных клеток из костного мозга через кровяное русло заселяют различные нелимфоидные ткани: эпидермис кожи, слизистые оболочки воздухоносных путей, желудочно-кишечного и урогенитального трактов, интерстициальные ткани сердца, почек и других органов. В эпидермисе кожи и слизистых воздухоносных путей эти клетки носят название «клетки Лангерганса». Иммиграция дендритных клеток-предшественников из периферической крови в кожу может быть связана с тем, что на них усиливается экспрессия лиганд для селектинов эндотелия. Одновременно на эндотелиальных клетках дермальных капилляров усиливается экспрессия Е-селектинов. Заселение нелимфоидных тканей дендритными клетками стимулирует ростовой фактор.

Усиленная продукция клеток ростового фактора в легочной ткани при воспалении ведет к рекрутированию в легочную ткань клеток типа Лангерганса. Самые ранние иммигранты в очаг бактериального воспаления в легких - это дендритные клетки - предшественники, экспрессирующие антигены MHC 2 класса. Прибывшие клетки остаются в связи с эпителиальными и дифференцируются в типичные дендритные клетки. Дендритные клетки рекрутируются в эпителий дыхательных путей в ответ на аэрозольное введение бактериального липополисахарида (ЛПС). Тот же ЛПС, очевидно, через индукцию синтеза TNFα может послужить сигналом ухода дендритных клеток из периферической ткани в дренирующий лимфоузел. В нелимфоидных тканях происходит начальная дифференцировка дендритных клеток с приобретением ими максимальной активности.

Провоспалительные цитокины (IL-1, TNFα) вызывают ускоренное созревание дендритных клеток и их миграцию из нелимфоидных органов в кровь или в афферентную лимфу. Таким образом дендритные клетки мигрируют в лимфоузлы, где их фенотип резко меняется они превращаются в зрелые «презентирующие» клетки, экспрессирующие на мембранах костимулирующие молекулы и способные инициировать специфический ответ Т-лимфоцитов. К числу цитокинов, усиливающих дифференцировку дендритных клеток, относятся: TNFα, GM-CSF, IL-4, IFNγ. В отличие от этого продуцируемый кератиноцитами IL-10 угнетает антигенпрезентирующие функции дендритных клеток. Дендритные клетки наряду с макрофагами и В-лимфоцитами являются профессиональными антиген-презентирующими клетками. Дендритные клетки наиболее активны в инициации первичного иммунного ответа.

Дендритные клетки имеют многие черты сходства с макрофагами, но имеют и существенные отличия. Фагоцитарной активностью обладают лишь незрелые дендритные клетки на ранних стадиях дифференцировки в нелимфоидных тканях, например клетки Лангерганса. Основной путь захвата антигена, свойственный дендритным клеткам, - это макропиноцитоз, в результате которого антиген поступает в вакуоль, где перерабатывается и образовавшиеся пептиды соединяются с молекулами МНС. Как правило, дендритные клетки захватывают антиген на периферии (в нелимфоидных тканях), после чего они мигрируют в лимфоузлы, где презентируют этот антиген для распознавания ТКР и активации Т-клеток.

При этом происходит переключение функций дендритных клеток с захвата антигена на стимуляцию Т-лимфоцитов, для чего на мембране дендритных клеток начинают экспрессироваться соответствующие адгезионные (ICAM-1, LFA-3) и костимулирующие (B7-1, B7-2, CD40) молекулы, а также молекулы CD44, контролирующие миграцию дендритных клеток в лимфоидные органы. Дендритные клетки могут презентировать переработанный в фаголизосомах антиген в комплексе с молекулами МНС 2 класса, а растворимые экзогенные антигены - в комплексе с молекулами МНС 1 класса. При этом захват антигена и его презентация разобщены во времени и пространстве. В отличие от макрофагов дендритные клетки не способны выполнять функции «мусорщика» с перевариванием захваченных белков до отдельных аминокислот. У дендритных клеток эндоцитоз служит лишь первым этапом презентации антигена. Они считаются наиболее активными из профессиональных антиген-презентирующих клеток, способных презентировать и собственные аутоантигенные эпитопы, и тумор-ассоциированные антигенные эпитопы. Кроме того, дендритные клетки способны к конститутивному синтезу физиологически значимых количеств биологически активного MIP-1γ, который опосредует хемотаксис и миграцию Т-лимфоцитов, т.е. дендритные клетки могут участвовать в рекрути-ровании Т-лимфоцитов (как CD4 + , так и CD8 +) перед их активацией.



Не следует путать с клетками Лангерганса - клетками эпидермальных тканей.

Островки Лангерганса - скопления гормон-продуцирующих (эндокринных) клеток, преимущественно в хвосте поджелудочной железы. Открыты в 1869 году немецким патологоанатомом Паулем Лангергансом (1849-1888). Островки составляют приблизительно 1…2 % массы поджелудочной железы. Поджелудочная железа взрослого здорового человека насчитывает около 1 миллиона островков (общей массой от одного до полутора граммов), которые объединяют понятием орган эндокринной системы .

Историческая справка

Пауль Лангерганс, будучи студентом-медиком, работая у Рудольфа Вирхова, в 1869 году описал скопления клеток в поджелудочной железе, отличавшиеся от окружающей ткани, названные впоследствии его именем. В 1881 году К. П. Улезко-Строганова впервые указала на эндокринную роль этих клеток. Инкреаторная функция поджелудочной железы была доказана в Страсбурге (Германия) в клинике крупнейшего диабетолога Наунина Mering и Minkowski в 1889 году - открыт панкреатический диабет и впервые доказана роль поджелудочной железы в его патогенезе. Русский учёный Л. В. Соболев (1876-1919) в диссертации «К морфологии поджелудочной железы при перевязке её протока при диабете и некоторых других условиях» показал, что перевязка выводного протока поджелудочной железы приводит ацинозный (экзокринный) отдел к полной атрофии, тогда как панкреатические островки остаются нетронутыми. На основании опытов Л. В. Соболев пришёл к выводу: «функцией панкреатических островков является регуляция углеводного обмена в организме. Гибель панкреатических островков и выпадение этой функции вызывает болезненное состояние - сахарное мочеизнурение».

В дальнейшем благодаря ряду исследований, проведенных физиологами и патофизиологами в различных странах (проведение панкреатэктомии, получение избирательного некроза бета-клеток поджелудочной железы химическим соединением аллоксаном), получены новые сведения об инкреаторной функции поджелудочной железы.

В 1907 году Lane & Bersley (Чикагский университет) показали различие между двумя видами островковых клеток, которые они назвали тип A (альфа-клетки) и тип B (бета-клетки).

В 1909 году бельгийский исследователь Ян де Мейер предложил называть продукт секреции бета-клеток островков Лангерганса инсулином (от лат. insula - островок). Однако прямых доказательств продукции гормона, влияющего на углеводный обмен, обнаружить не удавалось.

В 1921 году в лаборатории физиологии профессора J. Macleod в Торонтском университете молодому канадскому хирургу Фредерику Бантингу и его ассистенту студенту-медику Чарлзу Бесту удалось выделить инсулин.

В 1962 году Марлин и соавторы обнаружили, что водные экстракты поджелудочной железы способны повышать гликемию. Вещество, вызывающее гипергликемию, назвали «гипергликемическим-гликогенолитическим фактором». Это был глюкагон - один из основных физиологических антагонистов инсулина.

В 1967 году Донатану Стейнеру и соавторам (Чикагский университет) удалось обнаружить белок-предшественник инсулина - проинсулин. Они показали, что синтез инсулина бета клетками начинается с образования молекулы проинсулина, от которой в последующем по мере необходимости отщепляется С-пептид и молекула инсулина.

В 1973 году Джоном Энсиком (Вашингтонский университет), а также рядом учёных Америки и Европы была проведена работа по очистке и синтезу глюкагона и соматостатина.

В 1976 году Gudworth & Bottaggo открыли генетический дефект молекулы инсулина, обнаружив два типа гормона: нормальный и аномальный. последний является антагонистом по отношению к нормальному инсулину.

В 1979 году благодаря исследованиям Lacy & Kemp и соавторов появилась возможность пересадки отдельных островков и бета-клеток, удалось отделить островки от экзокринной части поджелудочной железы и осуществить трансплантацию в эксперименте. В 1979-1980 гг. при трансплантации бета-клеток преодолён видоспецифический барьер (клетки здоровых лабораторных животных имплантированы больным животным другого вида).

В 1990 году впервые выполнена пересадка панкреатических островковых клеток больному сахарным диабетом.

Типы клеток

Альфа-клетки

Основная статья: Альфа-клетка

  • Альфа-клетки составляют 15…20 % пула островковых клеток - секретируют глюкагон (естественный антагонист инсулина).

Бета-клетки

Основная статья: Бета-клетка

  • Бета-клетки составляют 65…80 % пула островковых клеток - секретируют инсулин (с помощью белков-рецепторов проводит глюкозу внутрь клеток организма, активизирует синтез гликогена в печени и мышцах, угнетает глюконеогенез).

Дельта-клетки

Основная статья: Дельта-клетка

  • Дельта-клетки составляют 3…10 % пула островковых клеток - секретируют соматостатин (угнетает секрецию многих желез);

ПП-клетки

Основная статья: PP-клетка

  • ПП-клетки составляют 3…5 % пула островковых клеток - секретируют панкреатический полипептид (подавляет секрецию поджелудочной железы и стимулирует секрецию желудочного сока).

Эпсилон-клетки

Основная статья: Эпсилон-клетка

  • Эпсилон-клетки составляют <1 % пула островковых клеток - секретируют грелин («гормон голода» - возбуждает аппетит).

Строение островка

Панкреатический островок является сложно устроенным функциональным микроорганом с определенным размером, формой и характерным распределением эндокринных клеток. Клеточная архитектура островка влияет на межклеточное соединение и паракринную регуляцию, синхронизирует высвобождение инсулина.

Долгое время считалось, что островки человека и экспериментальных животных сходны как по строению, так и по клеточному составу. Работы последнего десятилетия показали, что у взрослых людей преобладающим типом строения островков является мозаичный, при котором клетки всех типов перемешаны по всему островку, в отличие от грызунов, для которых характерен плащевой тип строения клеток, при котором бета-клетки формируют сердцевину, а альфа-клетки находятся на периферии. Однако, эндокринная часть поджелудочной железы имеет несколько типов организации: это могут быть единичные эндокринные клетки, их небольшие скопления, небольшие островки (диаметром < 100 мкм) и крупные (зрелые) островки.

Небольшие островки имеют у человека и грызунов одинаковое строение. Зрелые островки Лангерганса человека обладают выраженной упорядоченной структурой. В составе такого островка, окруженного соединительнотканной оболочкой, можно выявить дольки, ограниченные кровеносными капиллярами. Сердцевину долек составляет массив бета-клеток, на периферии долек в непосредственной близости с кровеносными капиллярами находятся альфа- и дельта-клетки. Таким образом, клеточная композиция островка зависит от его размера: относительное число альфа-клеток увеличивается вместе с размером островка, в то время как относительное число бета-клеток уменьшается.

Меланоциты . В отличие от кератиноцитов, которые составляют приблизительно 90% клеточной популяции эпидермиса, на долю меланоцитов приходится приблизительно 5%. Меланоциты имеют большое количество отростков и располагаются, перемежаясь, среди клеток базального слоя, разветвленные отростки их распространяются до поверхности эпидермиса. Меланиновый пигмент транспортируется в кератиноциты, что происходит, прежде всего, через эти дендритические отростки. Эти данные объясняют происхождение нормальных ме-ланоцитарных отростков. Большинство же меланоцитарных невусов и меланом не обладает этими структурам, поэтому меланоциты в них выявляются как безотростчатые округлые клетки, которые не напоминают нормальные структуры.

При обычной световой микроскопии меланоциты определяются как отдельные клетки среди клеток базального слоя (приблизительно 1 меланоцит на 10 базальных кератиноцитов) с круглыми или овальными темными ядрами и слабо различимой цитоплазмой.

Ультраструктурно меланоциты характеризуются относительно светлой цитоплазмой, отсутствием межклеточных контактов, или десмосом, но содержат различное количество меланосом в разных стадиях меланиза-ции. Ранние премеланосомы (не мела-низированные) представляют собой мелкие мембранозные, элипсоидные цитоплазматичес-кие вакуоли, часто с внутренними пластинками, которые выглядят как тонкие периодичности. После меланизации эти структуры становятся плотными непрозрачными тельцами Это - последний тип зрелых меланосом. которые обычно переходят в кератинопиты.

Различные опухолевые клетки также могут фагоцитировать зрелые меланизированные меланосомы из лежащих выше или смежных кератиноцитов, и, таким образом, выявление ранних меланосом (премеланосом) необходимо для ультраструктурного подтверждения меланоцитарного или близкого к нему происхождения. Активные меланоциты можно отличить от клеток эпидермиса с помощью гистохимической ДОФА-реакции, которая основана на способности меланоцитов синтезировать меланин, что, в свою очередь, зависит от синтеза фермента тирозиназы.

Меланоциты содержат протеин S-100 в цитоплазме, определение которого является чувствительной реакцией, хотя не строго специфичной, так как нервные клетки и клетки Лангерганса также имеют положительную реакцию к S-100 протеину.

Клетки Лангерганса

Подобно меланоцитам, клетки Лангерганса обладают большим количеством отростков и относительно светлой цитоплазмой. Они обычно располагаются в пределах шиповатого слоя средней части эпидермиса, хотя случайные клетки также могут встречаться и в самых нижних слоях эпидермиса. Клетки Лангерганса имеют костномозговое происхождение, это, так называемые, мо-нонуклеарные клетки которые находятся в эпидермисе. Они предназначены для приема, обработки и представления информации об антигенах окружающей среды (и, возможно, также об эндогенных антигенах) Т-лимфоци-там в коже и в лимфатических узлах, дренирующих кожу. Соответственно, они являются важными медиаторами таких столь разнообразных состояний, как контактные дерматиты и, потенциально, опухолевая регрессия. Резидентная популяция клеток Лангерганса и ассоциированные с ними иммунологически активные лимфоциты и мононуклеары были названы ассоциированной с кожей лимфоидной тканью - SALT (skin-associated lymphoid tissue).

При обычной световой микроскопии клетки Лангерганса трудно различимы. Электронно-микроскопически в них выявляются характерные цитоплазматические структуры, которые формируют перепончатые диски, часто с внутренней периодичностью и маленькой перепончатой везикулой на поверхности (гранулы Birbeck). Эти гранулы клеток Лангерганса напоминают теннисные ракетки, когда срез исследуется в двумерном плане. Подобно меланоцитам, клетки Лангерганса обладают положительной иммуногистохимической реакцией на наличие протеина S-100. В замороженных срезах или в ткани, сохраненной в растворе Митчела, на их поверхности при иммуногистохимической реакции экспрессируется GDI-антиген. Было показано, что этот гликопротеин является высокоспецифичным маркером для клеток Лангерганса и их пролиферирующих форм, клеток гистиоцитоза X.

На картинке рядом с текстом представлено обобщенное описание эндокринных клеток островка Лангерганса , без указания их реальной позиции внутри него. На рисунке показана также структура фенестрированных капилляров и присутствующих в околокапиллярном пространстве автономных нервных волокон (HB) и нервных окончаний (НО).


А-клетки (А) - аргирофильные полигональные элементы с глубоко инвагинированным ядром, заметным ядрышком и в основном хорошо развитыми органеллами. Несколько лизосом и пигментных гранул может также присутствовать в цитоплазме. Характерной особенностью А-клеток является наличие окруженных одинарной мембраной секреторных гранул (АСГ), достигающих около 300 нм в диаметре. Гранулы возникают из комплекса Гольджи (Г), их содержимое выбрасывается из тела клетки путем экзоцитоза. В течение этого процесса мембрана гранулы сливается с плазмолеммой А-клетки, ориентированной по направлению к капилляру (Кап). Гранула высвобождается между базальной мембраной (БМЭ) эндокринной клетки и собственно эндокринной клеткой. Только в этом узком пространстве находится содержимое гранул в форме видимых маленьких пузырьков. Это содержимое становится неразличимым в околокапиллярном пространстве (ОП), т. е. в пространстве между базальной мембраной эндокринной клетки и капиллярной базальной мембраной (БМК). А-клетки продуцируют глюкагон.


В-клетки (Б) - полигональные клетки с овальным и часто инвагинированным ядром и массивным ядрышком. Цитоплазма содержит хорошо развитый комплекс Гольджи (Г), большие многочисленные митохондрии, несколько коротких цистерн гранулярной эндоплазматической сети и рибосомы. Многочисленные секреторные гранулы (БСГ) диаметром около 200 нм, ограниченные одинарными мембранами, происходят из комплекса Гольджи. Гранулы содержат осмиофильное «ядро», в котором могут обнаруживаться один или несколько политональных кристаллов. Сначала гранулы достигают околокапиллярного пространства путем экзоцитоза, как описано для А-клеток, и затем - капилляров. В-клетки синтезируют инсулин.


D-клетки (Д) - овальные или полигональные клетки с округлым ядром и хорошо развитыми митохондриями и комплексом Гольджи (Г). Другие органеллы также ясно видимы. Из комплекса Гольджи выделяются окруженные одинарной мембраной секреторные гранулы (ДСГ) диаметром 220-350 нм, наполненные гранулярным, умеренно осмиофильным материалом, который экскретируется из тела клетки путем экзоцитоза, как описано для А-клеток. D-клетки продуцируют соматостатин и гастрин. Они являются типом APUD-клеток.


РР-клетки (ПП), или F-клетки , - эндокринные клетки островков Лангерганса , не только находящиеся в юкстадуоденальных панкреатических островках, но также ассоциированные с панкреатическими ацинарными клетками и клетками, выстилающими маленькие и среднего размера экскреторные протоки. РР-клетки имеют округлое или эллиптическое ядро, митохондрии, умеренно развитый комплекс Гольджи, короткие цистерны гранулярной эндоплазматической сети и большое количество маленьких, окруженных одинарной мембраной секреторных гранул (ППСГ) диаметром 140-120 нм с гомогенным содержимым. РР-клетки синтезируют панкреатические полипептиды.


Глюкагон - это гормон, который стимулирует печеночный глюконеогенез. Инсулин - гормон, стимулирующий получение клетками глюкозы (гепатоциты , скелетные мышечные волокна). Соматостатин - гормон, ингибирующий (подавляющий) освобождение глюкагона и гормона роста, а также панкреатическую секрецию. Панкреатический полипептид - это гормон, который тормозит панкреатическую экзокринную секрецию и продукцию желчи.
Поделиться: