Нейрогуморальная регуляция сосудистого тонуса. Нейрогуморальная регуляция системного кровообращения. Нервно-рефлекторные механизмы регуляции просвета сосудов

Сосудистый тонус – это длительное возбуждение гладкомышечного слоя сосудистой стенки, обеспечивающее определенный диаметр сосудов и сопротивление сосудистой стенки давлению крови. Сосудистый тонус обеспечивается несколькими механизмами: миогенными, гуморальными и нервно-рефлекторными.

Миогенные механизмы мышечного тонуса обеспечивают так называемый базальный сосудистый тонус . Базальный тонус сосудов – это часть сосудистого тонуса, которая сохраняется в сосудах при отсутствии нервных и гуморальных влияний на них. Эта компонента зависит только от свойств гладкомышечных клеток, составляющих осно-ву мышечной оболочки сосудов. Характерной особенностью биологи-ческих мембран гладкомышечных клеток, входящих в состав стенки сосудов, является высокая активностьCa ++ - зависимых каналов. Активность этих каналов обеспечивает высокую концентрацию ионовCa ++ в цитоплазме клеток и длительное взаимодействие, в этой связи, актина и миозина.

Гуморальные механизмы регуляции тонуса сосудов

Гуморальные влияния на сосудистую стенки обеспечиваются биологически-активными веществами, электролитами и метоболитами.

Влияние на сосудистую стенку биологически активных веществ. К группе биологически – активных веществ относят адреналин, вазопрессин, гистамин, ангиотензин (α 2 – глобулин), простогландины, брадикинин. Адреналин может приводить как к сужению сосудов, так и к расширению. Эффект влияния зависит от типа рецепторов с которым взаимодействует молекула адреналина. Если адреналин взаимодействует с α – адренорецептором наблюдается вазоконстрикция (сужение сосуда), если же с β – адренорецептором – вазодялятация (расширение сосуда). Атриопептид, вырабатываемый в правых отделах сердца вызывает вазодилятацию. Вазопрессин и ангиотензин вызывают сужение сосудов, гистамин, брадикинин, простагландины – расширение.

Влияние на сосудистую стенку некоторых электролитов. Повыше-ние содержание ионов Ca ++ в сосудистой стенки приводит к повышению сосудистого тонуса, а ионов K+ - к его понижению.

Влияние на сосудистую стенку продуктов метаболизма . К группе метаболитов относят органические кислоты (угольную, пировиноград-ную, молочную), продукты расщепления АТФ, оксид азота. Продукты метаболизма, как правило, вызывают снижение тонуса сосудов, приводя к их расширению.

Нервно-рефлекторные механизмы регуляции просвета сосудов

Сосудистые рефлексы делят на врожденные (безусловные, видовые) и приобретенные (условные, индивидуальные). Врожденные сосудистые рефлексы состоят из пяти элементов: рецепторов, афферентного нерва, нервного центра, эфферентного нерва и исполнительного органа.

Рецепторная часть сосудистых рефлексов .

Рецепторная часть сосудистых рефлексов представлена барорецеп-торами, которые расположены в стенках сосудов. Однако, большая часть барорецепторов сосредоточена в рефлексогенных зонах, о которых мы неоднократно с вами говорили. Речь идет о парной рефлексогенной зоне, расположенной в зоне бифуркации общей сонной артерии, дуге аорты, легочной артерии. В регуляции просвета сосудов принимают участие и волюморецепторы сердца, находящиеся преимущественно в правом сердце. Среди барорецепторов различают несколько групп:

    барорецепторы, реагирующие на постоянную составляющую арте-риального давления;

    барорецепторы, реагирующие на быстрые, динамические изменения артериального давления;

    барорецепторы, реагирующие на вибрации сосудистой стенки.

При прочих равных условиях активность рецепторов выше на быстрые изменения артериального давления, чем на медленное его изменения. Кроме того, прирост активности барорецепторов зависит от исходного уровня артериального давления. Так при увеличении артериального давления на 10 мм.рт.ст. с исходного уровня 140 мм.рт.ст. в афферентном нейроне, связанном с барорецепторами отмечается нервная импульсация с частотой 5 имп./сек. При таком же увеличении артериального давлении на 10 мм.рт.ст., но с исходного уровня 180 мм.рт.ст., в афферентном нейроне, связанном с барорецепторами отмечается нервная импульсация с частотой 25 имп./сек. При длительной фиксации высоких значений артериального давления на одной величине может происходить адаптация рецепторов к действию данного раздражителя и они снижают свою активность. В этой ситуации нервные центры начинают воспринимать повышенное артериальное давление как нормальное.

В этой части речь идет о нервной и гуморальной регуляции тонуса сосудов: об эфферентной иннервации сосудов, о краткой характеристике сосудодвигательных центров, о рефлекторной регуляции тонуса сосудов, о гуморальной регуляции тонуса сосудов.

Нервная и гуморальная регуляция тонуса сосудов.

От величины просвета сосудов, от их тонуса и количества выбрасываемой в них сердцем крови зависит кровоснабжение органов. Поэтому при рассмотрении регуляции функции сосудов прежде всего должна идти речь о механизмах поддержания сосудистого тонуса и о взаимодействии сердца и сосудов.

Эфферентная иннервация сосудов.

Просвет сосудов в основном регулируется симпатической нервной системой. Ее нервы самостоятельно или в составе смешанных двигательных нервов подходят ко всем артериям и артериолам и оказывают сосудосуживающее влияние. Яркой демонстрацией этого влияния являются опыты Клода Бернара, проведенные на сосудах уха кролика. В этих опытах на шее кролика с одной стороны перерезали симпатический нерв, после чего наблюдали покраснение уха оперированной стороны и небольшое повышение его температуры вследствие расширения сосудов и увеличения кровоснабжения уха. Раздражение периферического конца перерезанного симпатического нерва вызывало суждение сосудов и побледнение уха.

Симпатические нервы, иннервирующие большинство сосудов брюшной полости, подходят к ним в составе чревного нерва. К сосудам конечностей симпатические волокна идут вместе с двигательными нервами.

Под влиянием симпатической нервной системы мышцы сосудов находятся в состоянии сокращения - тонического напряжения.

В естественных условиях жизнедеятельности организма изменение просвета большинства сосудов (их суждение и расширение) происходит за счет изменения количества импульсов, идущих по симпатическим нервам. Частота этих импульсов невелика - приблизительно один импульс в секунду. Под влиянием рефлекторных воздействий их количество может быть увеличено или уменьшено. При увеличении количества импульсов тонус сосудов повышается - происходит их сужение. Если количество импульсов уменьшается, то сосуды расширяются.

Парасимпатическая нервная система оказывает сосудорасширяющее влияние лишь на сосуды некоторых органов. В частности, он расширяет сосуды языка, слюнных желез и половых органов. Только эти три органа имеют двойную иннервацию: симпатическую (сосудосуживающую) и парасимпатическую (сосудорасширяющую).

Краткая характеристика сосудодвигательных центров.

Нейроны симпатической нервной системы, по отросткам которых идут импульсы к сосудам, расположены в боковых рогах серого вещества спинного мозга. Уровень активности этих нейронов зависит от влияний вышележащих отделов центральной нервной системы.

В 1871 году Ф.В.Овсянников показал, что в продолговатом мозге находятся нейроны, под влиянием которых происходит сужение сосудов. Этот центр получил название сосудодвигательного. Его нейроны сосредоточены в продолговатом мозге на дне IV желудочка вблизи ядра блуждающего нерва.

В сосудодвигательном центре различают два отдела: прессорный, или сосудосуживающий, и депрессорный, или сосудорасширяющий. При раздражении нейронов прессорного центра наступает сужение сосудов и повышение кровяного давления, а при раздражении депрессорного - расширение сосудов и уменьшение кровяного давления. Нейроны депрессорного центра в момент их возбуждения вызывают понижение тонуса прессорного центра, в результате чего уменьшается количество тонизирующих импульсов, идущих к сосудам, и наступает их расширение.

Импульсы от сосудосуживающего центра головного мозга поступают к боковым рогам серого вещества спинного мозга, где располагаются нейроны симпатической нервной системы, образующие сосудосуживающий центр спинного мозга. От него по волокнам симпатической нервной системы импульсы идут к мышцам сосудов и вызывают их сокращение, вследствие чего наступает сужение сосудов.

Рефлекторная регуляция тонусов сосудов.

Различают собственные сердечно-сосудистые рефлексы и сопряженные.

Сопряженные сердечно-сосудистые рефлексы делят на две группы: экстерорецептивные (возникающие при раздражении рецепторов лежащих на поверхности тела) и интерорецептивные (возникающие при раздражении рецепторов внутренних органов).

Любое действие на организм, приходящее от экстерорецепторов, прежде всего повышает тонус сосудодвигательного центра и вызывает прессорную реакцию. Так, при механическом или болевом раздражении кожи сильном раздражении зрительного и других рецепторов наступает рефлекторное сужение сосудов.

С сосудистыми реакциями связано перераспределение крови в организме и кровоснабжение работающих органов.

Особенно большое значение в перераспределении крови в организме имеют реакции, возникающие при раздражении интерорецепторов и рецепторов с работающих мышц. Обеспечение работающих мышц кислородом и питательными веществами происходит за счет расширения сосудов и увеличения кровоснабжения работающих мышц. Расширение сосудов происходит при раздражении хеморецепторов продуктами обмена -АТФ, молочной, угольной и другими кислотами, которые вызывают уменьшение тонуса и расширение сосудов. В расширенные сосуды поступает больше крови и тем улучшается питание работающих мышц. Но при этом рефлекторно происходит перераспределение крови. Под влиянием эфферентных импульсов из сосудодвигательного центра происходит сужение сосудов неработающих органов. Расширенные сосуды работающих органов оказываются нечувствительными к этим сосудосуживающим импульсам.

Гуморальная регуляция тонуса сосудов.

Химические вещества, влияющие на просвет сосудов, делятся на сосудосуживающие и сосудорасширяющие.

Наиболее мощным сосудосуживающим действием обладают адреналин и норадреналин. Они вызывают сужение артерий и артериол кожи, легких и органов брюшной полости. Одновременно они вызывают расширение сосудов сердца и мозга.

Адреналин - биологически очень активный препарат и действует в очень малых концентрациях. Достаточно 0,0002 мг адреналина на 1 кг массы тела, чтобы вызывать сужение сосудов и повышение кровяного давления. Сосудосуживающее действие адреналина осуществляется разными путями. Он действует непосредственно на стенку сосудов и уменьшает мембранный потенциал ее мышечных волокон, повышая возбудимость и создавая условия для быстрого возникновения возбуждения. Адреналин влияет на гипоталамус и приводит к усилению потока сосудосуживающих импульсов и увеличению количества выделяемого вазопрессина.

Косвенное влияние на изменение просвета сосудов и поддержание постоянства кровяного давления имеет образующийся в почках ренин. Его образование увеличивается при уменьшении количества натрия в крови и снижения кровяного давления. Взаимодействуя с белком плазмы гипертензиногеном, он образует биологически активное вещество гипертензин, вызывающий сужение сосудов и повышение давления крови.

К сосудосуживающим факторам относится серотонин, который, суживая поврежденный сосуд, способствует уменьшению кровотечения.

Сосудорасширяющим действием обладают ацетилхолин, противогипертензиноген, медулин, брадикинин, простогландины, гистамин и др.

Ацетилхолин вызывает расширение мелких артерий и уменьшение кровяного давления. Его действие кратковременно, так как в крови он быстро разрушается.

Противогипертензиноген постоянно находится в крови наряду с гипертензиногеном, уравновешивая его действие. Колебания его количества в крови направлены на поддержание постоянства кровяного давления.

В почках образуется медулин, вызывающий расширение сосудов.

Брадикинин образуется в тканях поджелудочной и подчелюстной желез, в легких, коже и др. Он понижает тонус гладкой мускулатуры артериол, способствуя понижению давления крови.

Гистамин образуется в процессе обмена веществ в скелетной мускулатуре, в коже, в стенках желудка и кишечника и др. Под влиянием гистамина расширяются артериолы и увеличивается кровенаполнение капилляров, в связи с чем в них задерживается большое количество крови. Поэтому уменьшается приток крови к сердцу, что приводит к падению кровяного давления в артериях.

Три основных механизма:

1. Нейромышечный включает афферентное и эфферентное звенья.

Афферентное звено нейромышечного механизма "собирает" информацию от капилляров, артерий и вен и передает ее в спинальные и(или) бульбарные сосудо-двигательные центры. Координированная реакция реализуется через эфферентное звено, в составе которого находятся моноаминергические и холинергические аксоны. Бульбарные сосудодвигательные центры обеспечивают необходимый приток крови в магистральные артерии. Весь нервный аппарат заключен в адвентиции.

Функциональное значение ангиорецепторов заключается в информации о степени наполнения сосудов, уровне давления, скорости кровотока и поддержании сердечно-сосудистого гомеостаза. Рецепторы растяжения, или механорецепторы, локализуются главным образом и местах высокого давления, например в аортальной рефлексогенной зоне, которую иннервируют депрессорные нервы, каротидное тельце, где заканчиваются афферентные волокна синусного нерва.

Эфферентное звено сосудистой системы всех артерий, вен и капилляров имеет обилие холин- и адренергических аксонов. Формирование холин- и адренергических сплетений заканчивается к 25-30-летнему возрасту, когда сплетения достигают самого высокого уровня развития и устанавливается наибольшая активность нейромедиаторов. У человека в возрасте до 50 лет сохраняются относительная стабильность числа волокон и уровень активности медиаторов, а в более старшем возрасте оба показателя снижаются, причем индивидуально. Все эффекторные волокна находятся в пределах адвентиции, а их окончания со специфическими синаптическими везикулами располагаются на расстоянии 80-2000 нм от внешнего слоя миоцитов средней оболочки. Аксоны имеют плотные везикулы с норадреналином, светлые пузырьки, заполненные ацетилхолином, сближенные на расстояние 20-50 нм.

2. Нейропаракринный регулирует деятельность кровеносных сосудов посредством эндокринных клеток (хромаффиноцит, тучная клетка), синтезирующих пептиды (вазопрессин, ВИП, вещество Р и др.), биогенные моноамины и продукты их окисления (дофамин, гистамин, серотонин, адренолютин, хинон). Импульсы, идущие с преганглионарных холинергических аксонов, стимулируют уровень функциональной активности сосудистых эндокриноцитов. Постганглионарные моноаминергические аксоны через адекилатциклазную систему и специфические протеинкиназы регулируют синтетическую активность эндокриноцитов. Кроме нервной системы, в регуляции сосудистой подвижности заметную роль играет внутренняя оболочка артерий и вен.

3. Эндотелиозависимый (интимальный) регуляции сосудистого тонуса решающее значение имеет эндотелий, синтезирующий факторы, предотвращающие коагуляцию крови (антитромбин III, протеин С, активатор плазминогена и др.), активаторы системы свертывания крови (тромбопластин, тромбоксан А2) и вещества, обладающие вазомоторной активностью. Среди вазоактивных веществ, секретируемых эндотелиоцитами, идентифицированы простагландины, пурины, брадикинин, вещество Р, простациклин, серотонин, гистамин и др. В расслаблении (релаксации) сосудов принимают участие продукты обмена арахидоновой кислоты, эндогенный нитрат - N0. Стимулы, вызывающие реакцию эндотелия, могут быть как химическими, так и механическими. При функциональной целостности эндотелиального пласта биологически активные вещества (ацетилхолин, норадреиалин, простагландины, пурины) расширяют просвет сосуда, передавая эффект с эндотелиоцита на миоцит с помощью окиси азота.

Гуморальная регуляция осуществляется за счёт веществ местного и системного действия. Как утверждалось ранее к веществам местного действия относятся: ионы Са, К, Nа, биологически активные вещества (гистамин, серотонин), медиаторы симпатической и парасимпатической системы, кинины (брадикинин, калидин), простагландины. Многие высокоактивные эндогенные биологически активные вещества переносятся кровью к орагнам-мишеням и оказывают прямое или опосредованное (путём изменения функциональной активности органа) влияние на регионарные артериальные и венозные сосуды, а так же на сердце. Все эти вещества считаются факторами гуморальной регуляции кровообращения.

К гуморальным сосудорасширяющим фактора (вазодилататорам) относят атриопептиды, кинины, а к гуморальным вазоконстрикторам - вазопрессин, катехоламины и ангиотензин II. Адреналин способен оказывать на сосуды и расширяющее и суживающее действие.

Кинины. Два сосудорасширяющих пептида (брадикинин и каллидин) образуются из белков-предшественников - кининогенов под действием протеаз, называемых калликреинами. Кинины вызывают увеличение проницаемости капилляров, увеличение кровотока в потовых и слюнных железах и экзокринной части поджелудочной железы.

Предсердный натрийуретический пептид является высокоактивным циркулирующим в крови веществом, выделяемым миоэндокринными клетками предсердий. Среди физиологических эффектов атриопептидов наиболее значительны способность расширять сосуды и вызывать гипотонию, усиливать диурез и натрийурез, угнетать активность симпатической нервной системы и ингибировать выброс альдостерона и вазопрессина. Под влиянием атриопептидов происходит возрастание скорости гломерулярной фильтрации за счёт сужения отводящих артериол и расширения приводящих артериол почечных клубочков. На основании полученных результатов делается предположение о снижении у больных гипертонией чувствительности клеток предсердий к действию нормальных физиологических стимулов, вызывающих выброс предсердного натрийуретического пептида.

Норадреналин является основным медиатором периферического отдела симпатической нервной системы. В плазме крови он появляется вследствие диффузии из окончаний симпатических нервов, находящихся в стенках кровеносных сосудов. Доля норадреналина надпочечникого происхождения у человека в состоянии покоя незначительна. Согласно проведённым исследованиям те количества норадреналина, которые обнаруживаются в плазме крови, прежде всего, являются интегральным отражением уровня активности симпатических нервов и сами по себе не обладают влиянием на тонус артериальных сосудов. Более высокая концентрация норадреналина в венозной крови позволяет предполагать, что если он и оказывает влияние на тонус сосудов, то этими сосудами могут быть вены. [там же] Главной функцией норадреналина принято считать его участие в нейрогенной регуляции сосудистого тонуса, участие в реакциях перераспределения сердечного выброса.

Адреналин. Главным источником его в крови являются хромафинные клетки мозгового слоя надпочечников. Симпатическая активация надпочечников, сопровождаемая выбросом в кровь больших количеств адреналина и ряда других веществ, является компонентом ответной реакции на стресс-стимулы. При стрессах разного генеза резкое увеличение в крови концентрации адреналина приводит к двум важным гемодинамическим последствиям. Во-первых, за счёт стимуляции?-адренорецепторов миокарда реализуется положительное ино- и хронотропное действие адреналина, при этом увеличиваются ударный и минутный объёмы сердца, повышается АД. Во-вторых, распределение адренорецепторов обоего типа в сосудистом русле и их чувствительность к адреналину таковы, что происходит перераспределение кровотока в пользу лучшего кровоснабжения сердца, печени и скелетных мышц за счёт других органов (почка, кожа, желудочно-кишечный тракт), в которых в большей мере проявляется?-констрикторный эффект адреналина либо в меньшей степени - ?-дилататорное его действие. Адреналин, выбрасываемый при стрессе из надпочечников, вызывает, прежде всего, развитие гипергликемии, в больших концентрациях может вызывать расширение сосудов мозга и сердца, повышать тонус вен. Важная физиологическая роль адреналина заключается так же в его способности существенно влиять на обменные процессы в печени, мышцах, жировой клетчатке (в частности усиливать гликогенолиз).

Ангиотензин II - пептид, образующийся в крови и тканях из предшественника - ангиотензина I с помощью ангиотензинпревращающего фермента (АПФ). Он является наиболее мощным из всех известных биологически активных веществ констрикторного действия. В отличие от вазопрессина ангиотензин II оказывает влияние исключительно на артериальную часть сосудистого русла. Наибольшие концентрации АПФ определяются на поверхности эндотелиальных клеток сосудов лёгких, вследствие чего большая часть ангиотензина II образуется в малом круге при проходе крови через лёгкие. Доказано, что, кроме способности прямого воздействия на тонус сосудов и модуляции выброса медиатора на периферии, ангиотензин II способен проникать в мозг в областях со слабо развитым гематоэнцефалическим барьером, что сопровождается центральной активацией симпатической системы и угнетением сердечного компонента барорецептивного рефлекса. Кроме прямого вазоконстрикторного действия, ангиотензин усиливает констрикторный эффект активации симпатических нервов, повышает чувствительность адренорецепторов к катехоламинам, увеличивает выброс адреналина (а так же альдостерона) из надпочечников. В состоянии физиологического покоя в организме концентрация ангиотензина в плазме крови не достигает уровня, способного прямо влиять на сосудистый тонус, однако, достаточна, чтобы стимулировать секрецию альдостерона, который способствует задержке в организме натрия и воды, а водно-солевое равновесие может существенно влиять на сократительную активность сосудистых гладких мышц.

Вазопрессин относится к группе пептидов, которые обладают как периферическим, так и центральным действием. Он является антидиуретическим гормоном задней доли гипофиза и обладает выраженным и стойким прессорным действием, из-за чего и произошло название этого гормона. Специфической особенностью вазопрессина является его способность проникать в мозг (в области с плохо развитым гематоэнцефалическим барьером) и повышать чувствительность сердечного и сосудистого компонентов барорецептивного рефлекса. Увеличение концентрации вазопрессина в крови возникает при стрессовых ситуациях, сопровождающихся возбуждением симпатоадреналовой системы. В этих случаях концентрация эндогенного вазопрессина достигает вазоконстрикторных доз, как, например, при гемморрагической гипотонии. Катехоламины повышают чувствительность сосудов к вазопрессину, потенцируют его вазоконстрикторное действие. Характерной особенностью вазопрессина является его выраженное констрикторное влияние на венозные сосуды. Наибольшей чувствительностью к гормону обладают сосуды кожи (этим объясняют длительную бледность кожи при обмороках), а так же сердца и слизистых, меньшей - сосуды лёгких.



Таким образом, на сосудистый тонус оказывает влияние механизм гуморальной регуляции, который включает не только прямое взаимодействие с рецепторами элементов сосудистой стенки, но так же модуляцию выхода медиатора из симпатических окончаний и влияние на центральные механизмы регуляции гемодинамики. В целом организме местные химические факторы регуляции сосудистого тонуса взаимодействуют с миогенными для обеспечения интересов конкретного органа, и результат этого взаимодействия моделируется (часто определяется) центральными нейрогуморальными влияниями.

Нервная регуляция. Главный центр регуляции сердечной деятельности находится в продолговатом мозге. Возбуждение симпатических нервов увеличивает силу сокращений сердца (положительное инотропное действие), частоту (положительное хронотропное действие), возбудимость (положительное батмотропное действие) и проводимость (положительное дромотропное действие) сердечной мышцы. Трофический или усиливающий нерв И.П. Павлова (веточка симпатического нерва) оказывает только положительное инотропное действие. Блуждающий нерв (парасимпатический) оказывает на сердце отрицательные ино-, хроно-, батмо- и дромотропное действия. Сердце находится под тонусом блуждающего нерва (постоянное тормозное влияние на сердце).

Гемодинамические механизмы регуляции: гетерометрическая регуляция (закон Франка-Старлинга) – чем сильнее растянуты мышечные волокна во время диастолы, тем больше приток крови к сердцу, тем больше сила сердечных сокращений. Гомеометрическая регуляция (не зависит от исходной длины мышечных волокон) – «лестница» Боудича (увеличение частоты сокращений сердца при постоянной силе раздражителя приводит к увеличению силы сердечных сокращений), феномен Анрепа (чем выше давление в аорте и легочной артерии, тем больше сила сердечных сокращений).

Рефлекторная регуляция работы сердца: внутрисердечные периферические рефлексы (за счет функционирования внутриорганной нервной системы: все звенья рефлекторной дуги находятся в сердце), экстракардиальные механизмы: рефлексы с сердца на сердце (зона Бейнбриджа), рефлексы с сосудов на сердце (синокаротидная зона и зона дуги аорты), рефлексы с органов на сердце (рефлекс Гольца и Даниньи Ашнера).

Гуморальная регуляция работы сердца: адреналин, норадреналин и дофамин оказывают на сердце положительные ино-, хроно-, батмо- и дромотропное действия; ацетилхолин - отрицательные ино-, хроно-, батмо- и дромотропное влияния; тироксин – положительный хронотропный эффект; глюкагон – положительные ино- и хронотропное действия; кортикостероиды и ангиотензин – положительное инотропное действие. Ионы кальция оказывают положительные батмо- и инотропное влияния, передозировка вызывает остановку сердца в систоле; ионы калия (большие дозы) –отрицательные батмо- и дромотропное действия и остановку сердца в диастоле.

Методы исследования сердца: осмотр, пальпация, перкуссия, аускультация, определение систолического и минутного объемов крови, электрокардиография, векторкардиография, фонокардиография, баллистокардиография, эхокардиография и др.

Сосудистая система. Движение крови по сосудам подчиняется законам гемодинамики, являющейся разделом гидродинамики. Функциональная классификация сосудов: амортизирующие сосуды (сосуды эластического типа); резистивные сосуды (сосуды сопротивления); сосуды-сфинктеры; обменные сосуды; емкостные сосуды; шунтирующие сосуды (артерио-венозные анастомозы). Параметры кровообращения: кровяное давление; линейная скорость кровотока; объемная скорость кровотока; время кругооборота крови. Факторы, определяющие величину артериального давления (АД): работа сердца, сопротивление и эластичность сосудистой стенки, масса циркулирующей крови, вязкость крови, нейрогуморальные влияния. Различают систолическое, диастолическое, пульсовое и среднее артериальное давления. Линейная скорость кровотока - расстояние, которое проходит частица крови через сосуды определенного калибра в единицу времени. Объемная скорость кровотока - количество крови, протекающее через сосуды определенного калибра в единицу времени. Скорость кругооборота крови - время, за которое частица крови проходит большой и малый круги кровообращения. Артериальный пульс - ритмические колебания стенки артерии, обусловленные повышением давления в период систолы. Венный пульс - пульсовые колебания стенки крупной вены, обусловленные затруднением притока крови из вен в сердце во время систолы предсердий и желудочков.

Микроциркуляция - процессы движения крови по мельчайшим кровеносным и лимфатическим сосудам. Микроциркуляция включает процессы, связанные с внутриорганным кровообращением, обеспечивающим тканевой метаболизм, перераспределение и депонирование крови. В системе микроциркуляции различают 2 вида кровотока: медленный транскапиллярный и быстрый юкстакапиллярный.

Нейрогуморальная регуляция тонуса сосудов . Нервная регуляция. Главный сосудодвигательный центр находится в продолговатом мозге. Симпатические нервы суживают сосуды; некоторые парасимпатические нервы (языкоглоточный, язычный, верхнегортанный, тазовый) расширяют сосуды иннервируемого ими органа. Сосуды находятся под постоянным тонусом симпатических нервов. Базальный тонус – за счет самой сосудистой стенки. Дополнительные факторы, расширяющие сосуды: раздражение задних корешков спинного мозга, аксон-рефлекс, раздражение симпатических холинергических волокон. Рефлекторная регуляция: собственные рефлексы – рефлексы с сосудов на сосуды (синокаротидная и аортальная зоны) и сопряженные рефлексы – с органов на сосуды. Гуморальная регуляция: сосудосуживающие вещества – адреналин, норадреналин, вазопрессин, серотонин, ренин, эндотелин, ионы кальция; сосудорасширяющие вещества – ацетилхолин, гистамин, брадикинин, простагландины, молочная и пировиноградная кислоты, аденозин, углекислый газ, оксид азота, ионы калия и натрия.

Методы исследования сосудов: сфигмография, флебография, плетизмография, реография.

Лимфатическая система – это дренажная система, по которой тканевая жидкость оттекает в кровеносное русло (венозную систему). Лимфатические капилляры замкнуты. Лимфангион – участок лимфососуда между двумя клапанами. Лимфатические узлы – фильтры, задерживающие микроорганизмы, опухолевые клетки, инородные частицы; содержат Т- и В-лимфоциты, отвечающие за иммунитет; в них образуются плазматические клетки, вырабатывающие антитела. Функции лимфатической системы: возврат белков, электролитов и воды из интерстиция в кровеносную систему; резорбтивная, барьерная, иммунобиологическая, участие в жировом обмене и обмене жирорастворимых витаминов. Состав лимфы: белки (альбумины, глобулины, фибриноген), липиды, ферменты (липаза и диастаза); хлор и бикарбонаты; много лимфоцитов, мало гранулоцитов и моноцитов.

Занятие 1. Сердечный цикл. Распространение возбуждения в

сердце. Автоматия. Проводящая система сердца.

Задача 1. Сердечный цикл у лягушки (Пр. стр. 87-89).

Задача 2. Анализ проводящей системы сердца методом наложения

лигатур (лигатуры Станниуса) (Пр. стр. 90-92).

Занятие 2. Свойства сердечной мышцы. Изменение возбудимости

сердечной мышцы в различные фазы сердечной

деятельности. Экстрасистола.

Задача 1 . Воспроизведение экстрасистолы (Пр. стр. 98).

Занятие 3. Нервная и гуморальная регуляция работы сердца.

Задача 1. Влияние раздражения ваго-симпатического ствола на

деятельность сердца лягушки. (Пр. стр. 111-113).

Занятие 4. Методы исследования сердца. Электрические явления в

сердце. Электрокардиография.

Задача 1. Регистрация электрокардиограммы. (Пр. стр. 105).

Задача 2 . Определение физической работоспособности (тест РWС 170)

(Пр. стр. 436)

Занятие 5. Физиология сосудов. Основные законы гемодинамики.

Задача 1. Измерение кровяного давления у человека (по методу

Рива-Рочи-Короткова) (Пр. стр. 127).

Задача 2. Наблюдение кровотока в плавательной перепонке лапки

лягушки (Пр. стр. 136).

Занятие 6. Методы исследования кровотока. Коронарный

кровоток.

ФИЗИОЛОГИЯ Д Ы ХА Н И Я.

Дыхание - сложный, циклически протекающий физиологический процесс, который обеспечивает газообмен (О 2 и СО 2) между окружающей средой и организмом в соответствии с его метаболическими потребностями. Процесс дыхания можно разделить на несколько этапов: внешнее дыхание (обмен газов между атмосферным и альвеолярным воздухом-«легочная вентиляция»; газообмен между кровью легочных капилляров и альвеолярным воздухом); транспорт газов кровью; обмен газов между кровью и клетками организма; внутреннее, или тканевое дыхание.

Система внешнего дыхания, включает легкие и малый круг кровообращения (обеспечивают артериализацию крови), грудную клетку с дыхательной мускулатурой (обеспечивают дыхательный акт) и систему регуляции дыхания (дыхательный центр и другие отделы ЦНС). Вдох : импульс из дыхательного центра - сокращение инспираторных дыхательных мышц (диафрагмы и наружных межреберных мышц при спокойном вдохе) -увеличение объема грудной клетки - возрастание отрицательного давления в плевральной полости - увеличение объема легких - снижение внутрилегочного давления ниже атмосферного - поступление воздуха в легкие. Отрицательное давление в плевральной полости обусловлено эластической тягой легких. Эластическая тяга легких -сила, с которой легкие постоянно стремятся уменьшить свой объем.

Пневмоторакс - поступление воздуха в плевральную полость. Ателектаз - спадение альвеол.

Легочные объемы и емкости: жизненная емкость легких (ЖЕЛ), включающая в себя дыхательный объем (ДО), резервный объем вдоха (РОвд) и резервный объем выдоха (РОвыд); остаточный объем (ОО); функциональная остаточная емкость (ФОЕ=РОвыд+ОО); общая емкость легких ЖЕЛ+ОО); объем мертвого пространства (воздух, находящийся в воздухоносных путях и не участвующий в газообмене), входящий в состав ДО. Легочная вентиляция. Минутный объем дыхания (МОД= ДО х ЧД). Альвеолярная вентиляция=(ДО-объем мертвого пространства) х ЧД. Показатели газообмена: потребление кислорода (VО 2), коэффициент использования кислорода (КИО 2).

Транспорт газов кровью . Механизм переноса кислорода из альвеолярного воздуха в кровь и углекислого газа из крови в альвеолярный воздух - диффузия. Формы переноса кислорода: кислород растворенный в плазме; в виде оксигемоглобина. Кислородная емкость крови - максимальное количество кислорода, которое способен связать гемоглобин при его полном насыщении кислородом. Кривая диссоциации оксигемоглобина – зависимость связывания кислорода кровью от его парциального давления. Факторы, влияющие на ее сдвиги вправо и влево (рСО2, температура, рН). Формы переноса углекислого газа: углекислый газ растворенный в плазме; в виде карбгемоглобина; в виде бикарбонатов натрия (в плазме) и калия (в эритроците).

Нейрогуморальная регуляция дыхания. Нервная регуляция. Центры: спинальные (С3-С5 и Т2-Т10); бульбарный (главный), состоящий из инспираторного и экспираторного отделов, обладающий автоматией; варолиев мост (пневмотаксический). Диафрагмальный нерв и межреберные нервы иннервируют дыхательную мускулатуру.Рефлекторная регуляция - дыхательные рефлексы начинаются с различных рецепторов: медленно адаптирующихся рецепторов растяжения легких (рефлекс Геринга-Брейера, блуждающий нерв), ирритантных быстро адаптирующихся механорецепторов (кашель, бронхоспазм), J-рецепторов, или «юкстакапиллярных» рецепторов легких (отек легких), проприорецепторов дыхательных мышц, периферических (артериальных в каротидных синусах) и центральных (в гипоталамусе) хеморецепторов. Гуморальная регуляция: Гиперкапния (увеличение СО2 в крови), гипоксия (недостаток кислорода в тканях) и водородные ионы (ацидоз) стимулируют дыхание. Гипокапния (уменьшение СО2 в крови) и гипероксия (увеличение О2 в альвеолярном воздухе) угнетают дыхание. Опыт Фредерика с перекрестным кровообращением. Опыт Холдейна.

Методы исследования функции дыхания: спирометрия и спирография, пневмотахография.

Занятие 1. Внешнее дыхание. Легочные объемы и емкости.

Задача 1. Спирометрия: сухой и водяной спирометры (Пр. стр. 174).

Задача 2 . Определение минутного объема дыхания в покое и при

физической нагрузке (Пр. стр. 188).

Занятие 2. Газообмен в легких. Транспорт газов кровью.

Задача 1. Газоанализ атмосферного, выдыхаемого, альвеолярного воздуха

с помощью газоанализаторов. (Демонстрация).

Задача 2. Определение рН, рО 2 , рСО 2 в артериализированной крови с

помощью микроанализатора. (Демонстрация).

Занятие 3. Регуляция дыхания.

Задача 1. Пневмография (Пр. стр. 182).

Задача 2. Оценка проходимости трахеобронхиального дерева с помощью

прибора «Пневмоскрин-2». (Демонстрация).


Похожая информация.


Поделиться: