Брожение спиртов. Реферат спиртовое брожение


Спиртовое брожение - это процесс окисления углеводов, в результате которого образуются этиловый спирт, углекислота и выделяется энергия.

В 1836 г. французский ученый Каньяр де ла Тур установил, что спиртовое брожение связано с ростом и размножением дрожжей. Химическое уравнение спиртового брожения было дано французскими химиками А. Лавуазье (1789 г.) и Ж. Гей-Люссаком (1815 г.). Л. Пастер пришёл к выводу (1857 г.), что спиртовое брожение могут вызывать только живые дрожжи в анаэробных условиях («брожение - это жизнь без воздуха»). В противовес этому немецкий ученый Ю. Либих упорно настаивал на том, что брожение происходит вне живой клетки. На возможность бесклеточного спиртового брожения впервые (1871 г.) указала русский врач-биохимик М. М. Манассеина. Немецкий химик Э. Бухнер в 1897, отжав под большим давлением дрожжи, растёртые с кварцевым песком, получил бесклеточный сок, сбраживающий сахар с образованием спирта и CO2. При нагревании до 50°C и выше сок утрачивал бродильные свойства. Все это указывало на ферментативную природу активного начала, содержащегося в дрожжевом соке. Русский химик Л. А. Иванов обнаружил (1905 г.), что добавленные к дрожжевому соку фосфаты в несколько раз повышают скорость брожения. Исследования отечественных биохимиков А. И. Лебедева, С. П. Костычева, Я. О. Парнаса и немецких биохимиков К. Нейберга, Г. Эмбдена, О. Мейергофа и др. подтвердили, что фосфорная кислота участвует в важнейших этапах спиртового брожения. Этот вид брожения имеет наибольшее народнохозяйственное значение.
Спиртовое брожение есть процесс разложения сахара на спирт и углекислый газ. Оно протекает под действием микро­организмов в виде следующей реакции:

С6Н12О6 = 2С2Н5ОН + 2СО2 + 27 ккал
сахар этиловый углекислый энергия
спирт газ

Кроме этилового спирта и углекислого газа, при этом получаются также побочные продукты: уксусный альдегид, глицерин, сивушные масла (бутиловый, изобутиловый, амиловый и изоамиловый спирты), уксусная и янтарная кислоты и др.
Спиртовое брожение углеводов вызывается дрожжами, отдельными представителями мукоровых грибов и некоторыми бактериями. Однако грибы и бактерии вырабатывают спирта значительно меньше, чем дрожжи. Сбраживаться могут лишь углеводы, и притом весьма избирательно. Дрожжи сбраживают только некоторые 6-углеродные сахара (глюкозу, фруктозу, маннозу).

Схематично спиртовое брожение может быть изображено уравнением

С 6 Н 12 О 6 → 2С 2 Н 5 ОН + 2СO 2 + 23,5 + 104 дж

глюкоза → этиловый спирт + углекислота + энергия.

Процесс спиртового брожения - многоступенчатый, состоящий из цепи химических реакций. Превращения глюкозы до образования пировиноградной кислоты происходят так же, как и при дыхании. Эти реакции происходят без участия кислорода (анаэробно). Далее пути дыхания и брожения расходятся.

При спиртовом брожении пировиноградная кислота превращается в спирт и углекислоту. Эти реакции протекают в две стадии. Сначала от пирувата отщепляется С02 и образуется уксусный альдегид; затем уксусный альдегид присоединяет водород, восстанавливаясь в этиловый спирт. Все реакции катализируются ферментами. В восстановлении альдегида участвует НАД-H2. Обычно при спиртовом брожении, кроме главных продуктов, образуются побочные. Они довольно разнообразны, но присутствуют в небольшом количестве: амиловый, бутиловый и другие спирты, смесь которых называется сивушным маслом - соединение, от которого зависит специфический аромат вина. Образование побочных веществ связано с тем, что превращение глюкозы частично идет другими путями. Биологический смысл спиртового брожения заключается в том, что образуется определенное количество энергии, которая запасается в форме АТФ, а затем расходуется на все жизненно необходимые процессы клетки.

Спиртовое брожение используется человеком с глубокой древности при изготовлении вина, пива, браги и др. Причина же брожения стала известна лишь в середине XIX в., после того, как Пастер установил, что разложение сахара на спирт и угле­кислый газ связано с дыханием дрожжей в анаэробных условиях. Сбраживание сахара представляет собой сложный биохимический процесс, поэтому приведенное выше уравнение выражает его лишь в общем суммарном виде.

Дрожжи в зависимости от условий брожения образуют разные количества продуктов брожения, среди них могут преобладать либо этиловый спирт и углекислота, либо глицерин и уксусная кислота. Причем сбраживают они не все сахара, а только моносахариды (например, глюкозу) и дисахариды (например, мальтозу). Полисахариды (крахмал) дрожжи сбраживать не способны, так как они не имеют нужного для расщепления полисахаридов фермента (амилазы).

Брожение зависит не только от условий, в которых оно про­текает, но также от вида и расы применяющихся дрожжей. К числу этих условий относятся концентрация сахара, кислот­ность среды, температура и количество накопившегося спирта.
Наиболее благоприятная концентрация сахара в сбраживаемом субстрате для большинства дрожжей составляет около 15%, при более высоких концентрациях брожение замедляется, а затем прекращается вовсе. Однако некоторые дрожжи могут вызывать брожение и при содержании в среде сахара свыше 60%. При концентрации сахара в субстрате в количестве менее 10% брожение протекает очень вяло.
Нормальной для спиртового брожения является кислая среда с рН, равным 4 или 4,5. В щелочной среде брожение протекает с образованием глицерина и уксусной кислоты.

Наилучшая температура брожения находится в пределах 28-32°С. При более высоких температурах брожение замедляется, а при 50°С оно прекращается. Понижение температуры снижает энергию брожения, хотя полностью оно не останавливается даже при 0°С. На практике процессы брожения ведут при температуре в пределах 20-28°С при верховом брожении и в пределах 5-10°С при низовом брожении.

Верховое брожение протекает очень энергично, с образованием на поверхности субстрата большого количества пены и с бурным выделением углекислого газа, потоками которого дрожжи выносятся в верхние слои субстрата. Дрожжи, вызывающие такое брожение, называются верховыми дрожжами. После окончания брожения они оседают на дно бродильных сосудов.

Низовое брожение, вызываемое низовыми дрожжами, идет значительно спокойнее, с образованием небольшого количества пены. Углекислый газ выделяется постепенно и дрожжи остаются в нижнем слое сбраживаемого субстрата.

Верховые дрожжи применяют для получения спирта и пекарских дрожжей, низовые - для производства вина и пива. Для получения вина и пива иногда используют и верховые дрожжи.

Образующийся в процессе брожения спирт оказывает вред­ное воздействие на дрожжи. При накоплении в субстрате спирта более 16% к объему самого субстрата брожение прекращается, а угнетающее действие образовавшегося спирта начинает про­являться уже при концентрации 2-5%. Некоторые же расы специально приученных дрожжей способны выдерживать весь­ма высокие концентрации спирта - до 20-25%.

Спиртовое брожение нормально протекает в анаэробных условиях, создающихся в процессе самого брожения. Но поскольку дрожжи являются факультативными анаэробами, они могут разлагать сахар и в аэробных условиях с образованием углекислого газа и воды. Замечено, что в условиях хорошей аэрации дрожжи усиленно размножаются. Поэтому при производстве пекарских дрожжей бродящий субстрат продувают воздухом.

Для промышленного получения спирта в качестве сырья используют крахмалосодержащие продукты - картофель, зерно­вые культуры, а также отходы сахарного производства. В связи с тем, что дрожжи не способны сбраживать крахмал, его предварительно осахаривают с помощью солода, содержащего фермент амилазу. Солод получают из проросших зерен ячменя. В настоящее время для осахаривания применяют также грибной солод (грибы рода аспергиллус), который во многих отношениях является выгоднее ячменного солода. В результате осахаривания крахмала образуется дисахарид мальтоза - солодовый сахар.

Использование спиртового брожения для производства продуктов питания

Для производства пива чаще всего используют ячмень, из которого получают солод, а из солода приготавливают сусло-сахаристую жидкость, подвергаемую брожению. Вкусовые особенности пива зависят от качества сырья, технологии и применяемых дрожжей. Низовые дрожжи, используемые в пивоварении, ведут медленное брожение, не вызывают значительного помутнения сусла, а по окончании брожения образуют на дне плотный осадок. Среди низовых дрожжей имеются сильнобродящие и слабобродящие дрожжи.

В виноделии до последнего времени дрожжи не играли той преимущественной роли, которая падает на их долю в производстве пива. Основная масса вина получалась путем самосбраживания сусла с помощью случайных дрожжей, находящихся на ягодах винограда. Применение чистых культур в виноделии дает возможность быстрее и полнее осуществить сбраживание виноградного сусла и получить вино с хорошим букетом. Отдельные расы винных дрожжей при сбраживании виноградного сусла способны накапливать до 10-14% спирта. Каждый винодельческий район имеет расы дрожжей, специфические для данной местности, поэтому сорт получаемого вина определяется не только сортом винограда и технологией, но и биологическими особенностями используемых дрожжей.

Чистые культуры дрожжей обязательно применяются при изготовлении шипучих вин. При производстве плодовоягодных вин для каждого вида плодов или ягод подбирают соответствующие расы винных дрожжей, что позволяет получать сорта вин высокого качества.
Для получения хлебного теста используют пекарские дрож­жи, обладающие хорошей подъемной силой и способностью быстро размножаться. Образующиеся в процессе брожения спирт и углекислый газ разрыхляют и поднимают тесто, а побочные продукты брожения придают хлебу особый вкус и аромат.

В производстве хлеба применяют прессованные и жидкие дрожжи, а также закваски. Прессованные дрожжи являются скоропортящимся продуктом и потому должны храниться при низких температурах. Примесь в прессованных дрожжах диких дрожжей и бактерий свидетельствует о их низком качестве.

Жидкие дрожжи изготавливаются непосредственно на хлебозаводах. В отличие от прессованных дрожжей они содержат и молочнокислые бактерии. Вырабатывая молочную кислоту, молочнокислые бактерии препятствуют развитию в тесте картофельной палочки, вызывающей тягучую болезнь хлеба.

Закваски представляют собой тесто, оставляемое от предыдущей выпечки. Их используют для разрыхления ржаного теста. Закваски содержат дрожжи и молочнокислые бактерии. В среду культурных дрожжей, которые применяются в производстве, могут попадать посторонние микроорганизмы, вызывающие порчу продуктов. Так, дикие дрожжи нередко являются вредителями производства вина и пива. Они изменяют вкус и запах этих продуктов, вызывают их помутнение. Особенно опасны пленчатые дрожжи микодерма. Развиваясь в вине и пиве, они окисляют спирт до углекислоты и воды и придают напиткам неприятный вкус.

Микодерма причиняет вред также при производстве пекарских дрожжей. Процесс получения пекарских дрожжей ведут с продуванием субстрата воздухом, так как это способствует их быстрому размножению. Микодерма в таких условиях развивается быстрее, чем настоящие дрожжи. Поскольку микодерма не обладает способностью поднимать тесто, то присутствие ее в культурных дрожжах резко снижает их пекарские свойства.

Вредителями бродильных производств являются также некоторые виды молочнокислых бактерий, вызывающие помутнение вина и пива. Отдельные представители шаровидных бактерий (педиококки) способны придавать пиву особый привкус и мутность, а иногда ослизнять его. Уксуснокислые бактерии могут вызвать порчу вина в результате окисления спирта в уксусную кислоту.


    Брожение
    Основные типы брожения
    История спиртового брожения
    Спиртовое брожение
    Этапы спиртового брожения
    Микроорганизмы, осуществляющие спиртовое брожение
    Используемая литература.
Введение

В 1850 г. Пастер установил, что виноградная кислота состоит из двух изомерных форм, имеющих одну и ту же химическую формулу, но кристаллизующихся в виде кристаллов, формы которых относятся друг к другу, как несимметричный предмет к своему зеркальному отображению. Эти формы отличаются друг от друга определенным физическим признаком, именно, - противоположным вращением плоскости поляризации. Явление это было объяснено Вант-Гоффом в 1874 г. с точки зрения пространственного расположения атомов.

Пастер установил, что плесневый гриб Penicillium glaucum, развиваясь на растворах виноградной кислоты, в первую очередь потребляет одну из двух форм, именно правовращающую, встречающуюся в виде естественного продукта. От изомерии виноградной кислоты он перешел к изомерии амиловых спиртов, образующихся при спиртовом брожении. Это заставило его обратиться к изучению брожений и их природы.

В 1855 г. Пастер обнаружил, что сырой амиловый спирт брожения состоит из двух химически тождественных амиловых спиртов: оптически неактивного и способного вращать плоскость поляризованного света. Уже в прежних своих кристаллографических исследованиях Пастер пришел к обобщению, что оптически активные вещества свойственны только органическому миру и их образование связано с процессом жизни. Отсюда Пастер сделал логическое заключение, что и оптически активный амиловый спирт возникает в процессе брожения при участии живого организма. Если это верно, то брожение есть процесс, связанный с жизнью, сам же фермент должен быть живым организмом. В результате длинного ряда блестящих исследований Пастером была создана теория брожения.

Сам Пастер говорит: "Вовлеченный, даже, вернее сказать, вынужденный логическим развитием моих исследований, я перешел от кристаллографии и молекулярной химии к изучению возбудителей брожения".

Поскольку фрукты сбраживаются в своем натуральном состоянии, брожение появилось раньше человеческой истории. Однако, люди с некоторых пор научились контролировать процесс брожения. Есть веские доказательства того, что люди сбраживали напитки в Вавилоне около 5000 г. до н.э. , в Древнем Египте около 3000 г. до н.э. , в доиспанской Мексике около 2000 г. до н.э. и в Судане около 1500 г. до н.э. Также существуют данные о дрожжевом хлебе в Древнем Египте около 1500 г. до н.э. и сбраживания молока в Вавилоне около 3000 г. до н.э. Китайцы, вероятно, первыми стали сбраживать овощи.

Жизнь микробов возможна и без доступа кислорода воздуха. Энергия, необходимая для жизнедеятельности организма, в этих условиях образуется в результате процессов брожения. Наиболее распространены виды брожений, в процессе которых происходит распад органических веществ (преимущественно Сахаров) под влиянием микроорганизмов, представляющий совокупность окислительно-восстановительных реакций. Брожения никогда не приводят к полному окислению органических веществ. Многие характерные формы брожения протекают без участия кислорода воздуха - анаэробно.

Поскольку свободный кислород, имеющийся на нашей планете, образовался в результате фотосинтеза, возникшего на более поздних этапах развития жизни на Земле, совершенно очевидно, что анаэробный способ извлечения энергии - брожение - более древний, чем процесс дыхания.

Брожение известно людям с незапамятных времен. Тысячелетиями человек пользовался спиртовым брожением при изготовлении вина. Еще раньше было известно о молочнокислом брожении. Люди употребляли в пищу молочные продукты, готовили сыры. При этом они не подозревали, что эти процессы происходят с помощью микроорганизмов. Термин "брожение" был введен голландским алхимиком Ван Хельмонтом в XVII в. для процессов, идущих с выделением газов (fermentatio - кипение). Затем в XIX в. основоположник современной микробиологии Луи Пастер показал, что брожение является результатом жизнедеятельности микробов, и установил, что различные брожения вызываются разными микроорганизмами.

Брожение

Броже?ние (тж. сбра?живание, фермента?ция) - «это такой метаболический процесс, при котором регенерируется АТФ, а продукты расщепления органического субстрата могут служить одновременно и донорами, и акцепторами водорода».
Брожение - это анаэробный (происходящий без участия кислорода) метаболический распад молекул питательных веществ, например глюкозы. По выражению Луи Пастера, «брожение - это жизнь без кислорода». Большинство типов брожения осуществляют микроорганизмы - облигатные или факультативные анаэробы.

Брожение не высвобождает всю имеющуюся в молекуле энергию, поэтому промежуточные продукты брожения могут использоваться в ходе клеточного дыхания.
Термин брожение также используется в более широком смысле, для обозначения бурного роста микроорганизмов в соответствующей среде. При использовании в этом смысле не делается различия между аэробным и анаэробным метаболизмом.

Брожение часто используется для приготовления или сохранения пищи. Говоря о брожении, обычно имеют в виду брожение сахара (превращение его в спирт) с использованием дрожжей, но, к примеру, при производстве йогурта используются другие виды брожения.

Использование брожения человеком обычно предполагает применение определенных видов и штаммов микроорганизмов. Вина иногда улучшают с использованием процесса взаимного брожения.

Продукты брожения - это по сути отходы, получившиеся во время превращения пирувата с целью регенерации NAD+ в отсутствие кислорода. Стандартные примеры продуктов брожения - этанол (питьевой спирт), молочная кислота, водород и углекислый газ. Однако продукты брожения могут быть более экзотическими, такими как масляная кислота, ацетон, пропионовая кислота, 2,3-бутандиол и др.

Основные типы брожения

Спиртовое брожение (осуществляется дрожжами и некоторыми видами бактерий), в ходе него пируват расщепляется на этанол и двуокись углерода. Из одной молекулы глюкозы в результате получается две молекулы питьевого спирта (этанола) и две молекулы углекислого газа. Этот вид брожения очень важен в производстве хлеба, пивоварении, виноделии и винокурении. Если в закваске высока концентрация пектина, может также производиться небольшое количество метанола. Обычно используется только один из продуктов; в производстве хлеба алкоголь улетучивается при выпечке, а в производстве алкоголя двуокись углерода обычно уходит в атмосферу, хотя в последнее время её стараются утилизировать.
Молочнокислое брожение, в ходе которого пируват восстанавливается до молочной кислоты, осуществляют молочнокислые бактерии и другие организмы. При сбраживании молока молочнокислые бактерии преобразуют лактозу в молочную кислоту, превращая молоко в кисломолочные продукты (йогурт, простокваша и др.); молочная кислота придаёт этим продуктам кисловатый вкус.

Молочнокислое брожение происходит также в мышцах животных, когда потребность в энергии выше, чем обеспечиваемая дыханием, и кровь не успевает доставлять кислород.

Обжигающие ощущения в мышцах во время тяжелых физических упражнений соотносятся с получением молочной кислоты и сдвигом к анаэробному гликолизу, поскольку кислород преобразуется в двуокись углерода аэробным гликолизом быстрее, чем организм восполняет запас кислорода; а болезненность в мышцах после физических упражнений вызвана микротравмами мышечных волокон. Организм переходит к этому менее эффективному, но более скоростному методу производства АТФ в условиях недостатка кислорода. Затем печень избавляется от излишнего лактата, преобразуя его обратно в важное промежуточное звено гликолиза - пируват.

Считается, что анаэробный гликолиз был первым источником энергии для общих предков всех живых организмов до того, как концентрация кислорода в атмосфере стала достаточно высокой, и поэтому эта форма генерации энергии в клетках - более древняя. За очень редкими исключениями она существует и у всех ныне живущих клеток.
Уксуснокислое брожение осуществляют многие бактерии. Уксус (уксусная кислота) - прямой результат бактериальной ферментации. При мариновании продуктов уксусная кислота предохраняет пищу от болезнетворных и вызывающих гниение бактерий.

История спиртового брожения

Сбраживание сахаров известно с глубокой древности. В течение столетий пивовары и виноделы использовали способность некоторых дрожжей вызывать спиртовое брожение, в результате которого сахара превращаются в спирт.

Приготовление спиртных напитков, основанных на брожении спиртовом, было известно людям в глубокой древности. Однако суть процесса превращения сахаров в спирт выяснена только в сер. 19 в. Химическое уравнение брожения спиртового дано французскими химиками А.Лавуазье (1789) и Ж.Гей-Люссаком (1815). Разноречивые мнения о сущности брожения привели к длительному научному спору между Л. Пастером и Ю. Либихом. Согласно химической теории Ю. Либиха молекулярные колебания белковых веществ передаются сахару, расшатывают его молекулу, превращая ее в молекулы спирта и диоксида углерода. Убедительные опыты Пастера в 1857 с использованием микроскопических организмов - дрожжей отвергли несостоятельную теорию Либиха. Пастером была защищена биологическая теория, определяющая брожение как результат анаэробного обмена веществ дрожжей. Работами С. П. Костычева и В. И. Палладина доказано, что анаэробный распад молекулы сахара является начальным этапом кислородного дыхания. В 1871 рус. врач-биохимик М. М. Манассеина первая указала на возможность бесклеточного брожения спиртового, а в 1897 братьями Э. и Т. Бухнер была раскрыта ферментативная сущность реакций процесса благодаря использованию простого метода получения бесклеточного дрожжевого сока, разработанного русским биохимиком А.Н. Лебедевым. Процесс брожения спиртового исследовался многими выдающимися отечественными и зарубежными биохимиками и физиологами: Л. А. Ивановым, А. Гарденом, К. Нёйбергом, Г. Эмбденом, О. Мейергофом, Я. Парнасом и др. Первый значительный шаг в изучении химизма брожения спиртового был сделан Ивановым и Лебедевым, доказавшими участие фосфатов в брожении сахарных растворов. Большое значение имело открытие Иванова, доказавшего, что анаэробному распаду при брожении подвергается не свободная молекула гексозы, а предварительно образующийся ее фосфорный эфир. Последующее изучение механизма Б. с. показало, что первым этапом химических реакций является гликолиз, объединяющий реакции, протекающие в живых клетках до образования пировиноградной кислоты. Эти реакции осуществляются с тем же запасом энергии и тем же ферментативным путем как в анаэробных (спиртовое брожение), так и в аэробных условиях (дыхание).

Спиртовое брожение

Спиртовое брожение - это процесс окисления углеводов, в результате которого образуются этиловый спирт, углекислота и выделяется энергия.

Брожение производят главным образом дрожжи, а также некоторые бактерии и грибы. В различных странах для получения спирта используют различные микроорганизмы.

Например, в Европе используют в основном дрожжи из рода Saccharomyces,
в Южной Америке - бактерии Pseudomonas lindneri,
в Азии - мукоровые грибы.

Спиртовое брожение вызывают дрожжи, а также некоторые плесневые грибы и бактерии. Типичное брожение с высоким выходом спирта наблюдается в результате жизнедеятельности культурных дрожжей (сахаромицес).

В промышленном производстве спирта используют различные материалы: пшеницу, рожь, ячмень, кукурузу, картофель, свеклу, древесные опилки, солому и т. Клетчатку соломы и древесных опилок предварительно подвергают кисличному гидролизу, а крахмал зерновых злаков - осахариванию солодом.

Химизм спиртового брожении зависит от характера субстрата, концентрации в нем сахара, реакции среды (pH), вида и расы дрожжей, окружающей температуры, Наибольший выход спирта отмечают в результате аппаратного брожения.

В бродильной промышленности используются дрожжи верхового и низшего брожения. Верховое брожение лучше развивается при температуре 18-30°; протекает бурно, с обильным выделением углекислого газа, пенообразованием и появлением пленки на поверхности субстрата.

Дрожжи верхового брожения применяют в спиртовой промышленности и хлебопечении. Низовое брожение совершается спокойно; его используют в пивоварении; развивается оно при низкой температуре (4 - 10°) с постепенным просветлением субстрата. Дрожжи обычно оседают на дно сосуда

Сбраживаться могут лишь углеводы, и притом весьма избирательно. Дрожжи сбраживают только некоторые 6-углеродные сахара (глюкозу, фруктозу, маннозу).

Реакция спиртового брожения подобна гликолизу. Расхождение начинается только после образования пирувата. Конечный этап гликолиза заменяется двумя ферментативными реакциями. Сначала пируват подвергается декарбоксилированию, продуктом которого является ацетальдегид. Данная реакция происходит при участии пируватдекарбоксилазы, ТПФ и ионов магния.

После ацетальдегид восстанавливается водородом, который отщепляется от кофермента НАДН. При этом ацетальдегид восстанавливается до этанола. Собственно, цель спиртового брожения - это окисления NADH, чтобы он мог снова принять участие в гликолизе. Катализатором является алкогольдегидрогеназа.

Таким образом, продуктами спиртового брожения являются этанол и CO2, а не молочная кислота, как в молочнокислом брожении.

В результате получается реакция:

C 6 H 12 O 6 - > 2C 2 H 5 OH + 2CO 2 + 23,5?104 дж
глюкоза - > этиловый спирт + углекислота + энергия

Процесс спиртового брожения - многоступенчатый, состоящий из цепи химических реакций. Превращения глюкозы до образования пировиноградной кислоты происходят так же, как и при дыхании. Эти реакции происходят без участия кислорода (анаэробно). Далее пути дыхания и брожения расходятся.

При спиртовом брожении пировиноградная кислота превращается в конечном итоге в спирт и углекислоту. Эти реакции протекают в две стадии. Сначала от пирувата отщепляется СО 2 и образуется уксусный альдегид; затем уксусный альдегид присоединяет водород, восстанавливаясь в этиловый спирт. Все реакции катализируются ферментами. В восстановлении альдегида участвует НАД·H 2 .

Обычно при спиртовом брожении, кроме главных продуктов, образуются побочные. Они довольно разнообразны, но присутствуют в небольшом количестве: амиловый, бутиловый и другие спирты, смесь которых называется сивушным маслом - соединение, от котерого зависит специфический аромат вина. Образование побочных веществ связано с тем, что превращение глюкозы частично идет другими путями.

Спиртовое брожение протекает обычно при pH 3-6. Если его проводить в щелочной среде, например в присутствии NaHCO 3 , также происходит накопление в сбраживаемом растворе глицерина. Оказалось, что в щелочных условиях ацетальдегид не может акцептировать электроны, поскольку в этих условиях он участвует в реакции дисмутации с образованием уксусной кислоты и этилового спирта. Акцептором электронов, как и в предыдущем случае, служит фосфодиоксиацетон. Процесс брожения в щелочной среде можно представить в виде следующего уравнения:

2C 6 H 12 O 6 ® 2C 3 H 8 O 3 + CH 3 -COOH+ CH 3 -CH 2 OH+ 2CO 2 .
Глюкоза глицерин уксусная кислота этиловый спирт

биологический смысл спиртового брожения заключается в том, что образуется определенное количество энергии, которая запасается в форме АТФ, а затем расходуется на все жизненно необходимые процессы клетки.

Процесс молочнокислого брожения имеет большое сходство со спиртовым брожением. Отличие заключается лишь в том, что при молочнокислом брожении пировиноградная кислота не декарбоксилируется, а, как и при гликолизе в животных тканях, восстанавливается при участии ЛДГ за счет водорода НАДН.

Известны 2 группы молочно-кислых бактерий. Бактерии одной группы в процессе брожения углеводов образуют только молочную кислоту, а бактерии другой из каждой молекулы глюкозы «производят» по одной молекуле молочной кислоты, этанола и СО 2 .

Существуют и другие виды брожения, конечными продуктами которых могут являться пропионовая, масляная и янтарная кислоты, а также другие соединения.

Этапы брожения

Последовательность и взаимосвязь отдельных реакций, протекающих на промежуточных этапах брожения, схематически представлена ниже (молекула глюкозы для простоты изображена в виде цепи).

1. Фосфорилирование D-глюкозы за счет АТФ с образованием глюкозо-6-фосфата. Эта первая реакция гликолиза катализируется тексокиназой. В клетке количество свободной D-глюкозы сравнительно не велико; большая ее часть находится в фосфорилированной форме:
АТФ + D-глюкоза - АДФ + D-глюкозо-б-фосфат.

2. Превращение D-глюкозо-б-фосфата во фруктозо-6-фосфат в результате реакции изомеризации, катализируемой фосфогексозоизомеразой:
D-глюкозо-б-фосфат # D-фруктозо-б-фосфат.

3. Фосфорилирование D-фурктозо-б-фосфата путем присоединения
еще одного остатка фосфорной кислоты с образованием фруктозо-1,6-дифосфата. В этой второй „пусковой" реакции используется еще одна молекула АТФ при участии фермента фосфофруктокиназы. Доказано, что суммарная скорость гликолиза лимитируется именно
этой реакцией, катализируемой фосфофруктокиназой:
АТФ + D-фруктозо-б-фосфат -> АДФ + О-фруктозо-1, 6-дифосфат.

4. Расщепление фруктозо-1, 6-дифосфата на 2 фосфотриозы: глицеральдегид-3-фосфат и диоксиацетонфосфат. Реакция катализируется альдолазой:
0-фруктозо-1, 6-дифосфат «^ диоксиацетонфосфат + D-глицеральдегид-3-фосфат.

5. В последующие реакции гликолиза может непосредственно включаться только одна из двух образующихся фосфотриоз, а именно глицеральдегид-3-фосфат. Однако и диоксиацетонфосфат благодаря присутствию в клетке специфического фермента триозофосфатизомеразы полностью преобразуется в глицеральдегид-3-фосфат. В результате этой реакции обеспечивается полное использование глюкозы в энергетическом обмене клетки:
диоксиацетонфосфат «± D-глицеральдегид-З-фосфат.

6. Окисление глицеральдегид-3-фосфата до 1,3-дифосфоглицерата. Реакция катализируется специфической дегидрогеназой триозофосфата (глицеральдегид-3-фосфат- дегидрогеназой) и называется реакцией гликолитического окисления-восстановления. Окисление глицеральдегид-3-фосфата, катализируемого дегидрогеназой, является единственный окислительным этапом на всем протяжении гликолиза. Однако кислород в этой реакции не участвует. Требуется лишь присутствие окислителя НАД + , который при этом восстанавливается до НАД Н (символом НАД обозначается окислительно-восстановительный кофермент никотинамид-адениндинуклеотид, НАД+ - его окисленная форма, НАД-Н- восстановленная):
D-глицеральдегид-З-фосфат + НАД+ + Фн -> 1,3-дифосфоглицерат +НАДН + Н +

7. Перенос фосфатной группы от 1,3-дифосфоглицерата на АДФ. Под действием двух ферментов (глицеральдегид-3-фосфат- дегидрогеназы и фосфоглицераткиназы) энергия, высвобождающаяся при окислении альдегидной группы до карбоксильной, запасается в форме энергии фосфатных связей АТФ.
1,3-Дифосфоглицерат + АДФ # 3-фосфоглицерат + АТФ.
Глицеральдегид-3-фосфат + Фн + АДФ + НАД+ <* 3-фосфоглицерат + + АТФ + НАД-Н + Н+. (к реакциям 1 и 3)

8. Превращение 3-фосфоглицерата в 2-фосфоглицерат катализируется фосфоглицеромутазой:
3-фосфоглицерат <± 2-фосфоглицерат.

9. Дегидратация 2-фосфоглицерата с образованием фосфоенолпирувата катализируется енолазой:
2-фосфоглицерат # фосфоенолпируват + N20.

10. Перенос фосфатной группы от фосфоенолпирувата на,АДФ с образованием пирувата и АТФ катализируется пируваткиназой (АТФ:
пируват-фосфотрансферазой):
фосфоенолпируват + АДФ ^ пируват + АТФ. Образование пировиноградной кислоты - поворотный этап анаэробного расщепления сахара, являющийся общим для дыхания, гликолиза и брожения всех видов. Основное значение гликолиза состоит в перестройке структуры молекулы глюкозы в высокоактивный и лабильный в химическом отношении пируват, что облегчает биохимическое превращение исходного субстрата на последующих этапах окислительно-восстановительных процессов.

11. Если кислород отсутствует, то дальнейшие превращения пировиноградной кислоты происходят анаэробным путем, в процессе брожения (молочнокислого, спиртового и др.). При брожении последний этап гликолиза, катализируемого лактатдегидрогеназой, заменен двумя др. ферментативными реакциями, при участии соответственно пируват-декарбоксилазы и алкогольдегидрогеназы. В результате этих реакций образуется этиловый спирт - конечный продукт спиртового брожения.
А. Пируват -+> Ацетальдегид + СO2 (необратимая реакция). Б. Ацетальдегид + НАД-Н + Н+ «± Этанол + НАД+.
Суммарное уравнение спиртового брожения:
С6Н1206 + 2Фн + 2АДФ -> 2С,Н5ОН + 2СO2 + + 2АТФ.
При введении специфическихингибиторов формы брожения спиртового изменяются.
Вторая форма брожения Нёйберга. Для получения глицерина в сбраживаемую среду вводят бисульфит натрия, который связывает ацетальдегид и предотвращает этим реакцию восстановления его до спирта. Водород восстановленного НАД- Н2 в этом случае используется на восстановление фосфоглицеринового альдегида до глицерина (реакции 4 и 5). Таким образом, при брожении сульфитированного виноградного сусла происходит накопление в виноматериалах глицерина и ацетальдегида в виде бисульфитного производного. Эту форму брожения называют глицеропировиноградным брожением. Третья форма брожения Нёйберга. При щелочной реакции среды ход брожения изменяется: половина молекул ацетальдегида окисляется до уксусной кислоты, другая - восстанавливается до этилового спирта. Происходит подкисление субстрата.
В процессе брожения спиртового в отсутствие кислорода воздуха высвобождается лишь незначительная часть энергии (117кДж), потенциально заложенной в одном моле глюкозы (2817кДж), тогда как при дыхании - полном окислении глюкозы до СO2 и Н20 - значительно больше (1504кДж). Доступ кислорода, обеспечивающий более эффективное в энергетическом отношении аэробное дыхание, предохраняет клетки от излишних трат веществ, происходящих в процессе анаэробиоза. Подобное действие кислорода, выражающееся в угнетении брожения дыханием в значительном снижении потребления глюкозы, названо Пастера эффектом. Явление торможения дыхания дрожжей и активация брожения при аэрации получило название Крэбтри эффекта.
При брожении спиртовом кроме основных продуктов распада углеводов - этилового спирта и углекислого газа - образуются вторичные продукты (глицерин, янтарная кислота, ацетальдегид, уксусная, пировиноградная, молочная и лимонная кислоты, 2,3-бутиленгликолъ, ацетоин, диацетил, эфиры, высшие спирты). Исходным продуктом образования большинства вторичных продуктов является ацетальдегид, который в дозе 400мг/дм3 угнетает брожение, а при более высоких его дозах дрожжи теряют жизнеспособность. Поэтому для дрожжей является физиологической необходимостью превращать ацетальдегид в более безвредные продукты - в этиловый спирт и вторичные продукты, играющие важную роль в обмене веществ дрожжевой клетки и обогащающие вина полезными компонентами, обусловливающими их букет и вкус. При брожении дрожжи выделяют в среду сульфгидрильные SH-соединения (глютатион, цистеин), снижающие редокспотенциал Eh, являющийся важным показателем технологического процесса, т.к. развитие вина, начиная с выдержки и кончая созреванием и старением, связано в основном с течением окислительно-восстановительных реакций. Количество таких соединений обусловлено особенностями расы дрожжей и условиями брожения. Многочисленные исследования окислительно-восстановительных процессов и редокссистем сусла и вина проведены А. К. Родопуло. На брожение спиртовое, кроме виноделия, основано пивоварение, производство этилового спирта, глицерина, приготовление теста в хлебопечении.

Микроорганизмы, осуществляющие спиртовое брожение

Накопление этилового спирта в среде в анаэробных условиях наблюдается у разных групп эубактерий и группы эукариотных микроорганизмов - дрожжей.

Эубактерии

Способность осуществлять в анаэробных условиях спиртовое брожение по пути, описанному в предыдущем разделе, присуща некоторым эубактериям, принадлежащим к разным таксономическим группам, например Sarcina ventriculi, Erwinia amylovora.

S. ventriculi относится к группе грамположительных анаэробных кокков. Клетки неподвижные; делятся в трех плоскостях, поэтому в культуре часто образуют пакеты, состоящие из 64 и более клеток. Веществом, связывающим клетки в пакетах, служит целлюлоза. Описана способность образовывать эндоспоры. Аэротолерантный анаэроб. Единственный способ получения энергии - сбраживание Сахаров. Потребность в питательных веществах довольно высока (многочисленные аминокислоты и ряд витаминов).

E. amylovora относится к группе энтеробактерий. Это грамотрицательные подвижные палочки. Особенностью вида является его патогенность для растений. Факультативный анаэроб. В аэробных условиях получает энергию в процессе дыхания.

Помимо этилового спирта и CO 2 в качестве продуктов брожения S. ventriculi в среде накапливается уксусная кислота и выделяется молекулярный водород, у E. amylovora накапливается молочная кислота. Разнообразие конечных продуктов у этих бактерий связано с тем, что пируват, образующийся при сбраживании глюкозы по гликолитическому пути, далее может метаболизироваться различно: восстанавливаться до молочной кислоты; подвергаться декарбоксилированию и последующему восстановлению, как описано в предыдущем разделе; подвергаться ферментативному расщеплению, приводящему к образованию ацетата и др.

У многих клостридиев и энтеробактерий среди продуктов брожения обнаруживают этиловый спирт, но путь его образования отличен от описанного в предыдущем разделе. Сбраживание сахаров до пировиноградной кислоты происходит по гликолитическому пути, дальнейшее же превращение пирувата идет не через пируватдекарбоксилазу. У названных групп бактерий пируват подвергается расщеплению, приводящему к образованию ацетил-КоА. Реакция катализируется пируватдегидрогеназой. Ацетил-КоА затем восстанавливается до ацетальдегида:
и т.д.................

Спиртовое брожение.

Биохимические этапы спиртового брожения.

При спиртовом брожении помимо основных продуктов - спир­та и СО 2 , из сахаров возникает множество других, так называе­мых вторичных продуктов брожения. Из 100 г С 6 Н 12 О 6 образует­ся 48,4 г этилового спирта, 46,6 г диоксида углерода, 3,3 г глице­рина, 0,5 г янтарной кислоты и 1,2 г смеси молочной кислоты, ацетальдегида, ацетоина и других органических соединений.

В современной схеме спиртового брожения насчитывается 10-12 фаз биохимических превращений гексоз под действием комплекса ферментов дрожжей. В упрощенном виде можно вы­делить три этапа спиртового брожения.

I этап - фосфорилирование и распад гексоз. На этом этапе протекает несколько реакций, в результате которых гексоза пре­вращается в триозофосфат:

АТФ → АДФ

Главную роль в передаче энергии в биохимических реакциях играют АТФ (аденозинтрифосфат) и АДФ (аденозиндифосфат). Они входят в состав ферментов, аккумулируют большое коли­чество энергии, необходимой для осуществления жизненных про­цессов, и представляют собой аденозин - составную часть ну­клеиновых кислот - с остатками фосфорной кислоты. Вначале образуется адениловая кислота (монофосфат аденозина, или аденозинмонофосфат - АМФ):

Если обозначить аденозин буквой А, то строение АТФ может быть представлено в следующем виде:

А-О-Р-О ~ Р - О ~ Р- ОН

Значком с ~ обозначены так называемые макроэргические фосфатные связи, чрезвычайно богатые энергией, которая выде­ляется при отщеплении остатков фосфорной кислоты. Передача энергии с АТФ на АДФ может быть представлена следующей схе­мой:


Выделяющаяся энергия используется дрожжевыми клетками для обеспечения жизненных функций, в частности их размноже­ния. Первым актом выделения энергии и является образование фосфорных эфиров гексоз - фосфорилирование их. Присоедине­ние к гексозам остатка фосфорной кислоты от АТФ происходит под действием фермента фосфогексокиназы, поставляемого дрожжами (молекулу фосфата обозначим буквой Р):


Глюкоза Глюкозо-6-фосфат фруктозо-1,6-фосфат

Как видно из приведенной схемы, фосфорилирование проис­ходит дважды, причем фосфорный эфир глюкозы под действием фермента изомеразы обратимо превращается в фосфорный эфир фруктозы, имеющий симметричное фурановое кольцо. Симмет­ричное расположение остатков фосфорной кислоты по концам молекулы фруктозы облегчает ее последующий разрыв как раз в середине. Распад гексозы на две триозы катализирует фермент альдолаза; в результате распада образуется неравновесная смесь 3-фосфоглицеринового альдегида и фосфодиоксиацетона:


Фосфоглицери-новый альдегид (3,5 %) Фосфодиокси-ацетон (96,5 %)

В дальнейших реакциях участвует только 3-фосфоглицерино­вый альдегид, содержание которого постоянно пополняется под действием фермента изомеразы на молекулы фосфодиоксиацетона.

ІІ этап спиртового брожения - образование пировиноградной кислоты. На втором этапе триозофосфат в виде 3-фосфоглицеринового альдегида под действием окислительного фермента дегидрогеназы окисляется в фосфоглицериновую кислоту, а она при участии соответствую­щих ферментов (фосфоглицеромутазы и энолазы) и системы ЛДФ - АТФ превращается в пировиноградную кислоту:

Вначале каждая молекула 3-фосфоглицеринового альдегида присоединяет к себе еще один остаток фосфорной кислоты (за счет молекулы неорганического фосфора) и образуется 1,3-дифосфоглицериновый альдегид. Затем в анаэробных условиях про­исходит его окисление в 1,3-дифосфоглицериновую кислоту:


Активной группой дегидрогеназы является кофермент сложного органического строения НАД (никотинамидадениндинуклеотид), фиксирующий своим никотинамидным ядром два атома водорода:

НАД+ + 2Н+ + НАД Н2

НАД окисленный НАД восстановленный

Окисляя субстрат, кофермент НАД становится обладателем свободных ионов водорода, что придает ему высокий восстано­вительный потенциал. Поэтому бродящее сусло всегда характеризуется высокой восстанавливающей способностью, что имеет большое практическое значение в виноделии: понижается рН среды, восстанавливаются временно окисленные вещества, погибают патогенные микроорганизмы.

В заключительной фазе II этапа спиртового брожения фермент фосфотрансфераза дважды катализирует перенос остатка фосфорной кислоты, а фосфоглицеромутаза перемещает его от 3-го угле­родного атома ко 2-му, открывая возможность ферменту энолазе образовать пировиноградную кислоту:


1,3-Дифосоглицериновая кислота 2-Фосфогглицериновая кислота Пировиноградная кислота

В связи с тем что из одной молекулы дважды фосфорилированной гексозы (израсходовано 2 АТФ) получаются две молеку­лы дважды фосфорилированных триоз (образовано 4 АТФ), чи­стым энергетическим балансом ферментативного распада саха­ров является образование 2 АТФ. Эта энергия обеспечивает жиз­ненные функции дрожжей и вызывает повышение температуры бродящей среды.

Все реакции, предшествующие образованию пировиноградной кислоты, присущи как анаэробному сбраживанию сахаров, так и дыханию простейших организмов и растений. III этап име­ет отношение только к спиртовому брожению.

III этап спиртового брожения - образование этилового спирта. На заключитель­ном этапе спиртового брожения пировиноградная кислота под действием фермента декарбоксилазы декарбоксилируется с об­разованием ацетальдегида и диоксида углерода, а с участием фермента алкогольдегидрогеназы и кофермента НАД-Н2 проис­ходит восстановление ацетальдегида в этиловый спирт:


Пировиноградная кислота Ацетилальдегид Этиловый спирт

Если в бродящем сусле есть избыток свободной сернистой кислоты, то часть ацетальдегида связывается в альдегидсернистое соединение: в каждом литре сусла 100 мг Н2SO3 связывают 66 мг СН3СОН.

Впоследствии при наличии кислорода это нестойкое соедине­ние распадается, и в виноматериале обнаруживают свободный ацетальдегид, что особенно нежелательно для шампанских и сто­ловых виноматериалов.

В сжатом виде анаэробное превращение гексозы в этиловый спирт может быть представлено следующей схемой:

Как видно из схемы спиртового брожения, сперва образуются фосфорные эфиры гексоз. При этом молекулы глюкозы и фруктозы под действием фермента гексокеназы присоединяют остаток фосфорной кислоты от аденозиттрифосфата (АТФ), при этом образуется глюкоза-6-фосфат и аденозитдифосфат (АДФ).

Глюкоза-6-фосфат под действием фермента изомеразы превращается в фруктозу-6-фосфат, присоединяющий еще один остаток фосфорной кислоты из АТФ и образующий фруктозу-1,6-дифосфат. Эта реакция катализируется фосфофруктокиназой. Образованием этого химического соединения заканчивается первая подготовительная стадия анаэробного распада сахаров.

В результате этих реакций молекула сахара переходит в оксиформу, приобретает большую лабильность и становится более способной к ферментативным преобразованиям.

Под влиянием фермента альдолазы фруктоза-1, 6-дифосфат расщепляется на глицеринальдегидофосфорную и диоксиацетонофосфорную кислоты, способные превращаться одна в одну под действием фермента триозофосфатизомеразы. Дальнейшему преобразованию подвергается фосфоглицериновый альдегид, которого образуется приблизительно 3 % по сравнению с 97 % фосфодиоксиацетона. Фосфодиоксиацетон, по мере использования фосфоглицеринового альдегида, превращается под действием изомеразы фосфотриоз в 3-фосфоглицериновый альдегид.

На второй стадии 3-фосфоглицериновый альдегид присоединяет еще один остаток фосфорной кислоты (за счет неорганического фосфора) с образованием 1, 3-дифосфоглицеринового альдегида, который дегидруется под действием триозофосфатдегидрогеназы и дает 1, 3-дифосфоглицериновую кислоту. Водород, в этом случае, переносится на окисленную форму кофермента НАД. 1, 3-дифосфоглицериновая кислота, отдавая АДФ (под действием фермента фосфоглицераткеназы) один остаток фосфорной кислоты, превращается в 3-фосфоглицериновую кислоту, которая под действием фермента фосфоглицеромутазы превращается в 2-фосфоглицериновую кислоту. Последняя, под действием фосфопируватгидротазы, превращается в фосфоэнолпировиноградную кислоту. Дальше, при участии фермента пируваткеназы, фосфоэнолпировиноградная кислота передает остаток фосфорной кислоты молекуле АДФ, в результате чего образуется молекула АТФ и молекула энолпировиноградной кислоты переходит в пировиноградную кислоту.

Третья стадия спиртового брожения характеризуется расщеплением пировиноградной кислоты под действием фермента пируватдекарбоксилазы на диоксид углерода и уксусный альдегид, который под действием фермента алкогольдегидрогеназы (коферментом ее является НАД) восстанавливается в этиловый спирт.

Суммарное уравнение спиртового брожения может быть представлено так :

С6Н12О6 + 2Н3РО4 + 2АДФ → 2С2Н5ОН + 2СО2 + 2АТФ + 2Н2О

Таким образом, при брожении происходит преобразование одной молекулы глюкозы в две молекулы этанола и две молекулы диоксида углерода.

Но указанный ход брожения не единственный. Если, например, в субстрате нет фермента пируватдекарбоксилазы, то не происходит расщепление пировиноградной кислоты до уксусного альдегида и восстановлению подвергается непосредственно пировиноградная кислота, превращаясь в молочную кислоту в присутствии лактатдегидрогеназы.

В виноделии брожение глюкозы и фруктозы происходит в присутствии бисульфита натрия. Уксусный альдегид, образующийся при декарбоксилировании пировиноградной кислоты, удаляется в результате связывания бисульфитом. Место уксусного альдегида занимают диоксиацетонфосфат и 3-фосфоглицериновый альдегид, они получают водород от восстановленных химических соединений, образуя глицерофосфат, который превращается в результате дефосфорилирования в глицерин. Это вторая форма брожения по Нейбергу. По этой схеме спиртового брожения происходит накопление глицерина и уксусного альдегида в виде бисульфитной производной.


Спиртовое брожение - 4.5 out of 5 based on 6 votes

Спиртовое брожение - это процесс окисления углеводов, в результате которого образуются этиловый спирт, углекислота и выделяется энергия.[ ...]

Брожение известно людям с незапамятных времен. Тысячелетиями человек пользовался спиртовым брожением при изготовлении вина. Еще раньше было известно о молочнокислом брожении. Люди употребляли в пищу молочные продукты, готовили сыры. При этом они не подозревали, что эти процессы происходят с помощью микроорганизмов. Термин «брожение» был введен голландским алхимиком Ван Хельмонтом в XVII в. для процессов, идущих с выделением газов егте аио - кипение). Затем в XIX в. основоположник современной микробиологии Луи Пастер показал, что брожение является результатом жизнедеятельности микробов, и установил, что различные брожения вызываются разными микроорганизмами.[ ...]

Спиртовое, гомоферментативное молочнокислое и маслянокислое брожения являются основными типами брожений. Все другие виды брожений представляют собой комбинацию этих трех типов. Так, например, пропионовокислое брожение, играющее важную роль при производстве сыров и сопровождающееся накоплением пропионовой и уксусной кислот и углекислого газа, может рассматриваться как комбинация гомоферментативного молочнокислого и спиртового брожений. Брожения клетчатки и пектиновых веществ являются разновидностями маслянокислого брожения.[ ...]

При спиртовом брожении пировиноградная кислота превращается в конечном итоге в спирт и углекислоту. Эти реакции протекают в две стадии. Сначала от пирувата отщепляется СОа и образуется уксусный альдегид; затем уксусный альдегид присоединяет водород, восстанавливаясь в этиловый спирт. Все реакции катализируются ферментами. В восстановлении альдегида участвует НАД-Нг.[ ...]

Вместо спиртового брожения можно выбрать молочнокислое брожение, которое проводится бактериями Lactobacillus pento-sus. Выход продуктов на 1 т вырабатываемой целлюлозы равен 125 кг молочной кислоты 95%-ной чистоты и 30 кг уксусной кислоты .[ ...]

Процесс спиртового брожения - многоступенчатый, состоящий из цепи химических реакций. Превращения глюкозы до образования пи-ровиноградной кислоты происходят так же, как и при дыхании. Эти реакции происходят без участия кислорода (анаэробно). Далее пути дыхания и брожения расходятся.[ ...]

Отходом спиртового производства является отработанная барда; она содержит неспособные к брожению сахара, лигно-сульфоновую кислоту и ряд других органических соединений. Барда служит исходным сырьем для выращивания кормовых дрожжей, поэтому спиртовые и дрожжевые производства целесообразно объединять в общий комплекс биохимической, переработки щелоков.[ ...]

Процессы брожения осуществляются многими видами бактерий и дрожжей.[ ...]

Обычно при спиртовом брожении, кроме главных продуктов, образуются побочные. Они довольно разнообразны, но присутствуют в небольшом количестве: амиловый, бутиловый и другие спирты, смесь которых называется сивушным маслом - соединение, от которого зависит специфический аромат вина. Образование побочных веществ связано с тем, что превращение глюкозы частично идет другими путями.[ ...]

Барда после спиртового брожения хвойных сульфитных щелоков обычно имеет рН = 4,2- 4,4 и для выращивания кормовых дрожжей не требует дополнительной нейтрализации.[ ...]

В результате спиртового брожения молекула гексозы распадается на 2 молекулы этилового спирта и 2 молекулы углекислоты по уравнению, предложенному Гей-Люссаком.[ ...]

По окончании брожения и отделения дрожжей спиртовая бражка содержит от 1,2 до 1,6% этилового спирта и около 1% чентозных сахаров.[ ...]

Сточные воды спиртово-паточных заводов. Патока (побочный продукт производства сахара) содержит наряду с некристаллизующимися растворимыми веществами свеклы около 50% сахара. Она применяется в спиртовой промышленности в качестве дешевого сырья, для производства спирта. Перед брожением патоку необходимо разбавлять водой по меньшей мере на 300%.[ ...]

Молочнокислое брожение широко используется при выработке молочных продуктов: простокваши, ацидофилина, творога, сметаны. При производстве кефира, кумыса наряду с молочнокислым брожением, вызываемым бактериями, имеет место и спиртовое брожение, вызываемое дрожжами. Молочнокислое брожение происходит на первом этапе изготовления сыра, затем молочнокислые бактерии сменяются пропионово кислыми.[ ...]

Молочнокислое брожение. Наиболее простым типом брожения следует считать молочнокислое. Различают два вида молочнокислого брожения: типичное молочнокислое брожение (гомоферментативное) и нетипичное (гетероферментативное). В первом случае процесс осуществляется однородными ферментами (только ферментами, участвующими в восстановлении пировиноградной кислоты в молочную). Во втором случае разнородные ферменты вызывают, кроме молочнокислого, также и спиртовое с образованием в качестве побочных продуктов уксусной кислоты и этилового спирта.[ ...]

Возбудителями спиртового брожения являются различные виды специально культивируемых дрожжевых микроорганизмов. Кроме дрожжей, спиртовое брожение могут вызывать некоторые виды дрожжеподобных грибков, плесневых грибов и бактерий. Эти процессы проходят лучше при некотором доступе воздуха.[ ...]

Из всех процессов брожения, которые протекают при определенной температуре и pH среды, наиболее распространенным является спиртовое брожение. При этом сахара с шестью атомами углерода расщепляются дрожжевыми грибками на этиловый спирт и углекислоту. Кроме этих веществ, образуются в небольших количествах глицерин, сложные эфиры, высшие спирты (сивушное масло) и другие побочные продукты.[ ...]

На ряде гидролизно-спиртовых заводов в технологическом процессе предусмотрена двухступенчатая биохимическая переработка гидролизатов. Вначале проводится спиртовое брожение гексоз, затем спирт из бражки отгоняется, а спиртовая барда, содержащая неиспользованные пентозы и органические кислоты, используется как среда для выращивания кормовых дрожжей.[ ...]

Изучение процессов брожения, вызываемых живыми дрожжами, представляет значительные методические трудности. Поэтому установить химизм спиртового брожения возможно было только после открытия бесклеточного брожения. В этом случае стало возможно изучать процессы спиртового брожения независимо от всех других жизненных процессов - размножения, роста и разных химических превращений, сопровождающих брожение живых дрожжей. Многочисленные исследования процессов брожения ферментного дрожжевого сока показали, что в этом процессе принимают участие различные ферменты, в ходе бро-, ження образуются различные промежуточные и побочные продукты. Большую роль в брожении играют соединения фосфорной кислоты.[ ...]

Биологический смысл спиртового брожения заключается в том, что образуется определенное количество энергии, которая запасается в форме АТФ, а затем расходуется на все жизненно необходимые процессы клетки.[ ...]

Различают много видов брожения: спиртовое, молочнокислое, маслянокислое, ацетонобутиловое и др. Для очистки сточных вод используются анаэробные процессы, где преобладает метановое брожение, в результате которого образуется метан.[ ...]

Хозяйственное значение спиртового брожения очень велико. Оно используется в виноделии, пивоварении, винокурении и хлебопечении. В первых трех процессах используется способность дрожжей образовывать спирт на растворах сахара. В виноделии таким сахарным раствором служит виноградный сок или сок каких-нибудь сахаристых ягод и фруктов. При производстве пива сахаросодержащим субстратом является солодовое сусло, т. е. раствор сахаров, получаемый при водной экстракции солода. Солод - это проросшие зерна ячменя, в которых происходит оса-харивание крахмала. Иногда вместо ячменя используют другие злаки - рожь, пшеницу.[ ...]

Гидролизное и сульфитно-спиртовое сусло является специфической средой, ограничивающей развитие посторонних микроорганизмов. Несмотря на это, посторонние микроорганизмы приспосабливаются к малоблагоприятным условиям и встречаются на гидролизных и сульфитно-спиртовых заводах. Но эти вредители спиртового брожения и других процессов немногочисленны и не отличаются видовым разнообразием. К посторонней микрофлоре относятся главным образом бактерии и некоторые пленчатые и дрожжеподобные грибы. Они попадают в сусло и бражку в основном из окружающего воздуха, а также вносятся с применяемыми дрожжами, приспосабливаются к малоблагоприятным условиям среды и размножаются, нанося большой вред производству.[ ...]

Пастер впервые установил, что брожение вызывают живые микроорганизмы, т. е. природа брожения не химическая, а биохимическая, что некоторые виды брожения (спиртовое, маслянокислое) могут происходить в среде, лишенной кислорода. Своими многочисленными исследованиями он доказал, что микроорганизмы самопроизвольно зарождаться не могут. С именем Пастера связано возникновение технической микробиологии. Другие работы этого ученого также показали огромную роль микроорганизмов в природе и в жизни людей.[ ...]

Закон взаимосвязи между дыханием и брожением носит название Пастеровского эффекта. Он показывает влияние кислорода воздуха на процесс брожения, или под ним подразумевают подавление брожения дыханием, т. е. перемену типа дыхания с анаэробного на аэробный. Пользуясь этим законом, можно регулировать дрожжевое и спиртовое производства.[ ...]

Из других грибков способны вызывать спиртовое брожение некоторые виды монилии, но в отличие от мукоровых грибов брожение, вызываемое этими грибами, не зависит от присутствия кислорода. Недостатком брожений, вызываемых плесневыми грибами, является то, что они для своего развития используют большое количество углеводов и на поверхности жидкости образуют воздушный мицелий.[ ...]

Гетероферментативное молочнокислое брожение вызывают бактерии рода Lactobacterium и рода Streptococcus. Химизм этих брожений изучен не так хорошо, как спиртового или гомоферментативно го молочнокислого брожения.[ ...]

Маринование и спиртование, квашение и спиртовое брожение. Большинство микроорганизмов плохо или вовсе не развивается в кислой среде или в среде, содержащей спирт. На этом свойстве микроорганизмов основаны такие меюды консервирования, как маринование, квашение, спиртование или спиртовое брожение. При этом частные принципы консервирования, положенные в основу каждой пары из этих четырех методов, одни и те же. Первая основана на консервирующем действии кислоты, вюрая - на консервирующем действии спирта.[ ...]

Основными микроорганизмами, вызывающими спиртовое брожение, являются дрожжи. Они находят наиболее широкое применение в народном хозяйстве.[ ...]

Глицерин является побочным продуктом при спиртовом брожении. Количество его колеблется в пределах 3,5-3,9% от сброженного сахара. В отличие от сивушных масел, янтарной кислоты и других продуктов глицерин образуется при сбраживании сахарного раствора как живыми дрожжами, так и ферментным соком, полученным из дрожжей. Последняя гидролизуется фосфа-тазой, содержащейся в дрожжах, с образованием глицерина.[ ...]

Получают при сухой перегонке дерева, при уксусном брожении спиртовых жидкостей, а также синтетически при окислении ацетальдегида воздухом или кислородом в присутствии катализаторов. Применяют в химической промышленности для получения сложных эфиров, уксусного ангидрида, при синтезе индиго, при производстве ацетилцеллюлозы, линолеума, в химико-фармацевтической промышленности.[ ...]

При квашении, солении и мочении, помимо молочнокислого, происходит и спиртовое брожение сахаров с образованием спирта в количестве 0,5-0,7 % и углекислоты. Соединяясь с кислотами, они дают эфиры, что заметно улучшает вкус и аромат готового продукта.[ ...]

Получается при сухой перегонке дерева (древесный уксус); при уксуснокислом брожении спиртовых жидкостей; каталитическим окислением ацеталь-дегида, полученного гидратацией ацетилена; окислением этилового спирта; из кетена, получаемого пиролизом ацетона; взаимодействием метанола с СО в присутствии катализаторов.[ ...]

В гидролизной промышленности практическое значение имеет углекислота, выделяющаяся при спиртовом брожении гидролизатов и сульфитных щелоков. Из 1000 кг сброженных гексоз образуется около 500 кг, углекислого газа, который частично остается растворенным в бражке, но большая часть его выделяется на поверхности бродящего сусла. Так, при спиртовом брожении древесного сусла, содержащего в 1 м3 27 кг сбраживаемых сахаров, образуется около 14 кг углекислого газа, который при атмосферном давлении и 30° занимает объем около 7 м3. При 300 около 1 м3 углекислого газа растворяется в 1 м3 бражки и около 6 м3 выделяется на поверхности бродящего сусла.[ ...]

Но все попытки выделить из дрожжей бес1 ть точный сок, содержащий ферменты и способный сбражи0 ат. сахар на спирт и углекислоту, долгое время были безрезуль но ны. Только М. М. Манассеина в 1871 г. впервые эксперимента./! , установила, что спиртовое брожение может протекать под /ый ствием клеточного сока без участия живых дрожжей. Клеточг дрожжевой сок она получила путем растирания дрожжей с и мельченным горным хрусталем. Свои исследования она onydv г ковала в работе «К учению об алкогольном брожении». Та не образом было доказано, что процесс брожения вызывается п собственно дрожжевыми клетками, а ферментами, содержаще £Д ся в них. Из дрожжей был получен также препарат зимин, п

Оболочка клеток пылевидных дрожжей не ослизняется, поэтому их клетки одиночны, бражка представляет собой равномерную взвесь, в конце брожения дрожжи оседают медленно. Пылевидные дрожжи бедны белками и зимазой, но содержат много триптазы, растворяющей слизистые вещества, склеивающие дрожжевые клетки. Спиртовые дрожжи являются пылевидными. Способность дрожжей образовывать хлопья изменчива и зависит от физиологического состояния их клетки и от условий культивирования. Например, среды, богатые белками, и повышенные температуры способствуют образованию хлопьевидных дрожжей; эти дрожжи образуются в жидкости, которая не продувается кислородом воздуха. Наоборот, при доступе воздуха образуется большое количество пылевидных дрожжей.[ ...]

Его направляют на дальнейшую переработку. Метанольную фракцию можно использовать в качестве дополнительного углеродсодержащего сырья при выращивании кормовых дрожжей.[ ...]

Отработавшие дрожжи-сахаромицеты, выделенные из зрелой бражки, - это активные, живые клетки с влажностью 75%. Их выход при нормальной технологии брожения составляет 1,6-1,8 кг на 1 дал спирта. Они используются для производства прессованных хлебопекарных дрожжей в цехах при спиртозаводах. Дрожжи выделяют из зрелой спиртовой бражки перед подачей ее на перегонку. Промыв водой, их обычно прессуют на рамных фильтр-прессах и затем фасуют ца автоматах и полуавтоматах в бруски массой 1000, 500, 100 и 50 г.[ ...]

Большой вклад в изучение действия ферментов и их природы внесли А. Н. Бах (1857-1946) и В. И. Палладии (1859-1922) ,и другие исследователи. Итак, в настоящее время выяснена природа и химизм различных брожений и, в частности, спиртового брожения.[ ...]

Спирты - подвижные бесцветные жидкости с характерным алкогольным запахом. Этиловый спирт получают спиртовым брожением картофеля или злаков, гидратацией этилена, выделяемого из газов нефтепереработки, а также при гидролизе древесины. Бутиловый спирт чаще всего получают из пропилена, синтезом из окиси углерода или как побочный продукт при синтезе каучука.[ ...]

Основные продукты гидролиза - моносахариды превращают в ряд важных для народного хозяйства веществ путем биохимической и химической переработки. Из биохимических методов переработки гидролизных сахаров большое значение имеет метод сбраживания гексоз (глюкозы и других гексоз) в этиловый спирт под действием специальных дрожжей. Уравнение спиртового брожения можно представить следующим образом: С6Н1206 г 2С02+2С2Н50Н.[ ...]

Низшие организмы. Токсичность перманганата калия для инфузорий, личинок насекомых, червей, диатомей и т. д., по-видимому, прекращается при разбавлении в 1: 100 ООО. Для гнилостных микробов перманганат калия является очень сильным ядом. В растворе, обладающем способностью к гниению, после добавки 0,002% КМп04 не наступало гниения в течение трех дней. В разбавлении 1: 50 000 перманганат калия не препятствует спиртовому брожению дрожжей . На холерные вибрионы перманганат калия действует бактерицидно еще при разбавлении 10 6. В присутствии органических веществ нужна, однако, более высокая концентрация соли, например 1:5000. При более высоких концентрациях E. typhosa является еще резистентнее.[ ...]

В зависимости от вида сырья плоды поступают на хранение в деревянных ящиках, ящичных поддонах, контейнерах, насыпью. При этом желательно не укладывать сырье (особенно насыпью) очень высоким слоем, иначе будет затруднен доступ воздуха к отдельным плодам. В этом случае процесс нормального (аэробного) дыхания нарушится и наступит так называемое интрамолекулярное или анаэробное дыхание, протекающее по приведенной выше схеме спиртового брожения и приводящее сырье к порче. Поэтому сырье, особенно нежной консистенции, укладывают в ящики-клетки штабелями высотой до 2 м, оставляя между отдельными штабелями проходы. При таком хранении имеется достаточный доступ воздуха и дыхание протекает нормально.[ ...]

Едва только какая-либо часть сахаристого сока оказывается предоставленной самой себе, как из воздуха на нее попадают зародыши крохотного грибкового растения, которые начинают в нем размножаться с поразительной легкостью. По мере того как грибок живет и размножается, сахар превращается в спирт и углекислый газ. Это крохотное растеньице - один из многочисленных организмов, обеспечивающих брожение сахаров. Мы видим, что уже на первой стадии изучаемого нами явления сахар начинает частично переходить в атмосферу, поскольку одним из продуктов его разрушения является углекислый газ. Но еще остается спирт, который тоже должен быть разрушен. Как я недавно установил с совершенной достоверностью, спирт разрушается под действием уже другого микроскопического растения, зародыши которого все так же из воздуха попадают на образовавшуюся спиртовую жидкость. Это растеньице наделено удивительной способностью соединять кислород воздуха со спиртом, превращая последний в уксусную кислоту. Если действие этого микроскопического растения продолжается и дальше, окисление, необходимым участником которого он является, переносится на образовавшуюся уксусную кислоту и превращает ее целиком в воду и углекислый газ, т. е. в конечные продукты распада сахара, в виде которых он и возвращается весь в атмосферу».

— биохимический процесс ферментации, при котором сахара, такие как глюкоза и фруктоза, разлагаются под действием ферментов с выделением энергии и образованием этилового спирта и углекислого газа. Позволяет получить два моль АТФ на моль глюкозы в анаэробных условиях. Общее уравнение спиртового брожения:

C 6 H 12 O 6 + 2 АДФ + 2 Ф н → 2 C 2 H 5 OH + 2 CO 2 + 2 АТФ + 2 H 2 O

Этот метаболический путь характерен для многих грибов (дрожжей, дрожжеподобных и некоторых плесневых грибков), водорослей, простейших и некоторых бактерий. Спиртовое брожение издавна используется человеком в процессе хлебопечения (вызывает «восхождение» дрожжевого теста) и изготовление алкогольных напитков. Одной из новых областей применения этого метаболического пути является производство этанола как восстановительного и относительно недорого биотоплива.

Реакции спиртового брожения

Во время спиртового брожения расщепления глюкозы начинается гликолитическую путем (за исключением бактерии Zymomonas mobilis, в которой глюкоза метаболизируется по пути Энтнера-Дудорова). В гликолитических реакциях глюкоза расщепляется и окисляется до двух молекул пирувата, происходит субстратно фосфорилирования двух молекул АДФ с образованием АТФ, а также восстанавливаются до НАДH две молекулы НАД +. При аэробных условиях НАДH снова окисляется отдавая электроны через ряд посредников в молекулярный кислород, и тогда снова может быть использован в процессе гликолиза. В анаэробных условиях регенерация НАД + происходит в конечных этапах брожения, во время которых акцептором электронов является сам пируват или его производные: в случае спиртового брожения — ацетальдегид.

Ацетальдегид образуется из пирувата путем декарбоксилирования (отщепление углекислого газа), которое катализируется пируватдекарбоксилазы. Этот фермент требует присутствия ионов Mg 2+ и содержит ковалентно присоединен кофермент тиаминпирофосфат.

Следующим шагом является восстановление ацетальдегида к этиловому спирту благодаря переносу гидрид иона с НАДH, образованного в гликолизе. Реакция происходит при участии фермента алкогольдегидрогеназы, содержащий в активном центре ион цинка, который поляризует карбонильную группу субстрата облегчая присоединение гидрида.

Итак конечными продуктами спиртового брожения на одну молекулу глюкозы есть две молекулы этилового спирта, две молекулы CO 2, и две молекулы АТФ. В итоге не происходит ни окисления ни восстановления глюкозы (соотношение C: H одинаковое для исходных веществ (глюкоза) и продуктов (этанол + углекислый газ) и составляет 1: 2).

Распространение

Метаболический путь спиртового брожения имеющийся во многих организмов, в том числе грибов (дрожжей, дрожжеподобных и некоторых плесневых грибов), водорослей, простейших, бактерий, некоторых растений. В части анаэробных организмов он является основным путем получения энергии, например в бактерии Zymomonas mobilis, тогда как многие факультативных анаэробов, например пекарские дрожжи Saccharomyces cerevisiae, используют как альтернативу дыханию только при отсутствии кислорода.

В отличие от фермента пируватдекарбоксилазы, что является специфическим для спиртового брожения и отсутствует у организмов, для которых характерно молочнокислого брожения (в том числе и человека), алкогольдегидрогеназа имеется у многих видов, которые могут использовать этанол в качестве источника энергии. В печени человека этот фермент катализирует реакцию обратную таковой у спиртовом брожении.

Использование спиртового брожения

Производство алкогольных напитков

Спиртовое брожение издавна используется для производства алкогольных напитков, таких как вино, пиво, эль. Источником углеводов для этих процессов могут служить различные растения. Часть из них содержат готовые к сбраживания моно- и олигосахариды: например сахароза и фруктоза в виноградном соке. В таком случае ферментация может начинаться без предварительной обработки. С другой стороны зерновые, такие как пшеница, овес, рис и т.д. и другие продукты, содержащие крахмал, сначала должны пройти процесс гидролиза полисахаридов. Продуктом гидролиза является сусло, которое уже содержит сахара готовы к сбраживания.

Виноделие

В виноделии для брожения может использоваться природная смесь грибов и бактерий, присутствующих на кожице винограда. Однако при таком подходе трудно предсказать результаты, поэтому чаще муст пастеризуют или обрабатывают серы IV оксидом, веществом с фунгицидными свойствами, после чего добавляют нужную культуру, чаще всего S. cerevisiae или S. ellipsoideus. Брожение длится 3-5 дней при температуре 20-28 ° C. Содержание алкоголя может достигать 10-18% в зависимости от устойчивости микроорганизмов к этанолу. Полученная смесь подлежит процесса созревания, во время которого происходит окончательное формирование вкуса и аромата вина.

Производство пива и эля

Для пива и эля исходным сырьем является зерно: ячмень, пшеница, рис. Эти продукты содержат крахмал, который может быть сусбтратом для сбраживания только после гидролиза. Для активации гидролитических ферментов зерно проращивают, образованный солод измельчают и смешивают с водой, в таких условиях крахмал и белки разлагаются до простых веществ — мальтозы, глюкозы, аминокислот. Образуется сусло, к которому добавляют хмель, который первично использовался для подавления роста микроорганизмов гниения, и нагревают. После этого происходит инокуляция сусла — добавление культуры дрожжей. Для производства пива чаще всего используют дрожжи низового брожения, такие как Saccharomyces carlsbergensis, которые оседают на дно ферментера. Брожение длится 7-12 дней, образовавшийся продукт имеет pH 4,1-4,2. Дрожжи верхового брожения, такие как S. cerevisiae используются для производства эля, он кислее pH 3,8. После брожения пиво еще некоторое время созревает, после чего к нему обычно добавляют углекислого газа и пастеризуют или стерилизуют фильтрацией.

Крепкие алкогольные напитки, такие как виски, водка, джин, получают технологии схожей с пивоварения, дополненной перегонкой.

Хлебопечение

Дрожжи используются людьми для изготовления хлеба уже по крайней мере 4,5 тысячелетий, о чем свидетельствуют древнеегипетские рисунки, на которых подробно изображен этот процесс, а также пекарня 2575 до н. е. найдена в районе некрополя Гизы.

Поскольку при выработке хлеба дрожжи S. cerevisiae выращиваются при аэробных условиях, дыхание преобладает над спиртовым брожением. Из-за этого наблюдается усиленное выделение углекислого газа и незначительное образование этанола. Углекислый газ вызывает «восхождение» теста и отвечает за легкую пористую текстуру хлеба, а продукты брожения придают ему характерный вкус.

Производство биотоплива

Этанол, полученный в процессе спиртового брожения, может быть использован как недорогое и возобновляемые источники энергии. В качестве сырья для производства этанолового биотоплива используется растительный материал, богатый сахарозу, крахмал или целлюлозу: кукурузу, пшеницу, сахарную свеклу и тростник, солому, отходы деревообрабатывающей промышленности, бытовые отходы растительного происхождения и тому подобное. Обычно сырье химически обрабатывают с целью гидролиза полисахаридов до мономеров, после чего к полученной массе добавляют выносливые штаммы дрожжей.

Производство глицерина

Во время Второй мировой войны Германия имела большую потребность в глицерин, для изготовления взрывчатого вещества нитроглицеролу. Импорт глицерина был ограничен британской морской блокадой, поэтому предпринимались попытки наладить собственное производство. К тому времени было известно, что глицерин в небольших количествах образуется при спиртового брожения с участием S. cerevisiae. Немецкий ученый Карл Нойберг нашел способ модифицировать процесс таким образом, чтобы выход этого вещества был значительно выше. Для этого он добавил в среду с дрожжами 3,5% сульфита натрия при pH 7,0. Бисульфит ионы образуют комплекс с ацетальдегидом, в результате чего последний становится недоступным для восстановления в этанол. Поскольку дрожжи одинаково нуждаются акцептора электронов и водорода, они используют с этой целью один из промежуточных продуктов гликолиза — дигидроксиацетонфосфат, что восстанавливается до глицеролфосфату. Последний превращается в глицерин вследствие дефосфорилювання.

Это открытие позволило Германии получать около 1000 тонн глицерина в месяц, благодаря тому, что большинство пивоварен был превращен в фабрики по производству этого вещества. После наступления мира такой путь получения глицерина ни был экономически конкурентоспособным и потому прекратился.

Поделиться: