Антигены бактерий. Антигены микробов Антигенные свойства микроорганизмов

Антигенная структура микроорганизмов очень разнообразна. Антигены некоторых микробов, например сальмонелл, шигелл, эшерихий, изучены хорошо. Об антигенах других микроорганизмов данных пока недостаточно. У микроорганизмов различают общие, или групповые, и специфические, или типовые, антигены.

Групповые антигены являются общими для двух или более видов микробов, входящих в один род, а иногда относящихся и к разным родам. Так, общие групповые антигены имеются у отдельных типов рода сальмонелл; возбудители брюшного тифа имеют общие групповые антигены с возбудителями паратифа А и паратифа В (0—1,12).

Специфические антигены имеются только у данного вида микроба или даже только у определенного типа (варианта) либо подтипа внутри вида. Определение специфических антигенов позволяет дифференцировать микробы внутри рода, вида, подвида и даже типа (подтипа). Так, внутри рода сальмонелл по комбинации антигенов дифференцировано более 2000 типов сальмонелл, а у подвида шигелл Флекснера — 5 серотипов (серовариантов).

По локализации антигенов в микробной клетке различают соматические антигены, связанные с телом микробной клетки, капсульные — поверхностные, или оболочечные антигены и жгутиковые антигены, находящиеся в жгутиках.

Соматические, О-антигены (от нем. ohne Hauch — без дыхания), связаны с телом микробной клетки. У грамотрицательных бактерий О-антиген — сложный комплекс липидополисахаридно-белковой природы. Он высоко токсичен и является эндотоксином этих бактерий. У возбудителей кокковых инфекций, холерных вибрионов, возбудителей бруцеллеза, туберкулеза и некоторых анаэробов из тела микробных клеток выделены полисахаридные антигены, которые обусловливают типовую специфичность бактерий. Как антигены они могут быть активны в чистом виде и в комплексе с липидами.

Жгутиковые, Н-антигены (от нем. Hauch — дыхание), имеют белковую природу и находятся в жгутиках подвижных микробов. Жгутиковые антигены быстро разрушаются при нагревании и под действием фенола. Они хорошо сохраняются в присутствии формалина. Это свойство используют при изготовлении убитых диагностии кумов для реакции агглютинации, когда необходимо сохранить жгутики.

Капсульные, К - антигены, - расположены на поверхности микробной клетки и называются еще поверхностными, или оболочечными. Наиболее детально они изучены у микробов семейства кишечных, у которых различают Vi-, М-, В-, L- и А-антигены.

Важное значение из них имеет Vi-антиген. Впервые он был обнаружен в штаммах бактерий брюшного тифа, обладающих высокой вирулентностью, и получил название антигена вирулентности. При иммунизации человека комплексом О- и Vi- антигенов наблюдается высокая степень защиты против брюшного тифа. Vi-антиген разрушается при 60°С и менее токсичен, чем О-антиген. Он обнаружен и у других кишечных микробов, например у кишечной палочки.

Протективный (от лат. protectio — покровительство, защита), или защитный, антиген образуется сибиреязвенными микробами в организме животных и обнаруживается в различных экссудатах при заболевании сибирской язвой. Протективный антиген является частью экзотоксина, выделяемого микробом сибирской язвы, и способен вызывать выработку иммунитета. В ответ на введение этого антигена образуются комплементсвязывающие антитела. Протективный антиген можно получить при выращивании сибиреязвенного микроба на сложной синтетической среде. Из протективного антигена приготовлена высокоэффективная химическая вакцина против сибирской язвы. Защитные протективные антигены обнаружены также у возбудителей чумы, бруцеллеза, туляремии, коклюша.

Бактериальные антигены. Стенка (наружная мембрана) бактериальной клетки значительно плотнее, чем мембрана животных клеток. В случае грамотрицательных бактерий в ней содержится ЛПС; некоторые виды бактерий образуют еще и поверхностную полисахаридную капсулу, а другие способны экскретировать полисахариды (например, декстраны). Все это служит источником полисахаридных антигенов микрорганизма. Если бактерии или простейшие подвижны, то антигеном может быть белок жгутиков, а в других случаях (гонококки) – белок пилей, также выходящих на клеточную поверхность. Кроме поверхностных (обычно – протективных) антигенов, в бактериях имеются и глубоко лежащие (например, нуклеопротеины, белки клеточных органелл, некоторые ферменты). Они также вызывают образование антител, но обычно к протективным не относятся, хотя возможны и исключения, когда тот или иной белок является фактором патогенности. Ввиду значительных различий по свойствам между капсульными полисахаридами и ЛПС – с одной стороны – и белковыми антигенами – с другой, удобно рассматривать первую группу антигенов особо.

Классические антигенные белки – это анатоксины (дифтерийный, столбнячный и др.).

Вирусы – чрезвычайно гетерогенная группа возбудителей инфекционных заболеваний. Инфекционные частицы (вирионы) различных вирусов обладают различной степенью сложности, различным размером, различными молекулярными механизмами репликации (в частности, одни из них содержат ДНК, другие – РНК). Особенности вирусных инфекций создают большое разнообразие во взаимоотношениях между возбудителями и иммунной системой.

Все вирусные антигены имеют белковую природу; среди них – гликопротеины (обычно – поверхностные), фосфопротеины, нуклеопротеины. Чаще всего протективными являются поверхностные в вирионе гликопротеины, хотя образуемые в ходе иммунного ответа антитела направлены против многих белков, в том числе и расположенных в нуклеокапсиде, "в глубине" вириона.

Принципиальная, отличительная от других возбудителей особенность репродукции вирусов заключается в том, что не все белки, синтез которых индуцируется в инфицированной клетке, входят затем в состав вириона. Часть из них является вспомогательными, обеспечивающими процесс репродукции. Тем не менее, они также могут попадать во внеклеточную среду и служить иммунизирующим материалом.

У большинства вирусов имеются суперокапсидные – поверхностные оболочечные, белковые и гликопротеидные АГ (например, гемагглютинин и нейраминидаза вируса гриппа), капсидные – оболочечные и нуклеопротеидные (сердцевинные) АГ.

Все вирусные антигены – Т-зависимые.

Протективные антигены. Это совокупность антигенных детерминант (эпитопов), которые вызывают наиболее сильный иммунный ответ, что предохраняет организм от повторной инфекции данным возбудителем. Определение вирусных антигенов в крови и других биологических жидкостях широко используется при диагностике вирусных инфекций. Наиболее иммуногенные, протективные пептиды вирусов используются для создания синтетических вакцин. По строению они вариабельны даже у одного вида вирусов.

Пути проникновения инфекционных антигенов в организм разнообразны:

    через поврежденную и иногда неповрежденную кожу;

    через слизистые оболочки носа, рта, ЖКТ, мочеполовых путей.

Пути распространения антигенов – кровь, лимфа, а также по поверхности слизистых оболочек.

АГ-это любые генетич.чужеродные для данного орг-ма в-ва, которые, попав во внутр. среду, выаывают ответную специфическую иммунологическую реакцию: синтез антител, появление сенсибилизированных лимфоцитов или возникновение толерантности к этому веществу, гиперчувствительности немедленного и замедленного типов иммунологической памяти. Антитела, вырабатываемые в ответ на введение антигена, специфически взаимодействуют с этим антигеном, образуя комплекс антиген антитело.

Антигены, вызывающие полноценный иммунный ответ, называются полными антигенами. Эго органические вещества микробного, растительного и животного происхождения. Химические элементы, простые и сложные неорганические соединения антигенностью не обладают.
Антигенами являются также бактерии, грибы, простейшие, вирусы, клетки и ткани животных, попавшие во внутреннюю среду макроорганизма, а также клеточные стенки, цитоплазма` тические мембраны, рибосомы, митохондрии, микробные токсины, экстракты гельминтов, яды многих змей и пчел, природные белковые вещества, некоторые полисахаридные вещества микробного происхождения, растительные токсины и т.д.
Некоторые вещества самостоятельно не вызывают иммунного ответа, но приобретают эту способность при конъюгации с вьгсокомолекулярными белковыми носителями или в смеси с ними. Такие вещества называют неполными антигенами, или гаптенами. Гаптенами могут быть химические вещества с малой молекулярной массой или более сложные химические вещества, не обладающие свойствами полного антигена: некоторые бактериальные полисахариды, полипептид туберкулезной палочки (РРД), ДНК, РНК, липиды, пептиды. Гаптен является частью полного или конъюгированного антигена. Гаптены иммунного ответа не ВЫзывают, но они вступают в реакцию с сыворотками, содержащими специфические к ним антитела.

Характерными свойствами антигенов являются антигенность, иммуногенность и специфичность.

Антигенность - это потенциальная способность молекулы антигена активировать компоненты иммунной системы и специфически взаимодействовать с факторами иммунитета (антитела, клонэффекторных лимфоцитов). При этом компоненты иммунной системы взаимодействуют не со всей молекулой антигена, а только с ее небольшим участком, который получил название антигенной детерминанты, или эпитопа. Иммуногеннос/пь - потенциальная способность антигена вызывать по отношению к себе в макроорганизме специфический продуктивный ответ. Специфичностью называют способность антигена индуцировать



иммунный ответ к строго определенному эпитопу. Специфичность

антигена во многом определяется свойствами составляющих его эпитопов.

В структуре бактериальной клетки различают жгутиковые, соматические, капсульные и некоторые другие антигены (рис. 10.2).

Жгутиковые, или Н-антигены, локализуются в их жгутиках и пред-

ставляют собой эпитопы сократительного белка флагеллина. При

нагревании флагеллин денатурирует и Н-антиген теряет свою

специфичность. Фенол не действует на этот антиген.

Соматический, или О-антиген, связан с клеточной стенкой бактерий. Его основу составляют липополисахариды. О-антиген термостабилен и не разрушается при длительном кипячении.

Капсульные, или К-антигены, встречаются у бактерий, образующих капсулу. Как правило, К-антигены состоят из кислых полисахаридов (уроновые кислоты).

В структуре вирусной частицы различают ядерные (или коро-

вые), капсидные (или оболочечные) и суперкапсидные антигены.

На поверхности некоторых вирусных частиц встречаются особые

V-антигены - гемагглютинин и фермент нейраминидаза. Часть из них вирусоспецифические, кодируются в нуклеиновой кислоте вируса.

Другие, являющиеся компонентами клетки хозяина (углеводы, ли-

пиды), формируют суперкапсид вируса при его рождении путем

почкования.

Антигенный состав вириона зависит от строения самой вирус-

ной частицы. В просто организованных вирусах антигены ассоци-

ированы с нуклеопротеидами. Эти вещества хорошо растворяются

в воде и поэтому обозначаются как S-антигены (от лат. solutio -

раствор). У сложноорганизованных вирусов часть антигенов свя-

зана с нуклеокапсидом, а другая находится во внешней оболочке,

или суперкапсиде.

Антигены многих вирусов отличаются высокой степенью из-

менчивости, что связано с постоянными мутациями в генетиче-



ском материале вирусов. Примером могут служить вирус гриппа,

Антигены групп крови человека

Антигены групп крови человека располагаются на цитоплаз-

матической мембране клеток, но наиболее легко определяются

на поверхности эритроцитов. Поэтому они получили название

≪эришроцитарные антигены≫. На сегодняшний день известно бо-

лее 250 различных эритроцитарных антигенов. Однако наиболее

важное клиническое значение имеют антигены системы АВО и Rh

(резус-фактор): их необходимо учитывать при проведении пере-

ливания крови, пересадке органов и тканей, предупреждении и

лечении иммуноконфликтных осложнений беременности и т.д.

На цитоплазматических мембранах практически всех клеток

макроорганизма обнаруживаются антигены гистосовместимости.

Большая часть из них относится к системе главного комплекса

гистосовместимости, или МНС (от англ. Main Hystocompatibility

Complex). Установлено, что антигены гистосовместимости играют

ключевую роль в осуществлении специфического распознавания

≪свой-чужой≫ и индукции приобретенного иммунного ответа,

определяют совместимость органов и тканей при транспланта-

ции в пределах одного вида и другие эффекты.

В 1948-1949 гг. видный отечественный микробиолог и имму-

нолог Л.А. Зильбер при разработке вирусной теории рака доказал

наличие антигена, специфичного для опухолевой ткани. Позже в

60-х годах XX века Г.И. Абелев (в опытах на мышах) и Ю.С. Тата-

ринов (при обследовании людей) обнаружили в сыворотке крови

больных первичным раком печени эмбриональный вариант сыво-

роточного альбумина - а-фетопротеин. К настоящему моменту

обнаружено и охарактеризовано множество опухольассоциирован-

ных антигенов. Однако не все опухоли содержат специфические

маркерные антигены, равно как и не все маркеры обладают стро-

гой тканевой специфичностью.

Опухольассоциированные антигены классифицируют по лока-

лизации и генезу. Различают сывороточные, секретируемые опухо-

левыми клетками в межклеточную среду, и мембранные. Последние

получили название опухолеспецифических трансплантационных ан-

тигенов, или TSTA (от англ. Tumor-Specific Transplantation Antigen).

Выделяют также вирусные, эмбриональные, нормальные гипер-

экспрессируемые и мутантные опухольассоциированные антиге-

ны. Вирусные - являются продуктами онковирусов, эмбриональные

в норме синтезируются в зародышевом периоде. Хорошо известен

а-фетопротеин (эмбриональный альбумин), нормальный протеин

тестикул {MAGE 1,2,3 и др.), маркеры меланомы, рака молочной

железы и др. Хорионичсский гонадотропин, в норме синтезируе-

мый в плаценте, обнаруживается при хориокарциноме и других

опухолях. В меланоме в большом количестве синтезируется нор-

мальный фермент тирозиназа. Из мутантных белков следует от-

метить протеин Ras - ГТФ-связывающий белок, участвующий в

трансмембранном проведении сигнала. Маркерами рака молочной

и поджелудочной желез, карцином кишечника являются модифи-

цированные муцины (MUC 1, 2 и др.).

В большинстве случаев опухольассоциированные антигены

представляют собой продукты экспрессии генов, в норме вклю-

чаемых в эмбриональном периоде. Они являются слабыми имму-

ногенами, хотя в отдельных случаях могут индуцировать реакцию

цитотоксических Т-лимфоцитов (Т-киллеров) и распознаваться в

составе молекул МНС (HLA) I класса. Синтезируемые к опухоль-

ассоциированным антигенам специфические антитела не угнетают

рост опухолей.__

11. Практическое использование антигенов в медицине: вакцины, диагностикумы, аллергены. Получение, назначение.

Вакцинами называют иммунобиологические препараты, предназ_ наченные для создания активного специфического иммунитета Применяют их главным образом для профилактики, но иногда используют для лечения инфекционных болезней. Действующим началом вакцины является специфический антиген. В качестве антигена ИСПОЛЬЗУЮт

1) живые или инактивированныс микроорганй’змы (бактерии, вирусы);

2) вьщеленные из микроорганизмов специфические, так называемые протективные, антигены;

3) образуемые микроорганизмами антигенные вещества (вторичные метаболиты), играющие роль в патогенезе болезни (токсины);
4) химически синтезированные антигены, аналогичные природным;
5) антигены, полученные с помощью метода генетической инженерии.

На основе одного из этих антигенов конструируют вакцину, которая может в зависимости от природы антигена и формы препарата включать консервант, стабилизатор и активатор (адъювант). В качестве консервантов применяют мертиолат (1:10 000), азид натрия, формальдегид (О,1-О,3 %) с целью подавления посторонней микрофлоры в процессе хранения препарата. Стабилизатор добавляют для предохранения от разрушения лабильных антигенов. Например, к живым вакцинам добавляют сахарозожелатиновый агар или человеческий альбумин. Для повышения эффекта действия антигена к вакцине иногда добавляют неспецифический стимулятор-адъювант, активирующий иммунную систему. В качестве адъювантов используют минеральные коллоиды (Аl(ОН)3‚ АlРО4‘)‚ полимерные вещества (липополисахаридьх, полисахарицы, синтетические полимеры). Они изменяют физикохимическое состояние антигена, создают депо антигена на мес

КЛАССИФИКАЦИЯ ВАКЦИН

Живые вакцины

1)аттенуированные; "

2)дивергентные;
3)векторные рекомбинантные.

Неживые вакцины:
1)МОЛеКУлярные:
полученные путем биосинтеза;

полученные путем химического синтеза;

полученные методом генетической инженерии;

2) КоРПУСКулярные;

цельноклеточные, цельновирионные;
субклетОчные, субвирионные;
синтетические, полусинтетические.

Ассциированные “

Живые аттенуированные вакцины конструируются на основе ослабленных штаммов микроорганизмов, потерявших вирулентность, но сохранивших антигенные свойства. Такие штаммы получают методами селекции или генетической инженерии. Иногда используют штаммы близкородственных в антигенном отношении, неболезнетворных для человека микроорганизмов (дивергентные штаммы), из которых получены дивергентные вакцины. Например, для прививки против оспы используют вирус оспы коров. Живые вакцины при введении в организм приживляются, размножаются, вызывают генерализованный вакцинальный процесс и формирование специфического иммунитета к патогенному микроорганизму, из которого получен аттенуированный штамм.
Получают живые вакцины путем выращивания аттенуированных шТаммов на питательных средах, оптимальных для данного микроорганизма. Бактериальные штаммы культивируют или в ферментерах на жидких питательных средах, или на твердых питательных средах; вирусные штаммы культивируют в куриных эмбрионах, первичнотрипсинизированных, перевиваемых культурах клеток Процесс ведут в асептических условиях.

Наиболее важные вакцины: бактериальные : туберкулезная(БЦЖ), чумная, туляремийная, сибиреязвенная, против ку-лихорадкики. Вирусные: оспенная(на основе вир. оСпы коров), коревая, полиомиелитная, против желтой лихорадки, гриппозная, паротитная.

Сущ-ют векторные рекомбинантные вакцины, которые получают методом генной инженерии. В геном вакцинного штамма встраивают ген чужеродного АГ. Пр: вирус оспенной вакцины с встроенным АГ вируса гепатита Б. Таким образом, вырабатывается иммунитет на 2 вируса.

Неживые

Корпускулярные – инактивированные физическими или хим. Способами культуры бактерий или вирусов. Инактивацию проводят в оптимальном режиме, чтобы штамм сохранил свою антигенность, но лишился жизнеспомобности. Их применяют для проф-ки коклюша, гриппа, гепатита А, клещевого энцефалита.

Субклеточные и субвирионные состоят из АГ комплексов, выделенных из бакткрий и вирусов после их разрушения. Примеры: против брюшного тифа(на основе О, Н и Vi - антигенов),сиб.язвы(на основе капсульного АГ)

Молекулярные это специфические АГ в молекулярной форме, полученные методом ген.инженерии, хим.и био.синтеза. примером может служить анатоксин – токсин, сохраняющий антигенные св-ва, но теряющий токсичность вследствие обезвреживания его формалином.

Примеры: столбнячный, ботулиновый, дифтерийный анатоксины.

Оглавление темы "СD8 лимфоциты. Антиген (Аг) представляющие клетки. Классификация антигенов (Аг).":









Антигены (Аг) микроорганизмов. Антигены бактерий. Капсульные антигены (К-антигены (Аг)). Соматические антигены (O-антигены (Аг)). Жгутиковые антигены (H-антигены (Аг)). Vi-Ar (Антиген вирулентности).

Большинство возбудителей инфекционных заболеваний человека, их структуры и токсины - полноценные антигены (Аг ), вызывающие развитие иммунных реакций.

Антигены бактерий

По расположению в бактериальной клетке выделяют антигены (Аг ): капсульные антигены (К-Аг ; у видов, образующих капсулу), соматические антигены (О-Аг ) и жгутиковые антигены (Н-Аг ) (рис. 10-6).

Рис. 10-6. Основные антигены (Аг) бактериальной клетки

Соматические антигены (O-антигены (Аг )) большинства бактерий представлены термостабильным липополисахаридно-полипептид-ным комплексом; у грамотрицательных бактерий О-Аг представляет эндотоксин. Термолабильные жгутиковые антигены (H-антигены (Аг )) образованы белком флагеллином. Капсульные Аг большинства бактерий имеют полисахаридную природу. У сальмонелл также выделен термолабильный Vi-Ar (Аг вирулентности ), выявление которого имеет важное значение для серотипирования бактерий.

Особую группу составляют протективные антигены (Аг) [от лат. protectio, защита] - термолабильные белки, иммунизация которыми защищает лабораторных животных от гибели после заражения летальными дозами патогенных микроорганизмов. В настоящее время подобные Аг выделены у возбудителей сибирской язвы, чумы, бруцеллёза, туляремии и коклюша. Нередко протективные

Антигены (Аг ) применяют для изготовления вакцин.

Антигены – это высокомолекулярные соединения. При попадании в организм вызывают иммунную реакцию и взаимодействуют с продуктами этой реакции: антителами и активированными лимфоцитами.

Классификация антигенов.

1. По происхождению:

1) естественные (белки, углеводы, нуклеиновые кислоты, бактериальные экзо– и эндотоксины, антигены клеток тканей и крови);

2) искусственные (динитрофенилированные белки и углеводы);

3) синтетические (синтезированные полиаминокислоты, полипептиды).

2. По химической природе:

1) белки (гормоны, ферменты и др.);

2) углеводы (декстран);

3) нуклеиновые кислоты (ДНК, РНК);

4) конъюгированные антигены (динитрофенилированные белки);

5) полипептиды (полимеры a-аминокислот, кополимеры глутамина и аланина);

6) липиды (холестерин, лецитин, которые могут выступать в роли гаптена, но, соединившись с белками сыворотки крови, они приобретают антигенные свойства).

3. По генетическому отношению:

1) аутоантигены (происходят из тканей собственного организма);

2) изоантигены (происходят от генетически идентичного донора);

3) аллоантигены (происходят от неродственного донора того же вида);

4) ксеноантигены (происходят от донора другого вида).

4. По характеру иммунного ответа:

1) тимусзависимые антигены (иммунный ответ зависит от активного участия Т-лимфоцитов);

2) тимуснезависимые антигены (запускают иммунный ответ и синтез антител В-клетками без Т-лимфоцитов).

Выделяют также:

1) внешние антигены; попадают в организм извне. Это микроорганизмы, трансплантированные клетки и чужеродные частицы, которые могут попадать в организм алиментарным, ингаляционным или парентеральным путем;

2) внутренние антигены; возникают из поврежденных молекул организма, которые распознаются как чужие;

3) скрытые антигены – определенные антигены (например, нервная ткань, белки хрусталика и сперматозоиды); анатомически отделены от иммунной системы гистогематическими барьерами в процессе эмбриогенеза; толерантность к этим молекулам не возникает; их попадание в кровоток может приводить к иммунному ответу.

Иммунологическая реактивность против измененных или скрытых собственных антигенов возникает при некоторых аутоиммунных заболеваниях.

Свойства антигенов:

1) антигенность – способность вызывать образование антител;

2) иммуногенность – способность создавать иммунитет;

3) специфичность – антигенные особенности, благодаря наличию которых антигены отличаются друг от друга.

Гаптены – низкомолекулярные вещества, которые в обычных условиях не вызывают иммунной реакции, но при связывании с высокомолекулярными молекулами приобретают иммуногенность. К гаптенам относятся лекарственные препараты и большинство химических веществ. Они способны вызывать иммунный ответ после связывания с белками организма.

Антигены или гаптены, которые при повторном попадании в организм вызывают аллергическую реакцию, называются аллергенами.

2. Антигены микроорганизмов

Инфекционные антигены – это антигены бактерий, вирусов, грибов, простейших.

Существуют следующие разновидности бактериальных антигенов:

1) группоспецифические (встречаются у разных видов одного рода или семейства);

2) видоспецифические (встречаются у различных представителей одного вида);

3) типоспецифические (определяют серологические варианты – серовары, антигеновары – внутри одного вида).

В зависимости от локализации в бактериальной клетке различают:

1) О – АГ – полисахарид; входит в состав клеточной стенки бактерий. Определяет антигенную специфичность липополисахарида клеточной стенки; по нему различают сероварианты бактерий одного вида. О – АГ слабо иммуногенен. Он термостабилен (выдерживает кипячение в течение 1–2 ч), химически устойчив (выдерживает обработку формалином и этанолом);

2) липид А – гетеродимер; содержит глюкозамин и жирные кислоты. Он обладает сильной адьювантной, неспецифической иммуностимулирующей активностью и токсичностью;

3) Н – АГ; входит в состав бактериальных жгутиков, основа его – белок флагеллин. Термолабилен;

4) К – АГ – гетерогенная группа поверхностных, капсульных антигенов бактерий. Они находятся в капсуле и связаны с поверхностным слоем липополисахарида клеточной стенки;

5) токсины, нуклеопротеины, рибосомы и ферменты бактерий.

Антигены вирусов:

1) суперкапсидные антигены – поверхностные оболочечные;

2) белковые и гликопротеидные антигены;

3) капсидные – оболочечные;

4) нуклеопротеидные (сердцевинные) антигены.

Все вирусные антигены Т-зависимые.

Протективные антигены – это совокупность антигенных детерминант (эпитопов), которые вызывают наиболее сильный иммунный ответ, что предохраняет организм от повторного инфицирования данным возбудителем.

Пути проникновения инфекционных антигенов в организм:

1) через поврежденную и иногда неповрежденную кожу;

2) через слизистые оболочки носа, рта, ЖКТ, мочеполовых путей.

Гетероантигены – общие для представителей разных видов антигенные комплексы или общие антигенные детерминанты на различающихся по другим свойствам комплексах. За счет гетероантигенов могут возникать перекрестные иммунологические реакции.

У микробов различных видов и у человека встречаются общие, сходные по строению антигены. Эти явления называются антигенной мимикрией.

Суперантигены – это особая группа антигенов, которые в очень малых дозах вызывают поликлональную активацию и пролиферацию большого числа Т-лимфоцитов. Суперантигенами являются бактериальные энтеротоксины, стафилококковые, холерные токсины, некоторые вирусы (ротавирусы).

Поделиться: