Виды световой микроскопии. Микроскопия - это что такое


Световая микроскопия

При использовании этого метода исследователь оперирует следующими понятиями:

Увеличение – физическое свойство линз объектива и окуляра. Увеличение микроскопа оценивают как произведение увеличения объектива и увеличения окуляра.

Минимальный размер наблюдаемого объекта (d) и разрешение микроскопа – значения, зависящие от характеристик линз объектива, длины волны и от коэффициента преломления среды, отделяющей изучаемый объект от линз объектива или конденсора. Увеличивают разрешение микроскопа применением жидких сред (иммерсионные среды), т.к. коэффициент их преломления больше коэффициента преломления воздуха. В микроскопии используют масляную, глицериновую и водную иммерсионные среды. Теоретически возможный предел разрешения светового микроскопа – 0,2 мкм (минимальное расстояние, на котором различимы два объекта).

Специальные виды микроскопии

Темнопольная. Используют специальный конденсор, выделяющий контрастирующие структуры неокрашенного материала. Темнопольная микроскопия позволяет наблюдать живые объекты. Наблюдаемый объект выглядит как освещенный на темном поле. При этом лучи от осветителя падают на объект сбоку, а в линзы микроскопа поступают только рассеянные лучи.

Фазово-контрастная микроскопия позволяет изучать живые и неокрашенные объекты. При прохождении света через окрашенные объекты изменяется амплитуда световой волны, а при прохождении света через неокрашенные – фаза световой волны, что и используют для получения высококонтрастного изображения в фазово-контрастной и интерференционной микроскопии.

Поляризационная микроскопия - формирование изображения неокрашенных анизотропных структур (например, коллагеновые волокна и миофибриллы).

Интерференционная микроскопия объединяет принципы фазово-контрастной и поляризационной микроскопии и применяется для получения контрастного изображения неокрашенных объектов.

Люминесцентная микроскопия применяется для наблюдения флюоресцирующих (люминесцирующих) объектов. В люминесцентном микроскопе свет от мощного источника проходит через два фильтра. Один фильтр задерживает свет перед образцом и пропускает свет длины волны, возбуждающей флюоресценцию образца. Другой фильтр пропускает свет длины волны, излучаемой флуоресцирующим объектом. Таким образом, флюоресцирующие объекты поглощают свет одной длины волны и излучают в другой области спектра.

Флюоресцирующие красители (флюоресцин, родамин и др.) избирательно связываются со специфическими макромолекулами.

Электронная микроскопия

Теоретическое разрешение просвечивающего ЭМ составляет 0,002 нм. Реальное разрешение современных микроскопов приближается к 0,1 нм. Для биологических объектов разрешение ЭМ на практике составляет 2 нм.

Просвечивающий ЭМ состоит из колонны, через которую в вакууме проходят электроны, излучаемые катодной нитью. Пучок электронов, фокусируемый кольцевыми магнитами, проходит через подготовленный образец. Характер рассеивания электронов зависит от плотности образца. Проходящие через образец электроны фокусируют, наблюдают на флюоресцирующем экране и регистрируют при помощи фотопластинки.

Сканирующий ЭМ применяют для получения трехмерного изображения поверхности исследуемого объекта.

Метод сколов (замораживания-скалывания) применяют для изучения внутреннего строения клеточных мембран. Клетки замораживают при температуре жидкого азота в присутствии криопротектора и используют для изготовления сколов. Плоскости скола проходят через гидрофобную середину двойного слоя липидов. Обнаженную внутреннюю поверхность мембран оттеняют платиной, полученные реплики изучают в сканирующем электронном микроскопе.



Кроме светооптической микроскопии к методам микроскопии относят: темнопольную, фазово-контрастную, люминесцентную и электронную микроскопии.

4.3.4.1 Темнопольная микроскопия

Метод наблюдения в темном поле, разработанный австрийским ученым Зигмонди, дает возможность повысить разрешающую способность микроскопа в 10 раз. В основе метода лежит явление Тиндаля – освещение объекта косыми лучами света. Эти лучи, не попадая в объектив, остаются невидимыми для глаза, поэтому поле зрения выглядит темным. В то же время оптически неоднородные клетки, находящиеся в поле зрения и попадающие в сферу прохождения лучей, отклоняют их в такой степени, что лучи попадают в объектив. Тогда наблюдатель видит в темном поле интенсивно светящиеся объекты, поскольку лучи света идут именно от них.

Темное поле зрения можно создать в светооптическом микроскопе, заменив обычный конденсор темнопольным и применив для освещения источник сильного света. Однако эффект темного поля может быть достигнут только в том случае, если апертура конденсора превышает на 0,2…0,4 единицы апертуру объектива. Для исследования в темном поле рекомендуется конденсор с апертурой около 1,2 и объективы с апертурой от 0,65 до 0,85.

Метод используется с целью исследования живых клеток микроорганизмов. Особенно он ценен для функционально-морфологического изучения крупных объектов типа дрожжей. Цитоплазма дрожжевых организмов (при условии яркого источника света и хорошего апохроматического иммерсионного объектива) слабо и равномерно опалесцирует. На ее фоне четко различаются черные оптически пустые вакуоли. Капли жира выделяются как сильно блестящие гранулы. Протопласт погибающих клеток опалесцирует молочно-белым цветом.

4.3.4.2 Фазово-контрастная микроскопия

Человеческий глаз выявляет только различия в длине (цвете) и амплитуде (интенсивности, контрастности) световой волны, но не улавливает различий в фазе.

Почти все живые клетки прозрачны, так как световые лучи, проходя через живую клетку, не меняют своей амплитуды, хотя и изменяются по фазе.

Превратить фазовый (неконтрастный) препарат в «амплитудный» (контрастный) можно, либо окрашивая объект (для живых клеток этот прием малопригоден), либо снижая апертуру конденсора путем прикрывания диафрагмы (прием также нежелателен, так как снижается разрешающая способность микроскопа).

Метод фазово-контрастной микроскопии, предложенный голландским физиком Цернике для наблюдения за прозрачными объектами, основан на преобразовании фазовых изменений, претерпеваемых световой волной при прохождении через объект, в видимые амплитудные с помощью специального оптического устройства. Если в объектив обычного микроскопа вмонтировать специальный диск – фазовую пластинку с кольцом, а в конденсор – кольцевую диафрагму (непроницаемую для лучей света пластинку, в которой имеется прозрачная щель в виде кольца), так чтобы через конденсор и объектив проходило лишь кольцо света, которое затем совмещается с кольцом фазовой пластинки объектива, то фазы проходящего светового луча сдвигаются и можно наблюдать эффект фазового контраста.


Для проведения исследований необходимо в дополнение к световому микроскопу иметь фазово-контрастное устройство (в настоящее время наиболее широко применяются модели КФ-1 или КФ-4), которое состоит из фазовых объективов, конденсоров с набором кольцевых диафрагм и вспомогательного микроскопа (оптического устройства, помещаемого в тубус вместо окуляра при установке фазового контраста).

Метод применяют для исследования живых клеток микроорганизмов, контрастность которых достигается оптическим путем без вмешательства в физиологические процессы изучаемых объектов.

4.3.4.3 Люминесцентная микроскопия

Основана на явлении фотолюминесценции. Люминесценция (от lumen – свет) – свечение веществ, возникающее после воздействия на них каких-либо источников энергии: света, электронных лучей, ионизирующего излучения. Фотолюминесценция – люминесценция объекта под влиянием света. Некоторые биологические объекты способны при освещении коротковолновыми лучами (сине-фиолетовыми, ультрафиолетовыми) поглощать их и испускать лучи с более длинной волной (светиться желто-зеленым или оранжевым светом). Это так называемая собственная (первичная) люминесценция, которая наблюдается без предварительного окрашивания объекта. Вторичная (наведенная) люминесценциявозникаетпосле окраски препаратов специальными люминесцирующими красителями – флюорохромами (акридином желтым, акридином оранжевым, аурамином, примулином, конго красным, тетрациклином, хинином). Препараты, окрашенные флюорохромами, изучают в средах, не люминесцирующих под действием коротковолновых лучей, - в воде, глицерине, вазелиновом масле или физиологическом растворе.

Преимущества люминесцентной микроскопии по сравнению с обычными методами заключаются:

В сочетании цветного изображения и контрастности объектов;

Возможности изучения морфологии живых и убитых клеток микроорганизмов в питательных средах и тканях животных и растений;

Исследовании клеточных микроструктур, избирательно поглощающих различные флюорохромы, которые являются при этом как бы специфическими цитохимическими индикаторами;

Изучении функционально-морфологических изменений клеток;

Использовании флюорохромов при иммунологических реакциях и подсчете бактерий в образцах с невысоким их содержанием.

Для люминесцентной микроскопии готовят на предметных стеклах препараты-мазки или нативные препараты, которые окрашивают специальными флюоресцентными красителями. При работе с иммерсионным объективом используют нефлюоресцирующее масло.

4.3.4.4 Электронная микроскопия

Позволяет наблюдать объекты, размеры которых лежат за пределами разрешающей способности светового микроскопа (0,2 мкм). Электронный микроскоп применяется для изучения вирусов, тонкого строения различных микроорганизмов, макромолекулярных структур и других субмикроскопических объектов. Высокая разрешающая способность электронного микроскопа, практически составляющая от 0,1 до 0,2 нм, позволяет получать общее полезное увеличение до 1000000 раз.

Устройство электронного микроскопа в принципе аналогично светооптическому микроскопу, но роль световых лучей в электронном микроскопе играет пучок электронов, излучаемых специальным источником – электронной пушкой. Электроны попадают в магнитную конденсорную линзу. Использовать стеклянные линзы или зеркала для фокусировки электронов нельзя, так как стекло непроницаемо для электронов. В электронном микроскопе роль линз выполняет круговое магнитное поле, под действием которого электроны могут отклоняться или центрироваться. Функция конденсорной линзы электронного микроскопа аналогична выполняемой конденсором обычного микроскопа – сведение пучка электронов в одной точке на объекте. Пройдя через объект, электроны попадают в объектную линзу, которая вновь фокусирует расходящийся пучок и дает первое промежуточное изображение объекта. Магнитный проектор (проекционная линза, аналогичная по функции линзе окуляра) дает окончательное увеличение изображения объекта на флюоресцирующем экране – металлической пластинке, покрытой тонким слоем сернистого цинка или минерала виллемита. При попадании на экран электронных лучей каждая частица этого слоя начинает светиться; замещая экран фотографической пластинкой, изображение объекта можно сфотографировать.

На сегодняшний день электронные микроскопы бывают трех видов: трансмиссионные (просвечивающие), сканирующие и электронные микроскопы высокого напряжения. В последних большое ускорение электронов позволяет им проходить через сравнительно толстые срезы (1…5 мкм), при этом получают трехмерное изображение структур, что облегчает изучение объекта. Сканирующие электронные микроскопы обеспечивают рельефное изображение поверхности объекта. Разрешающая поверхность этих приборов значительно ниже, чем у электронных микроскопов «просвечивающего типа».

Препараты для электронно-микроскопических исследований помещают на специальные сетки, на которые нанесена тончайшая целлюлозная или пластмассовая пленка - подложка. Для увеличения контрастности объекта проводят его напыление тяжелыми металлами (хромом, золотом, палладием) в виде паров или проводят обработку контрастирующими веществами (фосфорно-вольфрамовая кислота).

Контрольные вопросы

1. Какие правила необходимо соблюдать при работе в микробиологической лаборатории?

2. Как устроена микробиологическая лаборатория?

3. Каково основное оборудование и для каких целей его используют в микробиологической лаборатории?

4. Перечислите основные инструменты и посуду, применяемые в микробиологической лаборатории. В чем их назначение?

5. Какие виды световых микроскопов вы знаете, для чего они предназначены?

6. Из каких частей состоит световой микроскоп?

7. Что относят к механической части микроскопа?

8. Каково назначение макро- и микрометрического винтов? Как ими пользоваться?

9. В чем особенности оптической системы микроскопа, из каких частей она состоит?

10. Что такое сухие и иммерсионные объективы?

11. Как регулировать степень освещенности препарата?

12. Почему с одной стороны зеркало плоское, а с другой вогнутое? Когда и каким зеркалом пользуются?

13. Какое строение имеет окуляр, и в чем его назначение?

14. Что означают понятия «увеличительная способность микроскопа» и «разрешающая способность микроскопа», и как их можно определить?

15. Перечислите основные правила работы с биологическим микроскопом.

16. Каков порядок работы при микроскопии препаратов с сухим объективом?

17. Перечислите правила и порядок работы с иммерсионным
объективом.

18. Какие методы микроскопии вы знаете, в чем их особенности?

19. На чем основан метод фазово-контрастной микроскопии?

20. Из чего состоит фазово-контрастное устройство?

21. Что означают термины «люминесценция», «флюорохромы»? Какие виды люминесценции вы знаете?

22. В чем достоинства люминесцентного метода микроскопии?

23. Какое явление лежит в основе метода темнопольной микроскопии? С какой целью используется этот метод?

24. В чем особенности устройства электронного микроскопа и принцип его работы?

ЛИТЕРАТУРА

1. Асонов, Н.Р. Практикум по микробиологии / Н.Р. Ассонов. – М.: Агропромиздат, 1988. – 155 с.

2. Борисов, Л.Б. Руководство к лабораторным занятиям по микробиологии / Л.Б. Борисов [и др.]. – М.: Медицина, 1984. – 256 с.

3. Градова, Н.Б. Лабораторный практикум по общей микробиологии / Н.Б. Градова [и др.]. – М.: ДеЛи принт, 2001. – 131 с.

4. Лерина, И.В. Лабораторные работы по микробиологии / И.В. Лерина, А.И. Педенко. – М.: Экономика, 1986. – 158 с.

5. Мармузова, Л.В. Основы микробиологии, санитарии и гигиены в пищевой промышленности. – М.: ПрофОбрИздат, 2001. – 136 с.

6. Нетрусов А.И. Практикум по микробиологии / А.И. Нетрусов [и др.]. – М.: Академия, 2005. – 608 с.

7. Прозоркина, Н.В. Основы микробиологии, вирусологии и иммунологии / Н.В. Прозоркина, Л.А. Рубашкина. – Ростов н/Д.: Феникс, 2002. – 416 с.

8. Теппер, Е.З. Практикум по микробиологии / Е.З. Теппер, В.К. Шильникова, Г.И. Переверзева. – М.: Дрофа, 2004. – 256 с.

9. Трушина, Т.П. Микробиология, гигиена и санитария в торговле / Т.П. Трушина. – Ростов н/Д.: Феникс, 2000. – 320 с.

10. Шлегель, Г. Общая микробиология / Г. Шлегель. – М.: Мир, 1987. – 567 с.

В зависимости от свойств объекта свет изменяет свои физические свойства - цвет (длину волны), яркость (амплитуду волны), фазу, используются в современных микроскопах для создания контраста.

Рис. 1. Микроскоп МБИ-3: 1 - ножка, или башмак; 2 - барашки грубого движения тубуса; 3 - тубусодержатель; 4 - окуляры; 5 - бинокулярная насадка; 6 - головка для крепления револьвера с посадочным гнездом для смены тубусов; 7 - винт крепления бинокулярной насадки; 8 - револьвер на салазках; 9 - объективы; 10 - предметный столик; 11 - барашек продольного движения препаратодержателя; 12 - барашек поперечного движения препаратодержателя; 13 - апланатический конденсор прямого и косого освещения; 14 - центрировочные винты столика; 15 - головка винта, фиксирующего верхнюю часть предметного столика; 16 - кронштейн конденсора; 17 - барашек микромеханизма; 18 - зеркало; 19 - коробка с микромеханизмом.

Наиболее легко поддаются окрашиванию фиксированные, убитые препараты. Такие неподвижные препараты могут быть с высокой точностью рассмотрены и сфотографированы через микроскоп, но они не дают возможности оценить различные формы жизнедеятельности микроскопируемого объекта (движение, слияние, фагоцитоз и пр.). Известны красители, которые связываются с живыми клетками, не нарушая их жизнедеятельности.

Витальная (прижизненная) микроскопия показывает, что многие структуры живой клетки сравнительно мало изменяются при умелой фиксации и последующем окрашивании. Этим подтверждается высокая научная ценность информации, получаемой при помощи микроскопии окрашенных объектов. Витальная микроскопия возможна и без окрашивания, если в обычный микроскоп ввести так называемый темнопольный конденсор. Он освещает объект так, что в глаз наблюдателя попадают только те лучи, которые рассеялись на частицах объекта и тем самым изменили направление своего распространения. Лучи, прошедшие через фон без рассеяния, в глаз не попадают. Поэтому частицы объекта светятся и ярко выделяются на темном фоне (темном поле). Частицы объекта хорошо видны, даже если их размеры меньше разрешаемого расстояния.

Темнопольная микроскопия обеспечивает наибольший возможный контраст изображения, но четкость его и полезное увеличение заметно ниже, чем при обычной микроскопии. Темнопольная микроскопия успешно применялась для изучения спирохет, лептоспир и других слабо окрашиваемых микроорганизмов. При работе с гистологическими препаратами она неприменима.

Технически самостоятельным вариантом темнопольной микроскопии является ультрамикроскопия , при которой мельчайшие изучаемые частицы освещаются мощным боковым пучком света и видны точками на черном фоне. Ультрамикроскопия позволяет подсчитывать частицы, оценивать их размеры и другие свойства. Применяется для изучения коллоидных растворов, аэрозолей, суспензий.

В последние годы темнопольная микроскопия применяется все реже, так как появились два новых типа контрастирующих приборов со значительно лучшими характеристиками - фазово-контрастный (рис. 2, а и б) и амплитудно-контрастный микроскопы. Технически они сходны, но в них используют различные изменения светового луча в объекте. Луч, прошедший через фон образца, в идеальном случае не претерпевает никаких изменений. Он проходит через точно определенные участки объектива. Луч, прошедший через объект, подвергается дифракции, т. е. распадается на пучки убывающей интенсивности, которые выходят из объекта под разными углами. Другие свойства луча (амплитуда, длина волны, фаза) изменяются в различных степенях в зависимости от особенностей объекта.


Рис. 2. Микроскоп МБИ-3 (а) с фазово-контрастным устройством КФ-1 (б): 1 - конденсор револьверной системы; г - набор объективов и кольцевых диафрагм; 3 - вспомогательный микроскоп.

Почти все живые микроскопические объекты выглядят в обычном микроскопе едва заметными, прозрачными, потому что они почти не изменяют ни амплитуды, ни цвета прошедшего через них луча.

Они изменяют только фазу его волны, но это изменение не улавливается ни глазом, ни фотопластинкой. Пучок лучей, дифрагированных объектом и сдвинутых им по фазе, проходит через те участки объектива, где не могут пройти прямые, недифрагированные лучи фона. Практически нетрудно определить, где именно пройдут эти лучи. Если накрыть этот участок одной из линз объектива полупрозрачной пластинкой, способной изменить фазу, интенсивность, цвет или все эти три свойства вместе, то изображение фона изменит свою фазу, уменьшится его яркость или преобразится цвет. Лучи, прошедшие через объект и отклоненные (дифрагированные) им, обойдут вложенную в объектив пластинку и, следовательно, не приобретут тех свойств, которые приобрели, пройдя через пластинку, лучи фона. В результате разница между лучами фона и объекта возрастет. Если разница фаз между лучами фона и объекта достигает 1/4 длины волны, то в конечном изображении возникает заметный для глаза и фотопластинки контраст: темный объект на светлом фоне или, наоборот, в зависимости от структуры пластинки, которую в этом случае называют «фазовой». Если же пластинка изменяет главным образом яркость и цвет фона, то такой микроскоп следует назвать амплитудно-контрастным (большое распространение получило более короткое, хотя и не совсем правильное название «аноптральный»). Таким образом, разница между фазово-контрастным и амплитудно-контрастным микроскопом определяется свойствами пластинки в объективе, изменяющей свойства недифрагированных лучей фона. Изображения, построенные этими микроскопами, значительно ярче и богаче деталями (рис. 3 и 4), чем темнопольные картины.

Рис. 3. Культура многоклеточной бактерии Caryophanon latum Peshkoff. Амплитудно-контрастная микроскопия.
Рис. 4. Микроколонии Вас. megatherium, зараженной фагом. Амплитудно-контрастная микроскопия.

С появлением фазово- и амплитудно-контрастных микроскопов витальная микроскопия получила прекрасную технико-методическую базу, возможности которой близки к предельным для световой оптики. Никакой фиксации или окраски объекта эти приборы не требуют. Современная витальная микроскопия чрезвычайно расширила наши знания о поведении и динамике живых микрообъектов в естественных и лабораторных условиях обитания и эксперимента. Ускоренная (рапид) и замедленная (цейтрафферная) микрокиносъемка сделали доступными для исследования процессы, скорость течения которых слишком велика или слишком мала для визуального наблюдения.

Выпускаемые промышленностью фазово-контрастные и амплитудно-контрастные (аноптральные) устройства недороги, легко монтируются на серийных микроскопах; использование их не представляет затруднений. Эти приборы, несомненно, будут находить все новые области применения как в научных исследованиях, так и в медицинской практике.

Ультрафиолетовая микроскопия основана на способности некоторых веществ избирательно поглощать ультрафиолетовые лучи с определенной длиной волны. Это позволяет наглядно демонстрировать и изучать, в том числе количественно, распределение веществ в живых клетках или фиксированных препаратах. Так, например, белки и нуклеиновые кислоты одинаково прозрачны для видимого света; рассматривая неокрашенную клетку в видимом свете, нельзя определить, где расположен белок или нуклеиновая кислота. Но ультрафиолетовые лучи определенной длины нуклеиновая кислота поглощает значительно сильнее, чем белок. Поэтому в ультрафиолетовом микроскопе участок, содержащий нуклеиновую кислоту, выглядит значительно темнее. Так как ультрафиолетовые лучи непосредственно глазом не воспринимаются, приходится применять специальные преобразователи света. Ультрафиолетовая микроскопия технически значительно сложнее обычной световой, ее аппаратура дороже и методика тоньше. Несмотря на это, применение ее оправдано, так как научная значимость быстрого топографического описания химического состава живой клетки весьма велика.

Гораздо более доступна и перспективна люминесцентная микроскопия (см.), широко применяемая ныне в научно-исследовательских и клинико-диагностических лабораториях. При этом живой объект обрабатывают специальными красителями, которые, будучи освещены синим, фиолетовым или ультрафиолетовым светом, начинают светиться, излучая более длинные волны (зеленые, желтые). Цвет возбужденного вторичного свечения зависит от химических свойств объекта и введенного в него красителя.

Поляризационная микроскопия основана на изменении плоскости колебаний световой волны после прохождения через кристаллы. В практической медицине не применяется.

Современная микроскопия требует применения разнообразной вспомогательной аппаратуры. Нагревательные столики и термостаты позволяют выдерживать и наблюдать объект длительное время при заданной температуре. Для длительного выращивания микробов или тканевых культур в поле зрения сильного объектива служат разнообразные микрокамеры. Окулярные и объективные микрометры делают возможными точные измерения микрообъектов. Промышленность выпускает микроманипуляторы (см.) для операций на микрообъектах. Для получения стереоскопического изображения при увеличениях до 100 раз предназначены бинокулярные лупы (см.) и стереомикроскопы (рис. 5). Широко производится и используется аппаратура для микрофотографии и микрокиносъемки (рис. 6). См. также Микроскопическая техника.


Рис. 5. Стереоскопический микроскоп МБС-1.


Рис. 6. Микрокиноустановка МКУ-1.

Микроскопия (лат. μΙκροσ — мелкий, маленький и σκοποσ — вижу) — изучение объектов с использованием микроскопа. Подразделяется на несколько видов: оптическая микроскопия, электронная микроскопия, рентгеновская или рентгеновская лазерная микроскопия, отличающиеся использованием электромагнитных лучей с возможностью рассмотрения и получения изображений микроэлементов вещества в зависимости от разрешающей способности приборов ().

Оптическая микроскопия. Человеческий глаз представляет собой естественную оптическую систему, характеризующуюся определённым разрешением, т. е. наименьшим расстоянием между элементами наблюдаемого объекта (воспринимаемыми как точки или линии), при котором они ещё могут быть отличены один от другого. Для нормального глаза при удалении от объекта на т. н. расстояние наилучшего видения (D = 250 мм), среднестатистическое нормальное разрешения составляет 0,176 мм. Размеры микроорганизмов, большинства растительных и животных клеток, мелких кристаллов, деталей микроструктуры металлов и сплавов и т. п. значительно меньше этой величины. Для наблюдения и изучения подобных объектов и предназначены микроскопы различных типов. С помощью микроскопов определяют форму, размеры, строение и многие другие характеристики микрообъектов.

Оптический, или световой микроскоп использует видимый свет, проходящий через прозрачные объекты, или отражённый от непрозрачных. Оптическая система из нескольких линз позволяет получить кажущееся увеличенное изображение образца. Полученное изображение можно наблюдать глазом (или обеими глазами, в бинокуляре), либо фотографировать, передавать на видеокамеру для оцифровки. В состав современного микроскопа обычно входит система подсветки, столик для перемещения объекта (препарата), наборы специальных объективов и окуляров.

Были разработаны виды микроскопов, порзволяющие существенно расширить возможности обычной оптической микроскопии:

До 1950-х годов работали преимущественно в диапазоне видимого спектра света. Глаз работает в оптическом диапазоне длин волн. Оптические микроскопы не могли давать разрешающей способности менее полупериода волны опорного излучения (для видимого диапазона длина волн 0,2—0,7 мкм, или 200—700 нм). Предельное увеличение оптического микроскопа — до 2000 раз. Дальнейшее увеличение изображения нецелесообразно, так как не позволяло обнаружить дополнительных деталей структуры вешества. Отдельные частички размером приблизительно до 0,15 мкм хорошо видны при увеличении в 2000 раз. Более мелкие частицы не отражают световые лучи и не видны под микроскопом.

Совокупность электронно-зондовых методов исследования микроструктуры твердых тел, их локального состава и микрополей (электрических, магнитных и др.) с помощью электронных микроскопов - приборов, в которых для получения увеличения изображений используют электронный пучок. Электронная микроскопиявключает также методики подготовки изучаемых объектов, обработки и анализа результирующей информации. Различают два главных направления электронной микроскопии: трансмиссионную (просвечивающую) и растровую (сканирующую), основанных на использовании соответствующих типов. Они дают качественно различную информацию об объекте исследования и часто применяются совместно. Известны также отражательная, эмиссионная, оже-электронная, лоренцова и иные виды электронной микроскопии, реализуемые, как правило, с помощью приставок к трансмиссионным и растровым электронным микроскопам.

Рентгеновская микроскопия — совокупность методов исследования микроскопического строения вещества с помощью рентгеновского излучения. В рентгеновской микроскопии используют специальные приборы — рентгеновские микроскопы. Разрешающая способность достигает 100 нм, что в 2 раза выше, чем у оптических микроскопов (200нм). Теоретически рентгеновская микроскопия позволяет достичь на 2 порядка лучшего разрешения, чем оптическая (поскольку длина волны рентгеновского излучения меньше на 2 порядка). Однако современный оптический микроскоп - наноскоп имеет разрешение до 3-10нм.

Рентгеновская микроскопия разделяется на:

  • Отражательная микроскопия
  • Проекционная микроскопия
  • Электронная микроскопия
  • Рентгеновская лазерная микроскопия

В данной статье мы ознакомимся широко развитой методикой исследования разнообразных микроэлементов нашего мира - микроскопией. Здесь мы рассмотрим описание микроскопа, его предназначение, устройство, правила работы и исторические факты.

Ознакомление с приборами микроскопии

Микроскоп - это механизм, предназначение которого заключается в получении увеличенного изображения какого-либо объекта, а также в измерении структурных деталей, которых невозможно наблюдать невооруженным глазом.

Изобретение и создание разнообразных видов микроскопов позволило создать микроскопию - технологический метод практической эксплуатации этих приборов.

Исторические сведения

Кем был создан первый микроскоп в истории человечества, определить довольно проблематично. Впервые такой механизм был изобретен на рубеже шестнадцатого и семнадцатого веков. Вероятным изобретателем считают Захария Янсена, голландского ученого.

Будучи еще ребенком, Янсен используя дюймовую трубочку, установил на двух ее краях по одной выпуклой линзе. Увиденное заставило изобретателя создать нечто новое и улучшить его. Возможно, это обусловило изобретение первого в мире микроскопа, что произошло приблизительно в 1590 году.

Однако еще в 1538 г. итальянец Дж. Фракасторо, работая врачом, выдвинул предположение о комбинировании двух линз с целью создания еще большего увеличения изображений. Следовательно, его работа могла стать началом для появления первого микроскопа. Хотя термин был введен гораздо позже.

Другим первооткрывателем считается Галилео Галилей. Услышав приблизительно в 1609 г. о появлении такого увеличительного устройства и разобравшись в общей идее его механизма, уже в 1612 г. итальянский физик создал собственное массовое изготовление микроскопов. Название этому прибору дал академический друг Галилея, Джованни Фабер в 1613.

Уже в шестидесятых годах XVII века были получены данные о применении микроскопа в научной исследовательской деятельности. Первый это сделал Роберт Гук, занимавшийся наблюдением за устройством разнообразных растений. Именно он в работе «микрография» сделал зарисовки увиденного в микроскоп изображения. Он установил, что растительные организмы строятся из клеток.

Разрешающие способности

Одним из параметров микроскопа является его разрешающая способность. Различные виды микроскопов имеют, соответственно, разный показатель этой характеристики. Так что же это такое?

Разрешающая способность - это возможности прибора показывать четкое и качественное изображение, картинку двух расположенных рядом, фрагментов исследуемого объекта. Показатель степени углубления в микромир и общая возможность его исследования базируются именно на этой способности. Данную характеристику определяет длина волны излучения, которую используют в микроскопе. Главным ограничением является невозможность получения картинки объекта, размеры которого меньше размера длины излучения.

Ввиду написанного выше становится очевидно, что благодаря разрешающей способности мы можем получать четкое изображение деталей изучаемого объекта.

Основные параметры

К другим важным параметрам в строении микроскопа относятся его увеличение, насадки, размер предметного столика, возможности подсветки, оптическое покрытие и т. д.

Рассмотрим главный из перечисленных в этом пункте показателей - увеличение.

Увеличение - это общая способность микроскопа показывать изучаемые объекты в больших размерах, чем они есть на самом деле. Вычисление этого параметра можно произвести путем умножения объективного увеличения на окулярное. Данная возможность в оптических микроскопах доходит до 2000 крат, а электронный имеет увеличение в сотни раз больше, чем световой.

Основная характеристика микроскопа - это именно его разрешающая способность, а также увеличение. Поэтому при выборе такого прибора на эти показатели необходимо обратить особое внимание.

Составные элементы

Микроскоп, как и любой другой механизм, состоит из определенных деталей, среди которых выделяют:

  • предметный столик;
  • рукоятку переключения;
  • окуляр;
  • тубус;
  • держатель для тубуса;
  • микрометренный винт;
  • винт грубой наводки;
  • зеркальце;
  • подставку;
  • объектив;
  • стойку;
  • бинокулярную насадку;
  • оптическую головку;
  • конденсор;
  • светофильтр;
  • ирисовую диафрагму.

Ознакомимся с основными характеристиками образующих структур микроскопа.

Объектив - является средством определения полезного увеличения. Образуется из определенного количества линз. Увеличительные возможности указываются цифрами на его поверхности.

Окуляр - состоящий из двух-трех линз элемент микроскопа, увеличение которого обозначается на нем цифрам. Общий показатель увеличительных способностей прибора определяется путем перемножения показателя увеличения объектива на увеличение окуляра.

Осветительные устройства включают в себя зеркальце или электроосветитель, конденсор и диафрагмой, светофильтр и столик.

Механическая система образуется подставкой, коробочкой с микрометренным механизмом и винтом, тубусодержателем, винтом грубой наводки, конденсором, винтом перемещения конденсора, револьвером и предметным столиком.

Оптическая микроскопия

Среди существующих видов микроскопов выделяют несколько основных групп, характеризующихся определенными особенностями устройства и предназначения.

Глаз человека - это своего рода естественная оптическая система с определенными параметрами, например, разрешением. Разрешение, в свою очередь, характеризуется наименьшим показателем разности в расстоянии между составными компонентами объекта, за которым наблюдают. Важнейшим пунктом здесь является наличие визуального отличия между наблюдаемыми фрагментами. Ввиду того, человеческий глаз не в силах наблюдать естественным путем за микроорганизмами, как раз и были созданы подобные увеличительные приборы.

Оптические микроскопы позволяли работать с излучением, лежащем в диапазоне от 400 до 700 нм и с ближним ультрафиолетом. Это длилось до середины двадцатого века. Подобные приборы не позволяли получать разрешающую способность меньшую, чем полупериод волны излучения опорного типа. Вследствие этого микроскоп позволял наблюдать за структурами, расстояние между которыми было около 0.20 мкм, из чего следует, что максимальное увеличение могло достигать 2000 крат.

Микроскопы бинокулярного типа

Бинокулярный микроскоп - это устройство, при помощи которого можно получить объемное увеличенное изображение. Другое название таких приборов - стереомикроскопы. Они позволяют человеку четко различать детали исследуемых объемных объектов.

В бинокулярном микроскопе рассмотрение объекта происходит сквозь две линзы, независимые между собой. В настоящее время используются сразу 2 окуляра и 1 объектов. Отлично работают в условиях наличия проходящего и отраженного света.

Электронная микроскопия

Появление электронного микроскопа позволило использовать электроны, обладающие свойствами и частиц, и волн в микроскопии.

Электрон обладает длинной волны, которая зависит от его энергетического потенциала: E = Ve, где V - величина разности потенциалов, e - электронный заряд. Длина волны электрона при пролете разности в потенциалах равной 200000 В составит около 0,1 нм. Электрон легко фокусируется при помощи электромагнитных линз, что обуславливается его зарядом. После электронную версию изображения переводят в видимую.

Среди таких увеличительных устройств набрал широкую известность цифровой микроскоп. Он позволяет подключать адаптеры к аппарату с целью переноса изображения на компьютер и его сохранения. При работе с подобными устройствами камера регистрирует наблюдаемое изображение, далее переносит его на ПК при помощи USB-кабеля.

Цифровой микроскоп может классифицироваться в соответствии с его режимом работы, увеличительной кратности, числу подсветок и разрешению камеры. Их главными достоинствами считаются наличие возможности переносить изображение на ПК и сохранять его, возможность в пересылке полученной информации на большие расстояния, редактирование, детальный анализ и хранение результатов исследования, а также умение проецировать картинку при помощи проекторов.

Электронные микроскопы обладают разрешающей способностью превосходящей световые в 1000-10000 раз.

Сканирующие зонды

Другой вид микроскопа - это сканирующий зонд. Сравнительно новая ветвь в развитии таких приборов.

Сокращенно их называют - ЗСМ. Изображение воспроизводится благодаря регистрации взаимодействия зонда и поверхности, которую он исследует. В современном мире такие механизмы позволяют наблюдать за взаимодействием зонда с атомами. Разрешающая способность ЗСМ сопоставима с микроскопами электронного типа, а в некоторых параметрах даже лучше.

Рентгеновская микроскопия

Рентгеновский микроскоп был создан для наблюдением за чрезвычайно малыми объектами, величина которых сопоставима с рентгеновскими волнами. Базируется на эксплуатации излучения электромагнитного характера, в котором длина волны не превышает один нанометр.

Разрешающая способность таких микроскопов заняла промежуточное место между оптическими и электронными. Теоретическая р.с. такого устройства может достигать 2-20 нм, что гораздо больше возможностей оптических микроскопов.

Общие сведения для работы с микроскопом

Эксплуатируя данный прибор необходимо знать правила работы с микроскопом:

  1. Работу необходимо выполнять сидя.
  2. Следует осмотреть прибор и протереть от пыли мягкими салфетками зеркальце, объектив и окуляр.
  3. При работе с микроскопом нежелательно его передвигать, поставить слева от себя.
  4. Произвести открытие диафрагмы, привести конденсор к верхнему положению.
  5. Работу стоит начинать с малого увеличения.
  6. Объектив довести до одного сантиметра от стекла с наблюдаемым объектом.
  7. Равномерно распределить освещение поля зрения, используя окуляр, в который необходимо смотреть глазом, и вогнутое зеркало.
  8. Переместить микропрепарат на столик микроскопа. Наблюдая сбоку, опустить объектив до уровня 4-5 мм над исследуемым объектом, используя для этого макровинт.
  9. Глядя глазом в окуляр, производить вращательные движения грубого винта, для подведения объектива к положению, в котором будет четко видно изображение.
  10. Перемещая стекло с препаратом, найдите место, где исследуемый объект будет располагаться по центру вашего поля зрения в микроскопе.
  11. В случае отсутствия изображения, повторите с шестого по девятый пункты.
  12. Используя микрометренный винт, добейтесь необходимой четкости изображения. Обратит внимание на то, не выходит ли точка между рисками на микрометренном механизме, за пределы рисок. Если выходит, то верните ее в стандартное положение.
  13. Заключаем правила работы с микроскопом, уборкой рабочего места. Необходимо вернуть увеличение с большого на малое, произвести поднятие объектива, снять препарат и протереть микроскоп, далее накрыть полиэтиленом и вернуть в шкафчик.

Данные правила в большей мере относятся к оптическим микроскопам. Строение микроскопа, например, электронного или рентгеновского, отличается от светового, а потому основные правила работы могут также отличаться. Особенности работы с такими устройствами можно найти в инструкции к ним.

Поделиться: