Серодиагностика вирусных инфекций, используемые реакции. Методы микробиологической диагностики вирусных заболеваний. Методы выделения и идентификации вирусов. Серологические реакции, используемые для диагностики вирусных болезней Серологические реакции ис

ВИЧ-инфекция
ВИЧ-инфекция - заболевание, вызываемое вирусом иммунодефицита человека (ВИЧ), длительное время персистирующего в лимфоцитах, макрофагах, клетках нервной ткани, в результате чего развивается медленно прогрессирующее поражение иммунной и нервной систем организма, проявляющееся вторичными инфекциями, опухолями, подострым энцефалитом и другими патологическими изменениями.
Возбудители - вирусы иммунодефицита человека t-го и 2-го типов - ВИЧ-1, ВИЧ-2 (HIV-I, HIV-2, Human Immunodeficiency viruses, types I, 11) - относятся к семейству ретро- вирусов, подсемейству медленных вирусов. Вирионы являются сферическими частицами диаметром 100-140 нм. Вирусная частица имеет наружную фосфолипидную оболочку, включающую гликопротеины (структурные белки) с определенной молекулярной массой, измеряемой в килодальтонах. У ВИЧ-1 - это gp 160, gp 120, gp 41. Внутренняя оболочка вируса, покрывающая ядро, также представлена белками с известной молекулярной массой - р 17, р 24, р 55 (ВИЧ-2 содержит gp 140, gp 105, gp 36, p 16, p 25, p 55).
В состав генома ВИЧ входит РНК и фермент обратной транскриптазы (ревертазы). Для того чтобы геном ретровируса соединился с геномом клетки хозяина, вначале с помощью ревертазы происходит синтез ДНК на матрице вирусной РНК. Затем ДНК провируса встраивается в геном клетки-хозяина. ВИЧ обладает выраженной антигенной изменчивостью, значительно превышающий таковую у вируса гриппа.
В организме человека основной мишенью ВИЧ являются Т-лимфоциты, несущие на поверхности наибольшее количество CD4-рецепторов. После проникновения ВИЧ в клетку с помощью ревертазы по образцу своей РНК вирус синтезирует ДНК, которая встраивается в генетический аппарат клетки-хозяина (Т-лимфоциты) и остается там пожизненно в состоянии провируса. Помимо Т-лимфоцитов-хелперов, поражаются макрофаги, В-лимфоциты. клетки нейроглии, слизистой оболочки кишечника и некоторые другие клетки. Причиной снижения количества Т-лимфоцитов (клетки CD4) является не только прямое цитопатическое действие вируса, но и их слияние с неинфицированными клетками. Наряду с поражением Т-лимфоци- тов у больных ВИЧ-инфекцией отмечается поликлональная активация В-лимфоцитов с увеличением синтеза иммуноглобулинов всех классов, особенно IgG и IgA, н последующим истощением этого отдела иммунной системы. Нарушение регуляции иммунных процессов проявляется также повышением уровня альфа-интерферона, бета-2-микро глобулин а, снижением уровня интерлейкина-2. В результате нарушения функции иммунной системы, особенно при снижении числа Т-лимфоцитов (CD4) до 400 и менее клеток в 1 мкл крови, возникают условия для неконтролируемой репликации ВИЧ со значительным увеличением количества вирионов в различных средах организма. В результате поражения многих звеньев иммунной системы человек, зараженный ВИЧ, становится беззащитным перед возбудителями различных инфекций. На фойе нарастающей иммунодепрессии развиваются тяжелые прогрессирующие болезни, которые не встречаются у человека с нормально функционирующей иммунной системой. Эти болезни ВОЗ определила как СПИД-маркерные (индикаторные).
Первая группа - заболевания, которые присущи только тяжелому иммунодефициту (уровень CD4 ниже 200). Клинический диагноз ставят при отсутствии анти-ВИЧ антител или ВИЧ-антигенов.
Вторая группа - заболевания, развивающиеся как на фоне тяжелого иммунодефицита, так и в ряде случаев без него. Поэтому в таких случаях необходимо лабораторное подтверждение диагноза.

  • 3.Возбудитель сибирской язвы. Таксономия и характеристика. Микробиологическая диагностика. Специфическая профилактика и лечение.
  • 1.Морфологические свойства бактерий.
  • 3.Возбудитель боррелиозов. Таксономия. Характеристика. Микробиологическая диагностика.
  • 1.Принципы классификации простейших.
  • 2) По количеству мутировавших генов:
  • 3) По фенотипическим последствиям:
  • 1.Особенности морфологии вирусов.
  • 2.Неспецифические факторы защиты организма.
  • 2.Иммуноглобулины, структура и функции.
  • 3.Возбудители орви. Таксономия. Характеристика. Лабораторная диагностика. Специфическая профилактика и лечение.
  • 2.Антигены: определение, основные свойства. Антиге­ны бактериальной клетки.
  • 3.Синегнойная палочка. Таксономия. Характеристика. Микробиологическая диагностика и лечение.
  • 1.Тинкториальные свойства бактерий. Методы окраски.
  • 1.Методы микроскопии (люминесцентная, темнопольная, фазово-контрастная, электронная).
  • 2.Реакция пассивной гемагглютинации. Компоненты. Применение.
  • 1.Рост и размножение бактерий. Фазы размножения:
  • 1.Основные принципы культивирования бактерий:
  • 1.Искусственные питательные среды, их классификация. Требования, предъявляемые к питательным средам.
  • 3.Возбудители хламидиозов. Таксономия. Характеристика. Микробиологическая диагностика. Лечение.
  • 1. Дисбиозы. Дисбактериозы. Препараты для восстанов­ления нормальной микрофлоры: пробиотики, эубиотики.
  • 1. Действие физических и химических факторов на микроор­ганизмы. Понятие о стерилизации, дезинфекции, асептике и антисептике. Влияние физических факторов.
  • 2. Серологические реакции, используемые для диагнос­тики вирусных инфекций.
  • 1.Понятие об инфекции. Условия возникновения инфекционного процесса.
  • 3.Возбудитель столбняка. Таксономия и характеристика. Микробиологическая диагностика и лечение.
  • 3.Возбудитель сыпного тифа. Таксономия. Характеристика. Болезнь Брилля-Цинссера. Микробиологическая диагностика. Специфическая профилактика и лечение.
  • 3. Возбудитель клещевого сыпного тифа.
  • 1.Характеристика бактериальных токсинов.
  • 3.Возбудитель натуральной оспы. Таксономия. Характеристика. Лабораторная диагностика. Специфическая профилактика оспы.
  • 3. Классификация микозов (грибов). Характеристика. Роль в патологии человека. Лабораторная диагностика. Лечение.
  • 1.Микрофлора воздуха и методы ее исследования. Санитарно-показательные микроорганизмы воздуха.
  • 2. Серологические реакции, используемые для диагнос­тики вирусных инфекций.

    Серологические методы, т. е. методы изучения антител и антигенов с помо­щью реакций антиген-антитело, определяе­мых в сыворотке крови и других жидкостях, а также тканях организма. Обнаружение в сыворотке крови боль­ного антител против антигенов возбудите­ля позволяет поставить диагноз болезни. Серологические исследования применяют также для идентификации антигенов микро­бов, различных биологически активных ве­ществ, групп крови, тканевых и опухолевых антигенов, иммунных комплексов, рецепто­ров клеток и др. При выделении микроба от больного про­водят идентификацию возбудителя путем изучения его антигенных свойств с помощью иммунных диагностических сывороток, т. е. сывороток крови гипериммунизированных животных, содержащих специфические ан­титела. Это так называемая серологическая идентификация микроорганизмов. Особенности взаимодействия антитела с ан­тигеном являются основой диагностических реакций в лабораториях. Реакция in vitro меж­ду антигеном и антителом состоит из специ­фической и неспецифической фазы. В специ­фическую фазу происходит быстрое специфи­ческое связывание активного центра антитела с детерминантой антигена. Затем наступает неспецифическая фаза - более медленная, ко­торая проявляется видимыми физическими явлениями, например образованием хлопьев (феномен агглютинации) или преципитата в виде помутнения. Эта фаза требует наличия определенных условий (электролитов, опти­мального рН среды). Связывание детерминанты антигена (эпитопа) с активным центром Fab-фрагмента анти­тел обусловлено ван-дер-ваальсовыми силами, водородными связями и гидрофобным взаимо­действием. Прочность и количество связавше­гося антигена антителами зависят от аффин­ности, авидности антител и их валентности.

    3. Возбудители малярии. Малярия – антропонозная инфекционная болезнь, вызываемая несколькими видами простейших рода Plasmodium, передающаяся комарами (Anopheles), сопровождающаяся лихорадкой, анемией, увеличением печени и селезенки. Возбудители малярии относятся к Protozoa, типу Apicomplexa, классу Sporozoa и видам Pl. vivax, Pl.malariae, Pl.falciparum, Pl.ovale.

    Эпидемиология. Источник инфекции – инвазированный человек; переносчик – самка комара рода Anopheles. Основной механизм передачи – трансмиссивный, через укус инвазированной самки комара.

    Лечение и профилактика. Противомалярийные препараты оказывают различное действие на бесполые, половые стадии плазмодиев. К основным противомалярийным препаратам относят хинин, хлорохин, акрихин, примахин, хиноцид, бигумаль, хлоридин и др. Профилактические мероприятия направлены на источник возбудителя (лечение больных малярией и носителей) и уничтожение переносчиков возбудителя – комаров. Разрабатываются методы вакцинации на основе антигенов, полученных методом генетической инженерии.

    1.Классификация антибиотиков по химической структуре, механизму, спектру и типу действия. По хим. структ. 1класс- В-лактам – пенициллин, цефалоспорин. 2 класс- макролиды- эритромицин, азитромицин. 3 класс- аминогликозиды- стрептомицин, канамицин. 4 класс-тетрациклины-окситетрациклин, доксициклин. 5 кл- полипептиды- полимиксин. 6 кл- полиен- нистатин 7кл- анзамицин- рифампицин.

    2.В зависимости от механизма дей­ствия различают пять групп антибиотиков: 1.гр антибиотики, нарушающие синтез клеточной стенки- β-лактамы. 2.гр антибиотики, нарушающие молекулярную организацию и синтез клеточных мембран - полимиксины, полиены;3.гр антибиотики, нарушающие синтез белка -аминогликозиды, тетрациклины, макроли-ды, левомицетин.4.гр антибиотики - ингибиторы синтеза нуклеиновых кислот - хинолоны нарушают синтез ДНК, рифампицин - синтез РНК;5.гр антибиотики, подавляющие синтез пуринов и аминокислот- сульфаниламиды.По спектру действия антибиотики пять групп в зави­симости от того, на какие микроорганизмы они оказывают воз­действие. Каж­дая из этих групп включает две подгруппы: антибиотики широ­кого и узкого спектра действия.1гр. Антибактериальные антибиотики составляют самую многочисленную группу препаратов.

    а) антиби­отики широкого спектра действия оказывают влияние на представителей всех трех отделов бактерий- аминогликозиды, тетрациклины и др.

    б) Антибиотики узкого спектра действия эффектив­ны в отношении небольшого круга бактерий- полет-миксины действуют на грациликутные, ванкомицин влияет на грамположительные бактерии.

    2гр -противотуберкулезные, противолепрозные, противосифилитические препараты.

    3.Противогрибковые антибиотики.

    а) Широким спектром действия об­ладает амфотерицин В, эффективный при кандидозах, бластомикозах, аспергиллезах; в то же время

    б) антибиотиком узко­го спектра действия.- нистатин, дей­ствующий на грибы рода Candida, является

    4.Антипротозойные и антивирусные антибиотики на­считывают небольшое число препаратов.

    5.Противоопухолевые антибиотики - препара­ты, обладающими цитотоксическим действием. Большинство из них применяют при многих видах опухолей- митомицин С. Действие антибиотиков на микроорганизмы связано с их спо­собностью подавлять те или иные биохимические реакции, про­исходящие в микробной клетке.

    2. Теории иммунитета. 1.Теория иммунитета Мечникова – фагоцитоз играет решающую роль в антибактериальном иммунитете. И.И.Мечников первым рассмат­ривал воспаление как защитное, а не разрушительное явление. Ученый назвал действующие таким образом защитные клетки "пожирающими клетками". Его мо­лодые французские коллеги предложили использовать гречес­кие корни того же значения. И.И.Мечников принял этот ва­риант, и появился термин "фагоцит". 2.Теория иммунитета Эрлиха - одна из первых теорий антителообразования, согласно которой у клеток имеются антигенспецифические рецепторы, высвобождающиеся в качестве антител под действием антигена. Противомикробные вещества крови Эрлих назвал "антитело". П.Эрлих осознал, что и до контакта с конкретным микробом в организ­ме уже есть антитела в виде, который он назвал "боковыми цепями"- это рецеп­торы лимфоцитов для антигенов. Потом Эрлих "применил" к фармакологии: в своей теории химиотерапии он предполагал предсуществование в организме рецеп­торов для лекарственных веществ. В 1908 г. П.Эрлиху вручили Нобелевскую премию за гуморальную теорию иммунитета. 3.Теория иммунитета Безредки - теория, объясняющая защиту организма от ряда инфекционных болезней возникновением специфической местной невосприимчивости клеток к возбудителям. 4. Инструктивные теории иммунитета - общее название теорий антителообразования, согласно которым ведущая роль в иммунном ответе отводится антигену, прямо участвующему в качестве матрицы при формировании специфической конфигурации антидетерминанты либо выступающему в качестве фактора, направленно изменяющего биосинтез иммуноглобулинов плазматическими клетками.

    3.Возбудитель ботулизма. род Clostridiumвид Clostridium botulinumвызывает ботулизм - пищевую интоксикацию, характеризующуюся поражением цнс. Болезнь возникает в результате употребления пищевых продуктов, содержащих токсины С. Botulinum - грамлоложительные палочки с закругленными концами. имеет форму теннисной ракетки. Не образуют капсулу. Подвижны. Облигатные анаэробы. По антигенным свойствам которых разделяются на 7 сероваров. Ботулинический экзотоксин - самый сильный из всех биологических ядов- оказывая нейротоксическое действие (смертельная доза для человека составляет около 0,3 мкг). Микробиологическая диагностика . Выявление и идентификация ботулинического токсина в исследуемом материале с помощью реакции обратной непрямой гемагглютинации (РОНГА), реакции нейтрализации токсина антитоксином (антитоксической сывороткой) на лабораторных животных. Бактериологический метод цпя обнаружения возбудителя в исследуемом материале. Специфическая профилактика. Ботулинические анатоксины А, В, Е входят в состав секстанатоксина, применяемого по показаниям. Для экстренной пассивной профилактики возможно применение противоботулинических антитоксических сывороток Лечение. Используют антитоксические противоботулинические гетерологичные сыворотки и гомологичные иммуноглобулины.

    Культивирование . На кровяном агаре образует небольшие прозрачные колонии, окруженные зоной гемолиза. Резистентность. Споры С. botulinum обладают очень высокий резистентностью к высоким температурам.

    Эпидемиология. Из почвы ботулиническая палочка попадает в пищевые продукты, где размножается и выделяет экзотоксин. Путь передачи инфекции – пищевой. Чаще всего фактором передачи инфекции являются консервы (грибные, овощные, мясные, рыбные). От человека человеку заболевание не передается. Патогенез. Ботулинический токсин попадает с пищей в пищеварительный тракт. Устойчивый к действию пищеварительных ферментов, токсин всасывается через стенку кишечника в кровь и обусловливает длительную токсинемию. Токсин связывается нервными клетками и блокирует передачу импульсов через нервно-мышечные синапсы. В результате развивается паралич мышц гортани, глотки, дыхательных мышц, что приводит к нарушению глотания и дыхания, наблюдаются изменения со стороны органов зрения. Клиническая картина. Инкубационный период продолжается от 6-24 ч до 2-6 дней. Чем короче инкубационный период, тем тяжелее протекает болезнь. Обычно заболевание начинается остро, но температура тела при этом остается нормальной. Возможны различные варианты ботулизма – с преобладанием симптомов поражения пищеварительного тракта, расстройств зрения или дыхательной функции. В первом случае заболевание начинается с появления сухости во рту, тошноты, рвоты, поноса. Во втором – первые проявления болезни связаны с нарушениями зрения (больной жалуется на «туман» перед глазами и двоение). В результате паралича мышц гортани появляется осиплость, а затем голос пропадает. Больные могут погибнуть от паралича дыхания. Заболевание может осложниться острой пневмонией, токсическим миокардитом, сепсисом. Летальность при ботулизме составляет 15-30%. Иммунитет. не формируется. Антитела, которые вырабатываются в течение заболевания, направлены против определенного серовара.

    1.Методы определения чувствительности бактерий к антибиотикам. 1)Метод диффузии в агар. На агаризованную питательную среду засевают исследуемый микроб, а затем вносят антибиотики. препараты вносят или в специальные лунки в агаре, или на поверхности посева раскла­дывают диски с антибиотиками («метод дис­ков»). Учет результатов проводят через сутки по наличию или отсутствию роста микробов вокруг лунок (дисков). 2)Методы определения. минимального уровня антибиотика, кото­рый позволяет in vitro предотвратить видимый рост микробов в питательной среде или пол­ностью ее стерилизует. А)Определение чувствительности бактерий к антибиотикам методом дисков. Исследуемую бактериальную культуру засевают газоном на питательный агар или среду АГВ в чашке Петри.Б)Среда АГВ: сухой питательный рыбный бульон, агар-агар, натрий фосфат двузамещенный. В)На засеянную поверхность пинцетом помещают на одинако­вом расстоянии друг от друга бумажные диски, содержащие определенные дозы разных антибиотиков. Посевы инкубируют при 37 °С до следующего дня. По диаметру зон задержки роста исследуемой культуры бактерий судят о ее чув­ствительности к антибиотикам.

    Г)Определение чувствительности бактерий к антибиотикам методом серийных разведений. определяют минимальную концентрацию антибиотика, ингибирующую рост исследуемой культуры бактерий.

    Д)Оценку результатов определения чувствительности микро­организмов к антибиотикам проводят по специальной готовой таблице, которая содержит пограничные значения диаметров зон задержки роста для устойчивых, умеренно устойчивых и чувствительных штам­мов, а также значения МИК антибиотиков для устойчивых и чувствительных штаммов. 3)Определение антибиотика в крови, моче и других жидкостях организма человека. В штатив устанавливают два ряда проби­рок. В одном из них готовят разведения эталонного антибиотика, в другом - исследуемой жидкости. Затем в каждую пробирку вносят взвесь тест-бактерий, приготовленную в среде Гисса с глюкозой. При определении в исследуемой жидкости пеницил­лина, тетрациклинов, эритромицина в качестве тест-бактерий используют стандартный штамм S. aureus, а при определении стрептомицина - Е. coli. После инкубирования посевов при 37 °С в течение 18-20 ч отмечают результаты опыта по помутнению среды и ее окрашиванию индикатором вследствие расщепления глюкозы тест-бактериями. Концентрация антибиотика опреде­ляется умножением наибольшего разведения исследуемой жид­кости, задерживающей рост тест-бактерий, на минимальную концентрацию эталонного антибиотика, задерживающего рост тех же тест-бактерий. Например, если максимальное разведение исследуемой жидкости, задерживающее рост тест-бактерий, рав­но 1:1024, а минимальная концентрация эталонного антибио­тика, задерживающего рост тех же тест-бактерий, 0,313 мкг/мл, то произведение 1024- 0,313=320 мкг/мл составляет концен­трацию антибиотика в 1 мл.

    4)Определение способности S. aureus продуцировать бета-лактамазу. В колбу с 0,5 мл суточной бульонной культуры стандарт­ного штамма стафилококка, чувствительного к пенициллину, вносят 20 мл расплавленного и охлажденного до 45 °С питатель­ного агара, перемешивают и выливают в чашку Петри. После застывания агара в центр чашки на поверхность среды поме­щают диск, содержащий пенициллин. По радиусам диска петлей засевают исследуемые культуры. Посевы инкубируют при 37 °С до следующего дня, после чего отмечают результаты опыта. О способности исследуемых бактерий продуцировать бета-лакта-мазу судят по наличию роста стандартного штамма стафило­кокка вокруг той или другой исследуемой культуры (вокруг диска).

    2.Расстройства иммунной системы: первичные и вторичные иммунодефициты. Иммунодефициты - это нарушения нор­мального иммунного статуса, обусловлен­ные дефектом одного или нескольких механизмов иммунного ответа.Первичные, или врожденные иммунодефициты.Расстройства иммунной системы могут затра­гивать как основные специфические звенья в функционировании иммунной системы, так и факторы, определяющие неспецифическую резистентность. Возможны комбинирован­ные и селективные варианты иммунных рас­стройств. В зависимости от уровня и характера нарушений различают гуморальные, клеточ­ные и комбинированные иммунодефициты.

    Причины : удвоение хромосом, точечные мутации, дефект фер­ментов обмена нуклеиновых кислот, генети­чески обусловленные нарушения мембран, повреждения генома в эмбриональном пе­риоде и др. Первичные имму­нодефицита проявляются на ранних этапах постнатального периода и наследуются по аутосомно-рецессивному типу. Проявления – недостаточность фагоцитоза, системы комп­лемента, гуморального иммунитета (В-системы), клеточного иммунитета (Т-системы). Вторичные, или приобретенные, иммунодефициты Вторичные иммунодефициты в отличие от первичных развиваются у лиц с нормально функционировавшей от рождения иммунной системой. Они формируются под воздействи­ем окружающей среды на уровне фенотипа и обусловлены нарушением функции иммунной системы в результате различных заболеваний или неблагоприятных воздействий на орга­низм. Поражаться Т- и В-системы иммунитета, фак­торы неспецифической резистентности, воз­можны также их сочетания. Вторичные имму­нодефицита встречаются значительно чаще, чем первичные. Вторичные иммунодефициты поддаются иммунокоррекции,

    Вторичные иммунодефицита могут быть:

      после перенесенных инфекций (особенно ви­русных) и инвазий (протозойные и гельминтозы);

      при ожоговой болезни;

      при уремии; при опухолях;

      при нарушении обмена веществ и истощении;

      при дисбиозах;

      при тяжелых травмах, обширных хирургических операци­ях, особенно выполняемых под общим нар­козом; при облучении, действии химических веществ;

      при старении,

      медикамен­тозные, связанные с приемом лекарств.

    По клиническому течению выделяют: 1)компенсированную, - повышенной восприимчивостью организма к инфекционным агентам. 2)субкомпенсированную- хронизация инфекционных процессов.

    3)декомпенсированную - генерализованных инфекций, вызванных условно-патогенными микробами (УПМ) и злокачественными новообразова­ниями.

    3. Возбудитель амебиаза. Таксономия. Характеристика. Микробиологическая диагностика. Специфическое лечение. Амебиаз – инфекционная болезнь, вызываемая Entamoeba histolytica, сопровождающаяся язвенным поражением толстой кишки; возможно образование абсцессов в различных органах; протекает хронически. Protozoa, типу Sarcomastidophora, подтипу Sarcodina.

    Морфология и культивирование. Возбудитель существует в двух стадиях развития: вегетативной и цистной. Вегетативная стадия имеет несколько форм (тканевая, большая вегетативная, просвет-ная и предцистная). Циста (покоящаяся стадия) имеет овальную форму, образуется из вегетативных форм в кишечнике. Инфицирование происходит при попадании цист возбудителя в кишечник, где из них образуются кишечные вегетативные формы.

    Резистентность . Вне организма быстро (через 30 мин) погибают тканевая и просветная формы возбудителя. Цисты устойчивы в окружающей среде, сохраняясь в фекалиях и воде при температуре 20ºС в течение месяца. В продуктах питания, на овощах и фруктах цисты сохраняются в течение нескольких дней.

    Механизм передачи – фекаль-но-оральный. Заражение происходит при занесении цист с продуктами питания, особенно овощами и фруктами, реже – с водой, через предметы домашнего обихода. Распространению цист способствуют мухи и тараканы.

    Патогенез и клиническая картина. Цисты, попавшие в кишечник, и образовавшиеся просветнью формы амеб могут обитать в нем, не вызывая заболевания. При снижении резистентности организма амебы внедряются в стенку кишечника и размножаются. Развивается кишечный амебиаз. Этому процессу способствуют некоторые представители микрофлоры кишечника. Поражаются с образованием язв верхний отдел толстой кишки, иногда – прямая кишка. Отмечается частый жидкий стул. В испражнениях обнаруживают гнойные элементы и слизь. Может происходить перфорация кишечной стенки с развитием гнойного перитонита. Амебы с током крови могут попадать в печень, легкие, головной мозг – развивается внекишечный амебиаз. Возможно появление кожного амебиаза, развивающегося как результат вторичного процесса. На коже перианальной области, промежности и ягодиц образуются эрозии и малоболезненные язвы. Иммунитет. При амебиазе иммунитет нестойкий. Лечение и профилактика . В лечении используются следующие препараты: действующие на амеб, находящихся в просвете кишечника (производные оксихинолина – хиниофон, энтеросептол, мексаформ, интестопан, а также соединения мышьяка – аминарсон, осарсол и др.); действующие на тканевые формы амеб (препараты эметина); действующие на просветные формы амеб и амеб, находящихся в стенке кишки (тетрациклины); действующие на амеб при любой их локализации (производные имидазола – метронидазол). Профилактика амебиаза связана с выявлением и лечением цистовыделителей и носителей амеб.

    Микробиологическая диагностика. Основной метод - микроскопическое исследование испражнений больного, а также содержимого абсцессов внутренних органов. Мазки окрашивают раствором Люголв или гематоксилином с целью идентификации цист и трофозоитов. Серологический метод: РИГА, ИФА, РСК и др. Наиболее высокий титр антител выявляют при внекишечном амебиазе.

    "

    Лабораторная диагностика

    УДК -078

    Лабораторная диагностика вирусных инфекций

    Н.Н. Носик, В.М. Стаханова

    Институт вирусологии им. Д.И. Ивановского РАМН, Москва

    Laboratory Diagnosis of Viral Infections

    N.N. Nosik, V.M. Stachanova

    Введение

    Расширение возможностей в лечении и профилактике вирусных болезней с использованием противовирусных препаратов, иммуномодуляторов и вакцин с различным механизмом действия нуждается в быстрой и точной лабораторной диагностике. Узкая специфичность некоторых противовирусных препаратов также требует быстрой и высокоспецифичной диагностики инфицирующего агента. Появилась необходимость в количественных методах определения вирусов для мониторинга противовирусной терапии. Помимо установления этиологии заболевания лабораторная диагностика имеет важное значение в организации противоэпидемических мероприятий.

    Ранняя диагностика первых случаев эпидемических инфекций позволяет своевременно провести противоэпидемические мероприятия – карантин, госпитализацию, вакцинацию и пр. Реализация программ по ликвидации инфекционных заболеваний, например натуральной оспы, показала, что по мере их выполнения возрастает роль лабораторной диагностики. Существенную роль играет лабораторная диагностика в службе крови и акушерской практике, например, выявление доноров, инфицированных вирусом иммунодефицита человека (ВИЧ), вирусом гепатита В (HBV), диагностика краснухи и цитомегаловирусной инфекции у беременных.

    Диагностические методы

    В лабораторной диагностике вирусных инфекций имеются три основных подхода (табл. 1, табл. 2):

    1) непосредственное исследование материала на наличие вирусного антигена или нуклеиновых кислот;

    2) изоляция и идентификация вируса из клинического материала;

    3) серологическая диагностика, основанная на установлении значительного прироста вирусных антител в течение болезни.

    При любом выбранном подходе к вирусной диагностике одним из важнейших факторов является качество исследуемого материала. Так, например, для прямого анализа образца или для изоляции вируса исследуемый материал должен быть получен в самом начале заболевания, когда возбудитель еще экскретируется в относительно больших количествах и не связан пока антителами, а объем образца должен быть достаточен для проведения прямого исследования. Также важен выбор материала в соответствии с предполагаемым заболеванием, то есть того материала, в котором исходя из патогенеза инфекции вероятность присутствия вируса наибольшая.

    Не последнюю роль в успешной диагностике играет среда, в какую берется материал, как он транспортируется и как хранится. Так, носоглоточные или ректальные мазки, содержимое везикул помещают в среду, содержащую белок, предотвращающий быструю потерю инфекционности вируса (если планируется его изоляция), или в соответствующий буфер (если планируется работа с нуклеиновыми кислотами).

    Прямые методы диагностики клинического материала

    Прямые методы – это методы, которые позволяют обнаружить вирус, вирусный антиген или вирусную нуклеиновую кислоту (НК) непосредственно в клиническом материале, то есть являются наиболее быстрыми (2–24 ч). Однако из-за ряда особенностей возбудителей прямые методы имеют свои ограничения (возможность получения ложноположительных и ложноотрицательных результатов). Поэтому они часто требуют подтверждения непрямыми методами.

    Электронная микроскопия (ЭМ). С помощью этого метода можно обнаружить собственно вирус. Для успешного определения вируса его концентрация в пробе должна быть примерно 1·10 6 частиц в 1 мл. Но поскольку концентрация возбудителя, как правило, в материале от больных незначительна, то поиск вируса затруднен и требует предварительного его осаждения с помощью высокоскоростного центрифугирования с последующим негативным контрастированием. Кроме того, ЭМ не позволяет типировать вирусы, так как у многих из них нет морфологических различий внутри семейства. Например, вирусы простого герпеса, цитомегалии или опоясывающего герпеса морфологически практически неотличимы.

    Одним из вариантов ЭМ, используемым в диагностических целях, является иммунная электронная микроскопия (ИЭМ), при которой применяются специфические антитела к вирусам. В результате взаимодействия антител с вирусами образуются комплексы, которые после негативного контрастирования легче обнаруживаются.

    ИЭМ несколько более чувствительна, чем ЭМ, и используется в тех случаях, когда вирус не удается культивировать in vitro , например при поиске возбудителей вирусных гепатитов .

    Реакция иммунофлюоресценции (РИФ). Метод основан на использовании антител, связанных с красителем, например флюоресцеинизотиоцианатом. РИФ широко применяется для выявления вирусных антигенов в материале больных и для быстрой диагностики.

    В практике применяются два варианта РИФ: прямой и непрямой . В первом случае применяются меченные красителем антитела к вирусам, которые наносятся на инфицированные клетки (мазок, культура клеток). Таким образом, реакция протекает одноэтапно. Неудобством метода является необходимость иметь большой набор конъюгированных специфических сывороток ко многим вирусам.

    При непрямом варианте РИФ на исследуемый материал наносится специфическая сыворотка, антитела которой связываются с вирусным антигеном, находящимся в материале, а затем наслаивается антивидовая сыворотка к гамма-глобулинам животного, в котором готовилась специфическая иммунная сыворотка, например антикроличья, антилошадиная и т. п. Преимущество непрямого варианта РИФ состоит в потребности лишь одного вида меченых антител.

    Метод РИФ широко применяется для быстрой расшифровки этиологии острых респираторных вирусных инфекций при анализе мазков-отпечатков со слизистой оболочки верхних дыхательных путей . Успешное применение РИФ для прямой детекции вируса в клиническом материале возможно лишь в случае содержания в нем достаточно большого числа инфицированных клеток и незначительной контаминации микроорганизмами, которые могут давать неспецифическое свечение.

    Иммуноферментный анализ (ИФА). Иммуноферментные методы определения вирусных антигенов в принципе сходны с РИФ, но основываются на мечении антител ферментами, а не красителями. Наиболее широко используется пероксидаза хрена и щелочная фосфатаза, применяют также -галактозидазу и -лактамазы . Меченые антитела связываются с антигеном, и такой комплекс обнаруживается при добавлении субстрата для фермента, с которым конъюгированы антитела. Конечный продукт реакции может быть в виде нерастворимого осадка, и тогда учет проводится с помощью обычного светового микроскопа, или в виде растворимого продукта, который обычно окрашен (или может флюоресцировать или люминесцировать) и регистрируется инструментально.

    Поскольку с помощью ИФА можно измерять растворимые антигены, то не требуется наличия интактных клеток в образце и таким образом могут использоваться различные виды клинического материала.

    Другое важное преимущество метода ИФА – возможность количественного определения антигенов, что позволяет применять его для оценки клинического течения болезни и эффективности химиотерапии. ИФА, как и РИФ, может применяться как в прямом, так и в непрямом варианте.

    Твердофазный ИФА, дающий растворимый окрашеный продукт реакции, нашел наибольшее распространение. ИФА может быть использован как для определения антигена (тогда на твердую фазу – дно лунки полистиролового планшета – наносятся антитела), так и для определения антител (тогда на твердую фазу наносятся антигены) .

    Радиоиммунный анализ (РИА) . Метод основан на метке антител радиоизотопами, что обеспечивало высокую чувствительность в определении вирусного антигена. Широкое распространение метод получил в 80-е годы, особенно для определения маркеров HBV и других некультивируемых вирусов. К недостаткам метода относится необходимость работать с радиоактивными веществами и использования дорогостоящего оборудования (гамма-счетчиков).

    Молекулярные методы. Первоначально классическим методом выявления вирусного генома считался высокоспецифичный метод гибридизации НК, но в настоящее время все шире используется выделение геномов вируса с помощью полимеразной цепной реакции (ПЦР).

    Молекулярная гибридизация нуклеиновых кислот. Метод основан на гибридизации комплементарных нитей ДНК или РНК с образованием двунитевых структур и на выявлении их с помощью метки. Для этой цели используются специальные ДНК- или РНК-зонды, меченные изотопом (32 Р) или биотином, обнаруживающие комплементарные нити ДНК или РНК. Существуют несколько вариантов метода: – точечная гибридизация – выделенную и денатурированную НК наносят на фильтры и затем добавляют меченый зонд; индикация результатов – авторадиография при использовании 32 Р или окраска – при авидин-биотине; – блот-гибридизация – метод выделения фрагментов НК, нарезанных рестрикционными эндонуклеазами из суммарной ДНК и перенесенных на нитроцеллюлозные фильтры и тестируемые мечеными зондами; используется как подтверждающий тест при ВИЧ инфекции; – гибридизация in situ – позволяет определять НК в инфицированных клетках .

    ПЦР основана на принципе естественной репликации ДНК. Суть метода заключается в многократном повторении циклов синтеза (амплификации) вирусспецифической последовательности ДНК с помощью термостабильной Taq ДНК-полимеразы и двух специфических затравок – так называемых праймеров.

    Каждый цикл состоит из трех стадий с различным температурным режимом. В каждом цикле удваивается число копий синтезируемого участка. Вновь синтезированные фрагменты ДНК служат в качестве матрицы для синтеза новых нитей в следующем цикле амплификации, что позволяет за 25–35 циклов наработать достаточное число копий выбранного участка ДНК для ее определения, как правило, с помощью электрофореза в агарозном геле.

    Метод высокоспецифичен и очень чувствителен. Он позволяет обнаружить несколько копий вирусной ДНК в исследуемом материале. В последние годы ПЦР находит все более широкое применение для диагностики и мониторинга вирусных инфекций (вирусы гепатитов, герпеса, цитомегалии, папилломы и др.) .

    Разработан вариант количественной ПЦР, позволяющий определять число копий амплифицированного сайта ДНК. Методика проведения сложна, дорогостояща и пока недостаточно унифицирована для рутинного применения.

    Цитологические методы в настоящее время имеют ограниченное диагностическое значение, но при ряде инфекций по-прежнему должны применяться. Исследуются материалы аутопсии, биопсии, мазки, которые после соответствующей обработки окрашиваются и анализируются под микроскопом. При цитомегаловирусной инфекции, например, в срезах ткани или в моче обнаруживаются характерные гигантские клетки– "совиный глаз", при бешенстве – включения в цитоплазме клеток (тельца Бабеша–Негри). В некоторых случаях, например при дифференциальной диагностике хронических гепатитов, имеет значение оценка состояния ткани печени.

    Оглавление темы "Методы обнаружения вирусов. Методы диагностики микозов (грибковых заболеваний). Методы обнаружения простейших.":










    Серологические методы диагностики вирусных инфекций. Торможение гемагглютинации. Торможение цитопатического эффекта интерференцией вирусов. Прямая иммунофлюоресценция. Иммуноэлектронная микроскопия.

    При большинстве вирусных инфекций развиваются иммунные реакции, применяемые для диагностики . Клеточные реакции обычно оценивают в тестах цитотоксичности лимфоцитов в отношении инфекционных агентов или заражённых ими клеток-мишеней либо определяют способность лимфоцитов отвечать на различные Аг и митогены. В работе практических лабораторий выраженность клеточных реакций определяют редко. Большее распространение нашли методы идентификации противовирусных AT.

    РН основана на подавлении цитопатогенного эффекта после смешивания вируса со специфичными AT. Неизвестный вирус смешивают с известными коммерческими антисыворотками и после соответствующей инкубации вносят в монослой клеток. Отсутствие гибели клеток указывает на несоответствие инфекционного агента и известных AT.

    Торможение гемагглютинации

    РТГА применяют для идентификации вирусов , способных агглютинировать различные эритроциты. Для этого смешивают культуральную среду, содержащую возбудитель, с известной коммерческой антисывороткой и вносят в культуру клеток. После инкубации определяют способность культуры к гемагглютинации и при её отсутствии делают заключение о несоответствии вируса антисыворотке.

    Торможение цитопатического эффекта интерференцией вирусов

    Реакцию торможения цитопатического эффекта за счёт интерференции вирусов применяют для идентификации возбудителя, интерферирующего с известным цитопатогенным вирусом в культуре чувствительных клеток. Для этого в культуральную среду, содержащую изучаемый вирус, вносят коммерческую сыворотку (например, к вирусу краснухи при подозрении на неё), инкубируют и заражают вторую культуру; через 1-2 дня в неё вносят известный цитопатогенный вирус (например, любой ЕСНО-вирус). При наличии цитопатогенного эффекта делают вывод о том, что первая культура была заражена вирусом, соответствовавшим применённым AT.

    Прямая иммунофлюоресценция

    Среди прочих тестов наибольшее распространение нашла реакция прямой иммунофлюоресценции (наиболее быстрая, чувствительная и воспроизводимая). Например, идентификация ЦМВ по цитопатогенному эффекту требует не менее 2-3 нед, а при использовании меченых моноклона л ьных AT идентификация возможна уже через 24 ч. Имея набор подобных реагентов, их можно вносить в культуры, заражённые вирусом, инкубировать, отмывать несвязавшийся реагент и исследовать с помощью люминесцентной микроскопии (позволяет выявить наличие флюоресценции заражённых клеток).

    Иммуноэлектронная микроскопия

    Иммуноэлектронная микроскопия (аналог предыдущего метода) позволяет идентифицировать различные виды вирусов, выявленные электронной микроскопией (например, различные виды герпесвирусов), что невозможно сделать, основываясь на морфологических особенностях. Вместо антисывороток для идентификации используют помеченные разными способами AT, но сложность и дороговизна метода ограничивают его применение.

    ДЛЯ диагностики вирусных заболеваний применяют следующие методы:

    1) Вирусоскопический.

    2) Иммунной электронной микроскопии.

    3) Вирусологический.

    4) Серологический.

    5) Иммунофлуоресцентный.

    6) Биологический.

    7) Использование ДНК-(РНК)-зондов.

    8) Цепная полимеразная реакция.

    О размножении (репродукции) вирусов в культуре клеток судят по цитопатическому действию (ЦПД), кото-рое может быть обнаружено микроскопически и характеризуется морфологическими изменениями клеток.

    Характер ЦПД вирусов используют как для их обнаружения (индикации), так и для ориентировочной идентификации, т. е. определения их видовой принадлежности.

    Методов индикации вирусов:

    1) Реакция гемадсорбции - основан на способности поверхности клеток, в которых они репродуцируются, адсорбировать эритроциты - реакция гемадсорбции. Для ее постановки в культуру клеток, зараженных вирусами, добавляют взвесь эритроцитов и после некоторого времени контакта клетки промывают изотоническим раствором хлорида натрия. На поверхности пораженных вирусами клеток остаются прилипшие эритроциты.

    2) Реакция гемагглютинации (РГ). Применяется для обнаружения вирусов в культуральной жидкости культуры клеток либо хорионаллантоисной или амниотической жидкости куриного эмбриона.

    Серологические методы могут быть использованы для обнаружения в исследуемом материале как специфических антител, так и вирусных антигенов. Для этих целей могут быть использованы все известные серологические реакции:

    1) Реакция связывания комплемента.

    2) Реакция пассивной гемагглютинации и ее варианты (РНАг, РНАт).

    3) Реакция торможения гемагглютинации.

    4) Реакция гемагглютинации иммунного прилипания (комплекс антиген + антитело в присутствии комплемента адсорбируется на эритроцитах).

    5) Реакции преципитации в геле.

    6) Реакции нейтрализации вирусов.

    7) Радиоиммунный метод.

    8) Методы иммуноферментного анализа.

    Из перечисленных методов все большей популярностью пользуются методы иммуноферментного анализа, отличающиеся высокой специфичностью и удобством использования.

    7. Реакция гемагглютинации, ее механизм у вирусов гриппа. Реакция торможения гемагглютинации, ее практическое применение .

    Реакция гемагглютинации (РГ). Применяется для обнаружения вирусов в культуральной жидкости культуры клеток либо хорионаллантоисной или амниотической жидкости куриного эмбриона.

    8. Особенности противовирусного иммунитета. Роль фагоцитоза и гуморальных факторов в иммунитете. Интерфероны, характеристика основных свойств, классификация. Особенности действия интерферонов на вирусы .

    В защите организма от вирусов участвуют все системы иммунитета, однако противовирусный иммунитет имеет существенные специфические черты. Они определяются тем, что в первую очередь на проникновение вируса в организм реагируют не системы комплемента и макрофагов, а системы интерферонов и Т-киллерных клеток. Другая особенность формирования иммунитета связана с тем, что вирусы оказывают слабое антигенное воздействие на В-лимфоциты и для их активирования, пролиферации и дифференцировки необходимо участие Т-хелперов и соответственно представление последним процессированного вирусного антигена (пептидных фрагментов) при участии молекул МНС класса II. Поэтому роль макрофагов и других антигенпредставляющих клеток заключается не столько в самом фагоцитозе, сколько в процессировании и представлении антигена.

    На проникновение вируса раньше всего реагирует система интерферонов, которые подавляют внутриклеточное размножение вирусов. Кроме того, противовирусное действие оказывают находящиеся в сыворотке крови a- и b-ингибиторы. Альфа-ингибитор - термостабильный субстрат, входит в состав а-глобулинов, препятствует адсорбции вирусов на клетке, Разрушается нейраминидазой орто- и парамиксовирусов. Бета-ингибитор - термолабильный мукопептид, входит в состав b-глобулинов, подавляет размножение орто- и парамиксовирусов.

    Однако интерферонов и ингибиторов оказалось недостаточно для защиты от вирусов, поэтому природа создала против вирусов другой, очень мощный механизм защиты на уровне организма. Он представлен прежде всего Т-цитотоксическими лимфоцитами и другими киллерными клетками. Эти клетки распознают все чужеродные антигены, в том числе и вирусные, предсталяемые им молекулами МНС класса I. Главное биологическое значение Т-киллерных клеток и заключается в обнаружении и уничтожении любых клеток, инфицированных чужеродными антигенами.

    Интерферон представляет собой семейство белков-гликопротеидов, которые синтезируются клетками иммунной системы и соединительной ткани. В зависимости от того, какими клетками синтезируется интерферон, выделяют три типа: ?, ? и?-интерфероны.

    Альфа-интерферон вырабатывается лейкоцитами и он получил название лейкоцитарного; бета-интерферон называют фибробластным, поскольку он синтезируется фибробластами - клетками соединительной ткани, а гамма-интерферон - иммунным, так как он вырабатывается активированными Т-лимфоцитами, макрофагами, естественными киллерами, т. е. иммунными клетками.

    Выработка интерферона резко возрастает при инфицировании вирусами, помимо противовирусного действия интерферон обладает противоопухолевой защитой, так как задерживает пролиферацию (размножение) опухолевых клеток, а также иммуномодулирующей активностью, стимулируя фагоцитоз, естественные киллеры, регулируя антителообразование В-клетками, активируя экспрессию главного комплекса гистосовместимости.

    Механизм действия. Интерферон непосредственно на вирус вне клетки не действует, а связывается со спе-циальными рецепторами клеток и оказывает влияние на процесс репродукции вируса внутри клетки на стадии синтеза белков.

    Вирусология частная

    1. Вирусы-возбудители острых респираторных заболеваний (ОРЗ) . Классификация. Общая характеристика ортомиксовирусов. Структура вириона гриппа. Особенности его генома и реализации содержащейся в нем информации. Репликация вирионной РНК .

    1.Вирусы - возбудители орз. классификация.

    Возбудителями ОРЗ являются следующие вирусы:

    1. Вирусы гриппа А, В, С (Orthomyxoviridae)

    2. Парамиксовирусы (Paramyxoviridae) - это семейство включает три рода: paramyxovirus - вирусы парагриппа человека (ВПГЧ) 1, 2, 3, 4-го типов, болезни Ньюкасл, парагриппа птиц и паротита; Pneumovirus - респираторно-синцитиальный вирус (RS-вирус); Morbillivirus - вирус кори.

    3. Респираторные коронавирусы (Coronaviridae).

    4. Респираторные реовирусы (Reoviridae).

    5. Пикорнавирусы (Picornaviridae).

    Вирус гриппа А

    Вирион имеет сферическую форму и диаметр 80-120 нм. Геном вируса представлен однонитевой фрагментированной (8 фрагментов) не-гативной РНК с общей м. м. 5 МД. Тип симметрии нуклеокапсида спиральный. Вирион Имеет суперкапсид (мембрану), содержащий два гликопротеида - гемагглютинин и нейраминидазу, которые выступают над мембраной в виде различных шипов.

    Вирусы - возбудители острых респираторных заболеваний. Особенности проявления заболеваний, вызываемых вирусами гриппа, парагриппа, риновирусами, респираторно-синцитиальным вирусом и аденовирусами. Лабораторные методы их диагностики.

    Вирион имеет сферическую форму и диаметр 80-120 нм. Геном вируса представлен однонитевой фрагментированной (8 фрагментов) не-гативной РНК с общей м. м. 5 МД. Тип симметрии нуклеокапсида спиральный. Вирион имеет суперкапсид (мембрану), содержащий два гликопротеида - гемагглютинин и нейраминидазу, которые выступают над мембраной в виде различных шипов.

    У вирусов гриппа А человека, млекопитающих и птиц обнаружено 13 различающихся по антигену типов гемагглютинина, которым присвоена сквозная нумерация (отН1доН13).

    Нейраминидаза (N) является тетрамером с м. м. 200-250 кД, каждый мономер имеет м. м. 50-60 кД.

    У вируса гриппа А обнаружено 10 различных вариантов ней-раминидазы

    Лабораторная диагностика. Материалом для исследования служит отделяемое носоглотки, которое получают либо путем смыва, либо с помощью ватно-марлевых тампонов, и кровь. Методы диагностики применяют следующие:

    1. Вирусологический - заражение куриных эмбрионов, культур клеток почек зеленых мартышек (Vero) и собак (МДСК). Культуры клеток особенно эффективны для выделения вирусов A (H3N2) и В.

    2. Серологический - выявление специфических антител и возрастания их титра (в парных сыворотках) с помощью РТГА, РСК, иммуноферментного метода.

    3. В качестве ускоренной диагностики используют иммунофлуоресцентный метод, позволяющий быстро обнаружить вирусный антиген в мазках-отпечатках со слизистой оболочки носа или в смывах из носоглотки больных.

    4. Для обнаружения и идентификации вируса (вирусных антигенов) предложены методы РНК-зонда и ПЦР.

    Специфическая профилактика

    1) живая из аттенуированного вируса; 2) убитая цельновирион-ная; 3) субвирионная вакцина (из расщепленных вирионов); 4) субъединичная -вакцина, содержащая только гемагглютинин и нейраминидазу.

    Вирусы гриппа (ортомиксовирусы). Общая характеристика. Белки суперкапсида, их функции, значение изменчивости (шифта и дрейфа) для эпидемиологии гриппа. Методы лабораторной диагностики. Вакцины, применяемые для профилактики гриппа.

    Острая инфекционная болезнь, с лихорадкой, поражением печени. Антропоноз.

    Таксономия, морфология, антигенная структура: Семейство Picornaviridae род Hepatovirus. Типовой вид -имеет один серотип. Это РНК-содержащий вирус, просто организованный, имеет один вирусоспецифический антиген.

    Культивирование: Вирус выращивают в культурах клеток. Цикл репродукции более длительный, чем у энтеровирусов, цитопатический эффект не выражен.

    Резистентность: Устойчивостью к нагреванию; инактивируется при кипячении в течение 5 мин. Относительно устойчив во внешней среде (воде).

    Эпидемиология. Источник-больные. Механизм заражения - фекально-оральный. Вирусы выделяются с фекалиями в начале клинических проявлений. С появлением желтухи интенсивность выделения вирусов снижается. Вирусы передаются через воду, пищевые продукты, руки.

    Болеют преимущественно дети в возрасте от 4 до 15 лет.

    Микробиологическая диагностика. Материал для исследования - сыворотка и испражнения. Диагностика основана главным образом на определении в крови IgM с помощью ИФА, РИА и иммунной электронной микроскопии. Этими же методами можно обнаружить вирусный антиген в фекалиях. Вирусологическое исследование не проводят.

    3. Вирусологическая диагностика гриппа. Выделение вируса, определение его типа. Серологические методы диагностики гриппа: РСК, РТГА. Ускоренный метод диагностики с использованием флуоресцирующих антител.

    Микробиологическая диагностика. Диагноз «грипп» базируется на (1) выделении и идентификации вируса, (2) определении вирусных АГ в клетках больного, (3) поиске вирусоспецифических антител в сыворотке больного. При отборе материала для исследования важно получить пораженные вирусом клетки, так как именно в них происходит репликация вирусов. Материал для исследования - носоглоточное отделяемое. Для определения антител исследуют парные сыворотки крови больного.

    Экспресс-диагностика. Обнаруживают вирусные антигены в исследуемом материале с помощью РИФ (прямой и непрямой варианты) и ИФА. Можно обнаружить в материале геном вирусов при помощи ПЦР.

    Вирусологический метод. Оптимальная лабораторная модель для культивирования штаммов-куриный эмбрион. Индикацию вирусов проводят в зависимости от лабораторной модели (по гибели, по клиническим и патоморфологическим изменениям, ЦПД, образованию «бляшек», «цветной пробе», РГА и гемадсорбции). Идентифицируют вирусы по антигенной структуре. Применяют РСК, РТГА, ИФА, РБН (реакцию биологической нейтрализации) вирусов и др. Обычно тип вирусов гриппа определяют в РСК, подтип - в РТГА.

    Серологический метод. Диагноз ставят при четырехкратном увеличении титра антител в парных сыворотках от больного, полученных с интервалом в 10 дней. Применяют РТГА, РСК, ИФА, РБН вирусов.

    Аденовирусы, характеристика свойств, состав группы. Аденовирусы, патогенные для человека. Особенности патогенеза аденовирусных инфекций, методы культивирования аденовирусов. Диагностика аденовирусных болезней.

    Семейство Adenoviridae разделяется на два рода: Mastadenovirus - аденовирусы млекопитающих, он включает аденовирусы человека (41 серовариант), обезьян (24 се-роварианта), а также крупного рогатого скота, лошадей, овец, свиней, собак, мышей, земноводных; и Aviadenovirus - аденовирусы птиц (9 серовариантов).

    Аденовирусы лишены суперкапсида. Вирион имеет форму икосаэдра - кубический тип симметрии, его диаметр 70-90 нм. Капсид состоит из 252 капсомеров диаметром 7-9 нм.

    В составе вириона выявлено не менее 7 антигенов. Инкубационный период 6-9 дней. Вирус размножается в эпителиальных клетках верхних дыхательных путей, слизистой оболочки глаз. Может проникать в легкие, поражать бронхи и альвеолы, вызывать тяжелую пневмонию; характерное биологическое свойство аденовирусов - тропизм к лимфоидной ткани.

    Аденовирусные заболевания можно характеризовать как лихорадочные с катаральным воспалением слизистой оболочки дыхательных путей и глаз, сопровождающиеся увеличением подслизистой лимфоидной ткани и регионарных лимфатических узлов.

    Лабораторная диагностика. 1. Выявление вирусных антигенов в пораженных клетках с помощью методов иммунофлуоресценции или ИФМ. 2. Выделение вируса. Материалом для исследования служат отделяемое носоглотки и конъюнктивы, кровь, испражнения (вирус удается выделить не только в начале болезни, но и на 7- 14-й ее день). Для изоляции вируса используют первично-трипсинизированные культуры клеток (в том числе диплоидные) эмбриона человека, которые чувствительны ко всем серовариантам аденовирусов. Вирусы обнаруживают по их цитопа-тическому эффекту и с помощью РСК, так как все они обладают общим комплемент-связывающим антигеном. Идентификацию производят по типоспецифическим антигенам с помощью РТГА и РН в культуре клеток. 3. Выявление нарастания титра антител в парных сыворотках больного с помощью РСК. Определение нарастания титра типоспецифических антител осуществляют с эталонными сероштаммами аденовирусов в РТГА или РН в культуре клеток.

    5. Вирусы Коксаки и ЕСНО. Характеристика их свойств. Состав групп. Методы микробиологической диагностики заболеваний, вызываемых вирусами Коксаки и ЕСНО .

    Коксаки являются наиболее кардиотропными из всех энтеровирусов. У 20-40 % больных в возрасте до 20 лет Кок-саки-инфекция осложняется миокардитом. Вирусы Коксаки представлены двумя группами: группа Коксаки А включает 23 сероварианта (А1-А22, 24); группа Коксаки В включает 6 серовариантов (В1-В6).

    Вирусы Коксаки А и В могут вызывать у человека помимо полиомие-литоподобных заболеваний, иногда сопровождающихся параличами, и различные другие заболевания со своеобразной клиникой: асептический менингит, эпидемическая миалгия (Борнхольмская болезнь), герпангина, малая болезнь, гастроэнтериты, острые респираторные заболевания, миокардиты

    ECHO, что означает: Е - enteric; С - cytopathogenic; H - human; О - orphan - сиротка. насчитывает 32 сероварианта.

    Источником Коксаки- и ЕСНО-инфекций является человек. Заражение вирусами Происходит фекально-оральным путем.

    Патогенез заболеваний, вызываемых вирусами Коксаки и ECHO, сходен с патогенезом полиомиелита. Входными воротами являются слизистая оболочка носа, глотки, тонкого кишечника, в эпителиальных клетках которых, а также в лимфоид-ной ткани и происходит размножение этих вирусов.

    Сродство к лимфоидной ткани - одна из характерных особенностей этих вирусов. После размножения вирусы проникают в лимфу, а затем в кровь, обусловливая вирусемию и генерализацию инфекции.

    Попадая в ток крови, вирусы гематогенно распространяются по всему организму, избирательно оседая в тех органах и тканях, к которым они обладают тропизмом.

    Методы диагностики энтеровирусных заболеваний. используют вирусологический метод и различные серологические реакции. исследование необходимо проводить на всю группу энтеровирусов. Для их выделения используют кишечное содержимое, смыв и мазки из зева, реже ликвор или кровь, а в случае смерти больного ис-следуют кусочки ткани из разных органов. Исследуемым материалом заражают культуры клеток (полиовирусы, ECHO, Коксаки В и некоторые серовары Коксаки А), а также новорожденных мышей (Коксаки А).

    Типирование выделенных вирусов осуществляют в реакциях нейтрализации, РТГА, РСК, реакции преципитации, используя эталонные смеси сывороток различных сочетаний. Для выявления антител в сыворотках людей при энтеровирусных инфекциях используют те же серологические реакции (РН, цветные реакции, РТГА, РСК, реакции преципитации), но для этих целей необходимо иметь парные сыворотки от каждого больного (в острый период и через 2-3 нед. от начала болезни). Реакции считаются положительными при увеличении титра антител не менее чем в 4 раза. При двух этих методах используют также ИФМ (для обнаружения антител или антигена).

    Гепатит В. Структура и характеристика основных свойств вириона. Поверхностный антиген, его значение. Особенности взаимодействия вируса с клеткой. Способы заражения. Методы лабораторной диагностики. Специфическая профилактика.

    Hepatitis B virus, HBV В составе вириона имеются три основных антигена

    1. HBsAg - поверхностный (superficial), или растворимый (soluble), или австралийский антиген.

    2. HBcAg - сердцевинный антиген (сог-антиген).

    3. HBeAg - антиген е, локализован в сердцевине вириона

    Собственно вирион - частица Дейна - имеет сферическую форму и диаметр 42 нм. Суперкапсид вириона состоит из трех белков: главного (основного), большого и среднего (рис. 88,1). Геном заключен в капсид и представлен двунитевой кольцевидной ДНК с м. м. 1,6 МД. ДНК состоит приблизительно из 3200 нуклеотидов, однако ее «плюс»-нить на 20-50 % короче «минус»-нити.

    Поверхностный антиген - HBsAg - существует в виде трех морфологически различных вариантов: 1) представляет суперкапсид цельного вириона; 2) в большом количестве встречается в виде частиц диаметром 20 нм, имеющих сферическую форму; 3) в виде нитей длиной 230 нм. Химически они идентичны. В составе HBsAg имеется один общий антиген а и две пары взаимоисключающих типоспецифических детерминантов: d/y и w/r, поэтому существуют четыре основных субтипа HBsAg (и соответственно HBV): adw, adr, ayw и ayr. Антиген а обеспечивает формирование общего перекрестного иммунитета ко всем субтипам вируса.

    Белки, образующие поверхностный антиген, существуют в гликозилированной (gp) и негликозилированной форме. Гликозилированными являются gp27, gp33, gp36 и gp42 (цифры обозначают м. м. в кД). Суперкапсид HBV состоит из главного, или основного, S-белка (92 %); среднего М-белка (4 %) и большого, или длинного, L-белка (1 %).

    Главный белок - p24/gp27, Большой белок - p39/gp42, Средний белок - gp33/gp36.

    Взаимодействие с клеткой.

    1. Адсорбция на клетке.

    2. Проникновение в клетку с помощью механизма рецепторопосредованного эн-доцитоза (окаймленная ямка -> окаймленный пузырек -> лизосома -> выход нук-леокапсида и проникновение вирусного генома в ядро гепатоцита).

    3. Внутриклеточное размножение.

    Источником заражения вирусом гепатита В является только человек. Заражение происходит не только парентеральным путем, но и половым, и вертикальным (от матери плоду)

    В настоящее время основным методом диагностики гепатита В является использование реакции обратной пассивной ге-маглютинации (РОПГА) для обнаружения вируса или его поверхностного антигена - HBsAg. Как уже отмечалось, в крови поверхностного антигена содержится во много раз больше, чем самого вируса (в 100-1000 раз). Для реакции РОПГА используют сенсибилизированные антителами против вируса гепатита В эритроциты. При наличии антигена в крови происходит реакция гемагглютинации. Для обнаружения антител к вирусному антигену HBsAg используют различные иммунологические методы (РСК, РПГА, ИФМ, РИМ и др.)

    Специфическая профилактика

    прививки против гепатита В являются обязательными и должны проводиться на первом году жизни. Для вакцинации предложено два типа вакцин. Для приготовления одной из них в качестве сырья используют плазму вирусоноси-телей, поскольку в ней вирусный антиген содержится в количествах, достаточных для приготовления вакцины. Главное условие для приготовления этого типа вакцин - их полная безопасность,Для изготовления вакцины другого типа применяют методы генной инженерии, в частности, для получения антигенного материала используют рекомбинантный клон дрожжей, вырабатывающих поверхностный антиген вируса гепатита В.

    В России созданы вакцины как для взрослых людей, так и для новорожденных и детей раннего возраста. Полный курс прививки состоит из трех инъекций:

    I доза - сразу после рождения; II доза - через 1-2 мес; III доза - до конца 1-го года жизни.

    Поделиться: