Внезародышевые органы птиц и млекопитающих. Понятие о внезародышевых органах. Внезародышевые органы человека. Образование, строение и значение амниона, желточного мешка и аллантоиса. Основные особенности ранних этапов эмбриогенеза человека

Формирование внезародышевых органов: оболочек, желточного мешка и аллантоиса.

Птицы, рептилии и млекопитающие относятся к группе амниот - животных, эмбриональное развитие которых протекает во внезародышевых оболочках. Всего внезародышевых оболочек (органов) четыре:

3. Амнион;

4. Хорион (сероза);

5. Желточный мешок;

6. Аллантоис.

Внезародышевые органы выполняют разные функции и различаются по тому, какие зародышевые листки участвуют в их формировании. Амнион и хорион образуются из слоя клеток, образованно эктодермой и париетальным листком латеральной мезодермы, называемым соматоплеврой . По своему происхождению амнион и хорион являются соматоплевральными внезародышевыми оболочками. Стенка желточного мешка и аллантоис образуются в результате разрастания слоя клеток, образованного энтодермой и висцеральным листком латеральной мезодермы – спланхноплеврой . По своему происхождению желточный мешок и аллантоис являются спланхноплевральными внезародышевыми органами.

Желточный мешок выполняет функцию органа питания. Висцеральный листок мезодерме, входящий в состав стенки желточного мешка, развивает мощную систему кровесносных сосудов и капилляров, по которой питательные вещества из желточного мешка переносятся в тело зародыша. Жеоточный мешок соединяется со средней кишкой зародыша тонкой трубкой – желточным стебельком , внутри которого находится желточный проток. Однако питательные вещества через желточный проток не поступают. В утилизации желтка участвуют клетки стенки желточного мешка. Сначала энтодермальные клетки расщепляют белки желтка яйца до растворимых аминокислот, которые потом поступают в кровеносные сосуды мезодермы и с кровотоком переносятся в тело зародыша. Кроме того, желточный мешок является органом внезародышевого кроветворения. В мезодерме желточного мешка закладываются кровяные островки, которые дают первую генерацию клеток крови зародыша и являются источник стволовых кроветворных клеток. Последние мигрируют по внезародышевым кровеносным сосудам и заселяют кроветворные органы зародыша.

Амнион – внезародышевый орган,закладывается вместе с хорионом в виде складки на стенке зародышевого мешка в его головном отделе (головная амниотическая складка) в середине вторых суток инкубации. Он состоит из внезародышевой эктодермы и париетального листка внезародышевой мезодермы. Складка из этих листков с течение третьих суток инкубации нарастает на тело зародыша до уровня поворота и вдоль его тела. На третьи сутки инкубации формируется хвостовая амниотическая складка, она начинает подниматься над хвостовой частью тела зародыша, достигая примерно уровня растущей хвостовой кишки. К началу четвертых суток инкубации амниотические складки все больше нарастают над телом зародыша и покрывают его, образую сначала заметной величины отверстие, а затем смыкаются, оставляя узкое воронкообразное отверстие – сероамниотический проток.

Таким образом, над телом зародыша создается полость, которая через сероамниотический проток заполняется жидкой фракцией белка из белковой (третичной) оболочки яйца. С этого времени зародыш оказывается погруженным в жидкую среду, соответствующую водной среде обитания низших позвоночных животных. Жидкость амниона примерно на 14-ые сутки инкубации становится дополнительным к желтку источником питания цыпленка непосредственно через формирующийся рот и желудочно-кишечный тракт.

Аллантоис формируется как дивертикул задней кишки зародыша, разрастающийся в полость экзоцелома и вытесняющий его. У птиц аллантоис представляет собой большой мешок, в котором накапливаются и хранятся до вылупления цыпленка токсические продукты метаболизма зародыша. В основном это продукты азотистого обмена, накапливающиеся в виде солей мочевой кислоты.

Хорион (сероза ) образует внешнюю внезародышевую оболочку эмбриона и выполняет защитную функцию. По мере разрастания аллантоиса висцеральная мезодерма, покрывающая его снаружи, прирастает к париетальной мезодерме хориона – формируется хориоаллантоис . В хориаллантоисной оболочке из материала висцеральной мезодермы формируется большое число кровеносных сосудов, формирующих густую капиллярную сеть. Она осуществляет газообмен, то есть выполняет функцию дыхания зародыша. Хориоаллантоис обеспечивает также растворение кальция скорлупы, который необходим для остеогенеза, и его транспорт к зародышу.

Типы плацент.

Продолжением имплантации является процесс образования плаценты – плацентация. Плацента – провизорный орган, который формируется во время беременности, в ее построении участвуют как эмбриональные, так и материнские ткани. Через плаценту осуществляется связь зародыша с материнским организмом. Функции плаценты, обеспечивающие нормальное развитие зародыша, многообразны: трофика и газообмен, защитная, регуляторная, гормональная, антитоксическая и т.д. Основная функция плаценты заключается в передаче веществ, растворенных в крови матери, эмбриону и наоборот. Питательные вещества диффундируют из крови матери в кровь эмбриона, а конечные продукты обмена веществ плода диффундируют в кровь матери и выводятся ее выделительной системой. Через плаценту осуществляются газообмен: кислород поступает от матери к эмбриону, а углекислый газ – от эмбриона к матери. Кроме того, плаценты многих млекопитающих вырабатывают гормоны, которые способствуют сохранению беременности (у человека это хорионический гонадотропин). При рождении плода плацента отторгается.

У разных представителей плацентарных млекопитающих строение плаценты неодинаково. Иногда плаценты различных видов млекопитающих классифицируют по их анатомическому строению. При этом учитывается форма плаценты и расположение на ней ворсинок хориона. По этим признакам выделяют 4 вида плацент (классификация по О.Гертвигу):

7. диффузная плацента , для которой характерно образование ворсин по всей поверхности хориона;

8. Множественные плаценты – хориальные ворсины представлены группами, границами между ними являются участки гладкого хориона;

9. Зонарная плацента – ворсины хориона располагаются, как бы опоясывая плод;

10. Дискоидальная плацента – хориальные ворсины сконцентрированы в одном участке хориона; характерны для грызунов, приматов и человека.

Однако чаще при классификации плацент используют другой подход – гистологический. В основу его положена степень сближения с материнским кровеносным руслом.

Кровоток плода и кровоток матери никогда не смешиваются: их разделяет несколько слоев эмбриональной и материнской ткани, которые образуют так называемый гемоплацентарный барьер. Он обеспечивает селективный обмен растворенными веществами между системами кровообращения материнского организма и плода. Плаценты разных видов млекопитающих подразделяют на 4 типа в зависимости от количества слоев, разделяющих кровоток матери и плода:

4) Эпителиохориальные плаценты – материнские ткани не разрушаются, а ворсины хориона только прилегают к углублениям слизистой оболочки матки (свиньи, лошади и др.);

5) Синдесмохориальные плаценты – ворсины хориона разрушают эпителий матки и вторгаются в соединительную ткань слизистой оболочки матки (жвачные животные);

6) Эндотелиохориальные плаценты – ворсины контактируют с эндотелием кровеносных сосудов слизистой матки (хищники);

7) Гемохориальные плаценты – ворсины хориона соприкасаются непосредственно с материнской кровью; разветвленная сеть ворсин расположена в межворсинчатом пространстве, заполненном несвертывающейся кровью матери, то есть осуществляется наиболее совершенный контакт между плодом и материнским организмом (грызуны, насекомоядные, обезьяны и человек).

В плацентах 2-4 типов клетки трофобласта вырабатывают протеолитические ферменты, которые разрушают прилежащие маточные ткани. Глубина проникновения клеток трофобласта в глубь материнских тканей зависит от митотической и протеолитической активности клеток трофобласта, а также мигрировать в глбь материнских тканей на ранних этапах формирования плаценты.

Клетки трофобласта вырабатывают сходные с пепсином гликопротеины, характерные для беременности (PAG – Pregnancy Associated Glycoproteins). Так, например, у жвачных в клетках трофобласта экспрессируется около 100 генов, кодирующих белки этой группы, и в результате экзоцитоза везикул, содержащих PAG. По крайней мере часть этих молекул имеют высокую протеинкиназную активность и разрушает окружающие материнские клетки, а другая часть выполняет барьерную функцию, связывая белки, выделяемые материнскими клетками. Белки группы PAG вырабатываются и в трофобласте эпителиохориальной плаценты свиньи, но, по-видимому, они не экзоцитируются в количестве, достаточном для разршения окружающих материнских тканей.

В случае синдесмохориальных плацент (жвачные) клетки трофобласта не проходят глубоко в материнские ткани, так как довольно быстро устанавливают специализированные плотные контакты с окружающими материнскими клетками и теряют мобильность. Клетки трофобласта, которые мигрируют в материнские ткани, являются двух- и трехъядерными, но в формировании единого слоя синцититрофобласта, как в случае гемохориальной плаценты человека, не происходит.

В случае гемохориальных плацент у приматов и человека слой синцитиотрофобласта, обладающий высокой протеолитической и фагоцитарной активностью, разрушает не только маточный эндотелий и лежащую под ним децидуальную ткань, но и стенки кровеносных сосудов, которыми пронизан эндометрий.

В гемохориальных плацентах грызунов синцитий не формируется и все клетки трофобласта сохраняют свою индивидуальность, но для них также характерны высокий уровень протеолитической и фагоцитарной активности, а на начальных этапах формировария плаценты – активная миграция в глубь материнских тканей. В результате в обоих случаях кровь матери контактирует непосредственно с поверхностью хориона и от кровотока эмбриона ее отделяют только эмбриональные ткани.

По степени повреждения материнсаких тканей при родах все типы плацент подразделяют на отпадающие (или децидуальные ) и неотпадающие .

Для свиней, лошадей, верблюдов, многих жвачных животных, лемуров и некоторых других видов плацентарных млекопитающих характерна неотпадающая плацента, состоящая только из плодных тканей. При родах ворсины хориона выходят из углублений слизистой оболочки матки, не повреждая ее, без кровотечений.

Для хищных, грызунов, насекомоядных, рукокрылых, приматов и человека характерны плаценты отпадающего (децидуального типа). В состав такой плаценты входят как плодные, так и материнские ткани. При родах происходит так называемое отторжение плаценты – вместе с ворсинами хориона отторгается и часть слизистой оболочки матки, что вызывает довольно значительное кровотечение.

В случаях формирования децидуальной плаценты маточный эндометрий реагирует на имплантацию эмбриона – в нем развивается децидуальная реакция . Клетки эндометрия, расположенные вокруг места имплантации, начинают активно делиться. Позднее плоидность децидуальных клеток увеличивается (например, у крыс – до 64С) и они приобретают способность к фагоцитозу. На ранних этапах имплантации децидуальная ткань противостоит инвазивной активности клеток трофобласта, а в процессе плацентации часть ее входит в состав плаценты.

Внезародышевые органы

Внезародышевые или провизорные органы – это органы, формирующиеся в процессе эмбриогенеза и обеспечивающие нормальное развитие и жизнедеятельность зародыша и плода.

    Амнион (амниотический пузырек). Развивается на 7-8 сутки эмбриогенеза, т.е. в ходе 1 фазы гаструляции. Стенка его образована внезародышевой эктодермой и внезародышево мезодермой. В амнионе содержится амниотическая жидкость или околоплодные воды: они обеспечивают защитную функцию и создают вторичную водную среду.

    Желточный мешок. Формируется на 11 сутки эмбриогенеза. Стенки образуют внезародышевая энтодерма и внезародышевая мезодерма. У птиц в ж.м. содержится запас питательных веществ в виде желтка; у млекопитающих и человека желтка мало, поэтому трофическая функция представленна слабо, но в стенке ж.м. формируются первичные кровеносные сосуды, в том числе сосуды пуповины; до 7-8 недели ж.м. является универсальным органом кроветворения. В стенке ж.м. закладываются первичные половые клетки – гонобласты.

    Аллантоис. Закладывается на 14-15 эмбриогенеза, т.е. в ходе 2 фазы гаструляции. Стенка а. Образована внезародышевой энтодермой и внезародышевой мезодермой. У птиц а. является мочевым мешком, т.е. в нем накапливаются продукты метаболизма. У млекопитающих и человека эта функция не выражена, но в стенке а. формируются кровеносные сосуды, пуповины и плаценты.

    У плацентарных млекопитающих основную функцию провизорных органов принимает на себе плацента или детское место. Плацента – это орган, через который устанавливается связь между организмом плода и матери. Развитие начинается на 3 недели и заканчивается на 3 месяце. Этапы становления:

    1. Формирование трофобласта с первичными ворсинами.

      Формирование хориональной оболочки (при добавлении к трофобласту внезародышевой мезенхимы). Хорион уже имеет вторичные ворсины.

      Сформировавшиеся третичные ворсины плаценты погружаются в лакуны с материнской кровью. Формируется гематоплацентарный барьер.

    трофическая

    дыхательная

    экскреторная

    защитная

  1. эндокринная (гормоны, выделяемые плацентой – хориональный гонадотропин, прогестерон, эстрогены и плацентарный лактоген).

Эволюционное развитие плаценты. Выделяют 4 разновидности плаценты (классифицируют их по расположению ворсин и по взаимодействию ворсин с эндометрием матки).

    По расположению – диффузная. Ворсины хориона покрывают всю плаценту. По взаимодействию – эпителиохориальная. Ворсины не разрушают эпителия и желез, а лишь погружаются в железы. Ворсины получают питание за счет секрета маточных желез.характерна для сумчатых, свиней, лошадей, дельфинов. Рождение плода происходит легко, без кровотечения и разрушения слизистоу эндометрия.

    По расположению – множественная. Ворсины распологаются группами. По взаимодействию – десмохориальная. При проникновении ворсины в маточную железу, разрушает эпителий слизистой матки. Хар-но для парнокопытных и жвачных.

    По расположению – поясная. Ворсины располпжены поясом. По взаимодействию – эндотелиохориальные. Ворсины проникают в маточные железы, разрушают их стенку и доходят до кровеносных сосудов, не повреждая их. Хар-но для хищных.

    По расположению – дискоидальная. По – взаимодействию гематохориальная. Ворсины доходят до кровеносных сосудов, погружаются в них и омываются материнской кровью. Хар-но для грызунов, приматов и человека.

Строение плаценты человека

При формировании плаценты образуется 2 слоя эндометрия: 1. функциональный слой срастается с ворсинами трофобласта. 2. глубокий (базальный) слой не затрагивается и прилежит к миометрию. Ворсины трофобласта в метах сращения с функциональным слоем эндометрия разрушаются. Существует 2 разновидности ворсин: 1. якорные – для укрепления плаценты, сратаются с эндометрием, отграничивают лакуны, заполненные материнской кровью. 2. стволовые – погружаются в лакуны и имеют вторичные и третичные разветвления. Котиледон – структурно-функциональная единица плаценты – это стволовая ворсина с вторичными и третичными разветвлениями. У человека их около 200.

Кровь матери и плода не смешивается и в норме циркулирует по самостоятельным сосудистым системам, т.к. организмы матери и плода генетически чужеродны. Смешению крови препятствует гематоплацентарный барьер, который образован: эндометрий сосудов плода, соединительная ткань окружающая сосуды плода, эпителий хориональных или плацентарных ворсин, фибриноид (специфическое вещество, покрывающее ворсины снаружи).

    Пуповина (пупочный канатик) формируется у человека и млекопитающих. В его состав входят: остатки аллантоиса, сосуды пуповины (2 артерии и 1 вена) и специфическая соединительная ткань (вартонов студень), которая имеет желеобразную консистенцию и защищает сосуды пуповины от сжатия и обеспечивает упругость.

С формированием плаценты формируется система мать-плод, состаящая из 2 подсистем, связующим звеном между которыми является плацента. Из организма плода через плаценту в организм матери поступают продукты метаболизма и углекислый газ; из материнского организма к плоду поступают кислород, вода, глюкоза, аминокислоты, липиды, иммуноглобулины, гормоны; а так же могут проникать медикаменты и некоторые вирусы.

Основные особенности ранних этапов эмбриогенеза человека

    вторичноизолецитальная яйцеклетка

    ассиметрический тип полного дробления

    раннее обособление и формирование трофобласта и внезародышевых органов

    раннее обособление амниотического пузырька и образование амниотических складок

    две фазы гаструляции, в ходе которых формируются и провизорные органы

    интерстициальный (внутретканевой) тип имплантации

    сильное развитие амниона и хориона и слабое – аллантоиса и желточного мешка

Критические периоды развития

На ранних этапах онтогенеза существуют критические периоды развития, когда организм наиболее подвержен действию повреждающих факторов.

    прогенез

    оплодотворение

    имплантация (7-8 сутки)

    развитие осевых зачатков органов

    стадия усиленного роста головного мозга (15-20 неделя)

    формирование основных функциональных систем и дифференцировка полового аппарата (20-24 неделя)

    рождение

    стадия новорожденности (до 1 года)

    половое созревание (11-16 лет)

амнион

желточный мешок

аллантоис

хорион

плацента

Амнион образует замкнутую полость вокруг зародыша (рис.26).

Функции амниона :

Создание водной среды определенного химического состава и давления для свободного развития эмбриона и плода;

Защита от механических и гравитационных стрессов;

Предотвращение слипание плода с окружающими тканями.

Стенка амниона образована амниотическим эпителием (внезародышевой эктодермой, которая развивается из эпибласта) изнутри и внезародышевой мезодермой снаружи. Постепенно полость амниона разрастается. К 7-й неделе развития амниотическая мезодерма входит в контакт с мезодермой хориона (амнио-хориональная оболочка). Кроме того, амниотический эпителий обрастает амниотическую ножку. Амнион функционирует до момента рождения (плодный пузырь). К концу беременности полость амниона заполнена 1-1,5 литрами амниотической жидкости (околоплодные воды).

Желточный мешок

Стенка желточного мешка изнутри образована внезародышевой энтодермой. Её формируют интенсивно делящиеся клетки гипобласта, которые перемещаются по внутренней поверхности трофобласта. Снаружи внезародышевая энтодерма обрастает внезародышевой мезодермой.

У человека желточный мешок функционирует только на ранних стадиях развития (7-8 недель).

Функции желточного мешка:

· стенка желточного мешка - место первых очагов кроветворения и образования кровеносных сосудов (на 3-й неделе развития);

· стенка желточного мешка - место появления первичных половых клеток (гонобластов).

· после 7-8 недели желточный мешок подвергается регрессии, остаётся в виде тяжа клеток в пупочном канатике, направляющего кровеносные сосуды к плаценте.

Алланто ис

Аллантоис развивается на 16-17-е сутки в виде небольшого выроста задней стенки желточного мешка, поэтому имеет те же оболочки, что и желточный мешок: внезародышевая энтодерма изнутри и внезародышевая мезодерма снаружи (рис.26). Аллантоис врастает в амниотическую ножку, в его стенке развиваются пупочные кровеносные сосуды , которые он подводит к хориону. Таким образом, аллантоис выполняет ту же функцию, что и регрессирующий желточный мешок – они играют роль проводников и направляют рост сосудов плода к плаценте. На втором месяце эмбрионального развития аллантоис редуцируется и вместе с остатками желточного мешка образует клеточный тяж в составе пупочного канатика. Кроме того, аллантоис участвует в развитии мочевого пузыря.

Рис.26. Схема формирования внезародышевых органов в эмбриогенезе человека .

Хо рион

В формировании хориона различают три периода: предворсинчатый (7-8-е сутки), период образования ворсинок (до 50-х суток), период котиледонов (с 50 по 90-е сутки).

Зрелый хорионобразован хориональной пластиной (внезародышевая мезодерма ) и выростами пластины – ветвящимися третичными ворсинками , покрытыми трофобластом . Часть хориона, разрушающая стенку матки и участвующая в образовании плаценты, формирует сложноразветвленные ворсинки и носит название ворсинчатый хорион (рис.25). Остальную поверхность составляет гладкий хорион . Самые крупные ворсинки, отходящие от хориональной пластины, носят название стволовых ворсинок . Стволовые ворсинки обильно ветвятся, самые мелкие веточки носят названия терминальных ворсинок . Кровеносные сосуды в терминальных ворсинках представлены капиллярами плода. Все ворсинки покрыты снаружи трофобластом. Ворсинки, внедряющиеся в базальную пластинку эндометрия, называются якорными ворсинками . Обычно стволовые ворсинки являются якорными.

Плаце нта

Плацентация – период эмбриогенеза, на протяжении которого происходит развитие плаценты, один из критических периодов эмбриогенеза, соответствует 3-6 неделям беременности.

Плацента – единственный орган, состоящий из клеток двух генетически различных организмов: плодной части (хорион с ворсинками) и материнской части.

Плодная часть плаценты ворсинчатый хорион (хориональная пластина с ворсинками). Ворсинки хориона погружены в лакуны, заполненные кровью матери (рис.27).

Материнская часть плаценты представлена измененной слизистой оболочки матки, которая называется эндометрием . Эндометрий, кроме самого глубокого базального слоя, отторгается при рождении ребёнка, поэтому эти структуры получили название децидуальной (отпадающей) оболочки. В зависимости от расположения относительно места имплантации различают:

Decidua parietalis (пристеночная) – эндометрий, выстилающий полость матки за исключением участка имплантации;

Decidua capsularis (сумочная) – часть эндометрия, которая окружает развивающийся эмбрион, образуя поверх него капсулу, и отделяет зародыш от полости матки (до 16-й недели);

decidua basalis (основная ), материнская часть плаценты, та часть эндометрия, которая находится между плодом и базальным слоем эндометрия.

Итак, материнская часть плацента представлена:

Базальной пластинкой (decidua basalis) эндометрия;

Лакунами, заполненными материнской кровью.

Рис.27. Схема строения плаценты

Кровь матери и ребенка не смешивается. Их разделяет гематоплацентарный барьер . Компоненты гематоплацентарного барьера, разделяющего кровь матери и кровь плода (рис.28):

эндотелий капилляра плода;

Базальная мембрана в стенке капилляров плода;

Соединительная ткань ворсинок (с клетками-макрофагами);

Базальная мембрана трофобласта;

Цитоторофобласт;

Синцитиотрофобласт.

Рис.28. Гематоплацентарный барьер.

Терминальная ворсинка в поперечном разрезе .

ЭП – эритроциты плода ; 1.эндотелий капилляра плода; 2.базальная мембрана в стенке капилляра плода; 3.внезародышевая мезодерма (соединительная ткань ворсинки); 4.базальная мембрана трофобласта;

5.цитотрофобласт; 6.синцитиотрофобласт; ЭМ – эритроциты матери.

Ворсинки, обращенные к decidua basalis, распределены неравномерно, группами – котиледонами. Котиледон – структурно-функциональная единица сформированной плаценты. Котиледон образован стволовой ворсинкой и её разветвлениями. Котиледоны частично разделены соединительнотканными септами (плацентарными перегородками), отходящими от базальной пластинки (рис.29).

Рис.29. Схема строения плаценты человека

К концу беременности плацента имеет форму диска.

Связь между циркуляциями крови плода и матери осуществляется через пупочный канатик.

Функции плаценты :

трофическая - из организма матери к плоду поступают самые разнообразные питательные вещества, электролиты, витамины, некоторые гормоны (табл.2);



дыхательная - транспорт кислорода в кровь плода и перенос углекислого газа в кровь матери;

выделительная - из крови плода в кровь матери поступают продукты метаболизма и выделяются через почки матери;

защитная - препятствует развитию иммунного конфликта (иммунодепрессивная функция, благодаря синтезу ряда биологически активных веществ), препятствует проникновению микроорганизмов (барьер не абсолютный – табл.3);

эндокринная – здесь происходит синтез ряда гормонов и других биологически активных веществ (хорионический гонадотропин, прогестерон, фактор роста фибробластов, трансферрин, пролактин, релаксин и другие), имеющих важное значение для нормального течения беременности и развития плода.

Таблица 2

Гематоплацентарный барьер не является абсолютным, и проницаем для ряда веществ и возбудителей болезней (таблица 3)

Часть бластомеров и клеток после дробления зиготы идет на образование органов, способствующих развитию зародыша и плода. Такие органы и называются внезародышевыми.

После рождения некоторые внезародышевые органы отторгаются, другие на последних этапах эмбриогенеза подвергаются обратному развитию или перестраиваются. У разных животных развивается неодинаковое количество провизорных органов, отличающихся по строению и по выполняемым функциям.

У млекопитающих, в том числе и у человека, развиваются четыре внезародышевых органа:

1) хорион;

2) амнион;

3) желточный мешок;

4) аллантоис.

Хорион (или ворсинчатая оболочка) выполняет защитную и трофическую функции. Часть хориона (ворсинчатый хорион) внедряется в слизистую оболочку матки и входит в состав плаценты, которую иногда рассматривают как самостоятельный орган.

Амнион (или водная оболочка) образуется только у наземных животных. Клетки амниона продуцируют амниотическую жидкость (околоплодные воды), в которой и развивается эмбрион, а затем – плод.

После рождения ребенка хориальная и амниотическая оболочки отторгаются.

Желточный мешок развивается в наибольшей степени у зародышей, образующихся из полилецитальных клеток, и потому содержит много желтка, откуда и происходит его название. Желточный меток выполняет следующие функции:

1) трофическую (за счет трофического включения (желтка) обеспечивается питание зародыша, особенно развивающегося в яйце, на более поздних стадиях развития для доставки трофического материала к зародышу формируется желточный круг кровообращения);

2) кроветворную (в стенке желточного мешка (в мезенхиме) образуются первые клетки крови, которые затем мигрируют в кроветворные органы зародыша);

3) гонобластическую (в стенке желточного мешка (в энтодерме) образуются первичные половые клетки (гонобласты), которые затем мигрируют в закладки половых желез зародыша).

Аллантоис – слепое выпячивание каудального конца кишечной трубки, окруженное внезародышевой мезенхимой. У животных, развивающихся в яйце, аллантоис достигает большого развития и выполняет функцию резервуара для продуктов обмена зародыша (главным образом мочевины). Именно поэтому аллантоис нередко называю мочевым мешком.

У млекопитающих необходимость в накоплении продуктов обмена отсутствует, так как они поступают через маточно-плацентарный кровоток в организм матери и выводятся ее экскреторными органами. Поэтому у таких животных и человека аллантоис развит слабо и выполняет другие функции: в его стенке развиваются пупочные сосуды, которые разветвляются в плаценте и благодаря которым формируется плацентарный круг кровообращения.

Тема 7. ЭМБРИОЛОГИЯ ЧЕЛОВЕКА

Прогенез

Рассмотрение закономерностей эмбриогенеза начинается с прогенеза. Прогенез – гаметогенез (спермато– и овогенез) и оплодотворение.

Сперматогенез осуществляется в извитых канальцах семенников и подразделяется на четыре периода:

1) период размножения – I;

2) период роста – II;

3) период созревания – III;

4) период формирования – IV.

Процесс сперматогенеза будет обстоятельно рассмотрен при изучении мужской половой системы. Сперматозоид человека состоит из двух основных частей: головки и хвоста.

Головка содержит:

1) ядро (с гаплоидным набором хромосом);

2) чехлик;

3) акросому;

4) тонкий слой цитоплазмы, окруженный цитолеммой.

Хвост сперматозоида подразделяется на:

1) связующий отдел;

2) промежуточный отдел;

3) главный отдел;

4) терминальный отдел.

Главные функции сперматозоида – хранение и передача яйцеклеткам генетической информации при их оплодотворении. Оплодотворяющая способность сперматозоидов в половых путях женщины сохраняется до 2 суток.

Овогенез осуществляется в яичниках и подразделяется на три периода:

1) период размножения (в эмбриогенезе и в течение 1-го года постэмбрионального развития);

2) период роста (малого и большого);

3) период созревания.

Яйцеклетка состоит из ядра с гаплоидным набором хромосом и выраженной цитоплазмы, в которой содержатся все органеллы, за исключением цитоцентра.

Оболочки яйцеклетки:

1) первичная (плазмолемма);

2) вторичная – блестящая оболочка;

3) третичная – лучистый венец (слой фолликулярных клеток).

Оплодотворение у человека внутреннее – в дистальной части маточной трубы.

Подразделяется на три фазы:

1) дистантное взаимодействие;

2) контактное взаимодействие;

3) проникновение и слияние пронуклеусов (фаза синкариона).

В основе дистантного взаимодействия лежат три механизма:

1) реотаксис – движение сперматозоидов против тока жидкости в матке и маточной трубе;

2) хемотаксис – направленное движение сперматозоидов к яйцеклетке, которая выделяет специфические вещества – гиногамоны;

3) канацитация – активация сперматозоидов гиногамонами и гормоном прогестероном.

Через 1,5 – 2 ч сперматозоиды достигают дистальной части маточной трубы и вступают в контактное взаимодействие с яйцеклеткой.

Основным моментом контактного взаимодействия является акросомальная реакция – выделение ферментов (трипсина и гиалуроновой кислоты) из акросом сперматозоидов. Эти ферменты обеспечивают:

1) отделение фолликулярных клеток лучистого венца от яйцеклетки;

2) постепенное, но неполное разрушение блестящей оболочки яйцеклетки.

При достижении одним из сперматозоидов плазмолеммы яйцеклетки в этом месте образуется небольшое выпячивание – бугорок оплодотворения. После этого начинается фаза проникновения. В области бугорка плазмолеммы яйцеклетки и сперматозоида сливаются, и часть сперматозоида (головка, связующий и промежуточные отделы) оказывается в цитоплазме яйцеклетки. Плазмолемма сперматозоида встраивается в плазмолемму яйцеклетки. После этого начинается кортикальная реакция – выход кортикальных гранул из яйцеклетки по типу экзоцитоза, которые между плазмолеммой яйцеклетки и остатками блестящей оболочки сливаются, затвердевают и образуют оболочку оплодотворения, препятствующую проникновению в яйцеклетку других сперматозоидов. Таким образом у млекопитающих и человека обеспечивается моноспермия.

Главным событием фазы проникновения является внедрение в цитоплазму яйцеклетки генетического материала сперматозоидов, а также цитоцентра. После этого происходит набухание мужского и женского пронуклеусов, их сближение, а затем и слияние – синакрион. Одновременно в цитоплазме начинаются перемещения содержимого цитоплазмы и обособление (сегрегация) отдельных ее участков. Так формируются предположительные (презумптивные) зачатки будущих тканей – проходит этап дифференцировки тканей.

Условия, необходимые для оплодотворения яйцеклетки:

2) проходимость женских половых путей;

3) нормальное анатомическое положение матки;

4) нормальная температура тела;

5) щелочная среда в половых путях женщины.

С момента слияния пронуклеусов образуется зигота – новый одноклеточный организм. Время существования организма зиготы – 24 – 30 ч. С этого периода начинается онтогенез и его первый этап – эмбриогенез.

Эмбриогенез

Эмбриогенез человека подразделяется (в соответствии с происходящими в нем процессами) на:

1) период дробления;

2) период гаструляции;

3) период гисто– и органогенеза.

В акушерстве эмбриогенез подразделяется на другие периоды:

1) начальный период – 1-я неделя;

2) зародышевый период (или период эмбриона) – 2 – 8-я недели;

3) плодный период – с 9-й недели и до конца эмбриогенеза.

I. Период дробления . Дробление у человека полное, неравномерное, асинхронное. Бластомеры неравной величины и подразделяются на два типа: темные крупные и светлые мелкие. Крупные бластомеры дробятся реже, располагаются о центре и составляют эмбриобласт. Мелкие бластомеры чаще дробятся, располагаются по периферии от эмбриобласта и в дальнейшем формируют трофобласт.

Первое дробление начинается примерно через 30 ч после оплодотворения. Плоскость первого деления проходит через область направительных телец. Поскольку желток в зиготе распределен равномерно, выделение анимального и вегетативных полюсов крайне затруднено. Область отделения направительных телец обычно называют анимальным полюсом. После первого дробления образуются два бластомера, несколько различных по величине.

Второе дробление. Образование второго митотического веретена в каждом из образовавшихся бластомеров происходит вскоре после окончания первого деления, плоскость второго деления проходит перпендикулярно плоскости первого дробления. При этом концептус переходит в стадию 4 бластомеров. Однако дробление у человека асинхронное, поэтому в течение некоторого времени можно наблюдать 3-х клеточный концептус. На стадии 4 бластомеров синтезируются все основные виды РНК.

Третье дробление. На этой стадии асинхронность дробления проявляется в большей мере, в итоге образуется концептус с различным количеством бластомеров, при этом условно его можно разделить на 8 бластомеров. До этого бластомеры расположены рыхло, но вскоре концептус уплотняется, поверхность соприкосновения бластомеров увеличивается, объем межклеточного пространства уменьшается. В результате этого наблюдаются сближение и компактизация – крайне важное условие для образования между бластомерами плотных и щелевидных контактов. Перед формированием в плазматическую мембрану бластомеров начинает встраиваться увоморулин – белок адгезии клеток. В бластомерах ранних концептусов увоморулин равномерно распределен в клеточной мембране. Позднее в области межклеточных контактов образуются скопления (кластеры) молекул увоморулина.

На 3 – 4-е сутки образуется морула, состоящая из темных и светлых бластомеров, а с 4-х суток начинается накопление жидкости между бластомерами и формирование бластулы, которая называется бластоцистой.

Развитая бластоциста состоит из следующих структурных образований:

1) эмбриобласты;

2) трофобласты;

3) бластоцели, заполненной жидкостью.

Дробление зиготы (формирование морулы и бластоцисты) осуществляется в процессе медленного перемещения зародыша по маточной трубе к телу матки.

На 5-е сутки бластоциста попадает в полость матки и находится в ней в свободном состоянии, а с 7-х суток происходит имплантация бластоцисты в слизистую оболочку матки (эндометрий). Процесс этот подразделяется на две фазы:

1) фазу адгезии – прилипания к эпителию;

2) фазу инвазии – внедрения в эндометрий.

Весь процесс имплантации происходит на 7 – 8-е сутки и продолжается в течение 40 ч.

Внедрение зародыша осуществляется при помощи разрушения эпителия слизистой оболочки матки, а затем соединительной ткани и стенок сосудов эндометрия протеолитическими ферментами, которые выделяются трофобластом бластоцисты. В процессе имплантации происходит смена гистиотрофного типа питания зародыша на гемотрофный.

На 8-е сутки зародыш оказывается полностью погруженным в собственную пластинку слизистой оболочки матки. Дефект эпителия области внедрения зародыша при этом зарастает, а зародыш оказывается окруженным со всех сторон лакунами (или полостями), заполненными материнской кровью, изливающейся из разрушенных сосудов эндометрия. В процессе имплантации зародыша происходят изменения как в трофобласте, так и в эмбриобласте, где происходит гаструляция.

II. Гаструляция у человека подразделяется на две фазы. Первая фара гаструляции протекает на 7 – 8-е сутки (в процессе имплантации) и осуществляется способом деламинации (формируется эпибласт, гипобласт).

Вторая фаза гаструляции происходит с 14-х на 17-е сутки. Ее механизм будет рассмотрен несколько позже.

В период между I и II фазами гаструляции, т. е. с 9-х по 14-е сутки формируются внезародышевая мезенхима и три внезародышевых органа – хорион, амнион, желточный мешок.

Развитие, строение и функции хориона . В процессе имплантации бластоцисты ее трофобласт по мере внедрения из однослойного становится двухслойным и состоит из цитотрофобласта и симпатотрофобласта. Симпатотрофобласт представляет собой структуру, в которой в единой цитоплазме содержится большое число ядер и клеточных органелл. Образуется он посредствам слияния клеток, выталкиваемых из цитотрофобласта. Таким образом, эмбриобласт, в котором происходит I фаза гаструляции, окружен внезародышевой оболочкой, состоящей из цито– и симпластотрофобласта.

В процессе имплантации из эмбриобласта выселяются в полость бластоцисты клетки, образующие внезародышевую мезенхиму, которая подрастает изнутри к цитотрофобласту.

После этого трофобласт становится трехслойным – состоит из симпластотрофобласта, цитотрофобласта и париентального листка внезародышевой мезенхимы и носит название хориона (или ворсинчатой оболочки). По всей поверхности хориона располагаются ворсины, которые вначале состоят из цито– и симпластотрофобласта и называются первичными. Затем в них врастает изнутри внезародышевая мезенхима, и они становятся вторичными. Однако постепенно на большей части хориона ворсинки редуцируются и сохраняются только в той части хориона, которая направлена к базальному слою эндометрия. При этом ворсинки разрастаются, в них врастают сосуды, и они становятся третич-ными.

При развитии хориона выделяют два периода:

1) формирование гладкого хориона;

2) формирование ворсинчатого хориона.

Из ворсинчатого хориона в последующем формируется плацента.

Функции хориона:

1) защитная;

2) трофическая, газообменная, экскреторная и другие, в которых хорин принимает участие, будучи составной частью плаценты и которые выполняет плацента.

Развитие, строение и функции амниона . Внезародышевая мезенхима, заполняя полость бластоцисты, оставляет свободными небольшие участки бластоцели, прилежащие к эпибласту и гипобласту. Эти участки составляют мезенхимальные закладки амниотического пузырька и желточного мешка.

Стенка амниона состоит из:

1) внезародышевой эктодермы;

2) внезародышевой мезенхимы (висцерального листка).

Функции амниона – образование околоплодных вод и защитная функция.

Развитие, строение и функции желточного мешка . Из гипобласта выселяются клетки, составляющие внезародышевую (или желточную) энтодерму, и, обрастая изнутри мезенхимальную закладку желточного мешка, образуют вместе с ней стенку желточного мешка. Стенка желточного мешка состоит из:

1) внезародышевой (желточной) энтодермы;

2) внезародышевой мезенхимы.

Функции желточного мешка:

1) кроветворение (образование стволовых клеток крови);

2) образование половых стволовых клеток (гонобластов);

3) трофическая (у птиц и рыб).

Развитие, строение и функции аллантоиса . Часть зародышевой энтодермы гипобласта в виде пальцевидного выпячивания врастает в мезенхиму амниотической ножки и формирует аллантоис. Стенка аллантоиса состоит из:

1) зародышевой энтодермы;

2) внезародышевой мезенхимы.

Функциональная роль аллантоиса:

1) у птиц полость аллантоиса достигает значительного развития и в ней накапливается мочевина, поэтому его называют мочевым мешком;

2) у человека нет необходимости накопления мочевины, поэтому полость аллантоиса очень незначительная и к концу 2-го месяца полностью зарастает.

Однако в мезенхиме аллантоиса развиваются кровеносные сосуды, которые проксимальными концами соединяются с сосудами тела зародыша (эти сосуды возникают в мезенхиме тела зародыша позже, чем в аллантоисе). Дистальными концами сосуды аллантоиса врастают во вторичные ворсинки ворсинчатой части хориона и превращают их в третичные. С 3-й по 8-ю недели внутриутробного развития за счет этих процессов формируется плацентарный круг кровообращения. Амниотическая ножка вместе с сосудами вытягивается и превращается в пупочный канатик, а сосуды (две артерии и вена) называются пупочными сосудами.

Мезенхима пупочного канатика преобразуется в слизистую соединительную ткань. В составе пупочного канатика содержатся также остатки аллантоиса и желточного стебелька. Функция аллантоиса – способствование выполнению функций плаценты.

По окончании второй стадии гаструляции зародыш носит название гаструлы и состоит из трех зародышевых листков – эктодермы, мезодермы и энтодермы и четырех внезародышевых органов – хориона, амниона, желточного мешка и аллантоиса.

Одновременно с развитием второй фазы гаструляции формируется зародышевая мезенхима посредством миграции клеток из все трех зародышевых листков.

На 2 – 3-й неделе, т. е. в процессе второй фазы гаструляции и сразу же после нее, происходит закладка зачатков осевых органов:

2) нервной трубки;

3) кишечной трубки.

Строение и функции плаценты

Плацента – это образование, которое осуществляет связь между плодом и организмом матери.

Плацента состоит из материнской части (базальная часть децидуальной оболочки) и плодной части (ворсинчатый хорион – производное трофобласта и внезародышевой мезодермы).

Функции плаценты:

1) обмен между организмами матери и плода газами-метаболитами, электролитами. Обмен осуществляется при помощи пассивного транспорта, облегченной диффузии и активного транспорта. Достаточно свободно в организм плода из материнского могут проходить стероидные гормоны;

2) транспорт материнских антител, осуществляющийся при помощи опосредованного рецепторами эндоцитоза и обеспечивающийся пассивный иммунитет плода. Данная функция очень важна, так как после рождения плод имеет пассивный иммунитет ко многим инфекциям (кори, краснухе, дифтерии, столбняку и др.), которыми либо болела мать, либо против которых была вакцинирована. Продолжительность пассивного иммунитета после рождения составляет 6 – 8 месяцев;

3) эндокринная функция. Плацента – это эндокринный орган. Она синтезирует гормоны и биологически активные вещества, которые играют очень большую роль в нормальном физиологическом протекания беременности и развития плода. К этим веществам относятся прогестерон, хорионический соматомаммотропин, фактор роста фибробластов, трансферрин, пролактин и релаксин. Кортиколиберины определяют срок родов;

4) детоксикация. Плацента способствует детоксикации некоторых лекарственных препаратов;

5) плацентарный барьер. В состав плацентарного барьера входят синцитиотрофобласт, цитотрофобласт, базальная мембрана трофобласта, соединительная ткань ворсины, базальная мембрана в стенке капилляра плода, эндотелий капилляра плода. Гематоплацентарный барьер препятствует контакту крови матери и плода, что очень важно для защиты плода от влияния иммунной системы матери.

Структурно-функциональной единицей сформировавшейся плаценты является котиледон. Он образован стволовой ворсиной и ее разветвлениями, содержащими сосуды плода. К 140-му дню беременности в плаценте сформировано около 10 – 12 больших, 40 – 50 мелких и до 150 рудиментарных котиледонов. К 4-му месяцу беременности формирование основных структур плаценты заканчивается. Лакуны полностью сформированной плаценты содержат около 150 мл материнской крови, полностью обменивающейся в течение 3 – 4 мин. Общая поверхность ворсин составляет около 15 м 2 , что обеспечивает нормальный уровень обмена веществ между организмами матери и плода.

Строение и функции децидуальной оболочки

Децидуальная оболочка образуется на всем протяжении эндометрия, но раньше всего она образуется в области имплантации. К конце 2-й недели внутриутробного развития эндометрий полностью замещается децидуальной оболочкой, в которой можно выделить базальную, капсулярную и пристеночные части.

Децидуальная оболочка, окружающая хорион, содержит базальную и капсулярную части.

Другие отделы децидуальной оболочки выстланы пристеночной частью. В децидуальной оболочке выделяют губчатую и компактные зоны.

Базальная часть децидуальной оболочки входит в состав плаценты. Она отделяет плодное яйцо от миометрия. В губчатом слое много желез, сохраняющихся до 6-го месяца беременности.

Капсулярная часть к 18-му дню беременности полностью смыкается над имплантированным плодным яйцом и отделяет его от полости матки. По мере роста плода капсулярная часть выпячивается в полость матки и к 16-й неделе внутриутробного развития срастается с пристеночной частью. При доношенной беременности капсулярная часть хорошо сохраняется и различима только в нижнем полюсе плодного яйца – над внутренним маточным зевом. Капсулярная часть не содержит поверхностного эпителия.

Пристеночная часть до 15-й недели беременности утолщается за счет компактной и губчатой зон. В губчатой зоне пристеночной части децидуальной оболочки железы развиваются до 8-й недели беременности. К моменту слияния пристеночной и капсулярной частей количество желез постепенно уменьшается, они становятся неразличимыми.

В конце доношенной беременности пристеночная часть децидуальной оболочки представлена несколькими слоями децидуальных клеток. С 12-й недели беременности поверхностный эпителий пристеночной части исчезает.

Клетки рыхлой соединительной ткани вокруг сосудов компактной зоны резко увеличены. Это молодые децидуальные клетки, которые по своему строению сходны с фибробластами. По мере дифференцировки размеры децидуальных клеток увеличиваются, они приобретают округлую форму, их ядра становятся светлыми, клетки более тесно прилегают друг к другу. К 4 – 6-й неделе беременности преобладают крупные светлые децидуальные клетки. Часть децидуальных клеток имеет костномозговое происхождение: по-видимому, они участвуют в иммунном ответе.

Функцией децидуальных клеток является продукция пролактина и простагландинов.

III. Дифференцировка мезодермы . В каждой мезодермальной пластинке, происходит дифференцировка ее на три части:

1) дорзсальную часть (сомиты);

2) промежуточную часть (сегментные ножки, или нефротомы);

3) вентральную часть (спланхиотому).

Дорзсальная часть утолщается и подразделяется на отдельные участки (сегменты) – сомиты. В свою очередь, в каждом сомите выделяют три зоны:

1) периферическую зону (дерматому);

2) центральную зону (миотому);

3) медиальную часть (склеротому).

По сторонам зародыша образуются туловищные складки, которые отделяют зародыш от внезародышевых органов.

Благодаря туловищным складкам кишечная энтодерма сворачивается в первичную кишку.

Промежуточная часть каждого мезодермального крыла также сегментируется (за исключением каудального отдела – нефрогенной ткани) на сегментные ножки (или нефротомы, нефрогонотомы).

Вентральная часть каждого мезодермального крыла не сегментируется. Она расщепляется на два листка, между которыми располагается полость – целом, и носит название «спланхиотома». Следовательно, спланхиотома состоит из:

1) висцерального листка;

2) париентального листка;

3) полости – целома.

IV. Дифференцировка эктодермы . Наружный зародышевый листок дифференцируется на четыре части:

1) нейроэктодерму (из нее разминается нервная трубка и ганглиозная пластинка);

2) кожная эктодерма (развивается эпидермис кожи);

3) переходная пластика (развивается эпителий пищевода, трахеи, бронхов);

4) плакоды (слуховая, хрусталиковая и др.).

V. Дифференцировка энтодермы . Внутренний зародышевый листок подразделяется на:

1) кишечную (или зародышевую), энтодерму;

2) внезародышевую (или желточную), энтодерму.

Из кишечной энтодермы развиваются:

1) эпителий и железы желудка и кишечника;

2) печень;

3) поджелудочная железа.

Органогенез

Развитие подавляющего большинства органов начинается с 3 – 4-й недели, т. е. с конца 1-го месяца существования зародыша. Органы образуются в результате перемещения и сочетания клеток и их производных, нескольких тканей (например, печень состоит из эпителиальной и соединительной тканей). При этом клетки разных тканей оказывают индуктивное влияние друг на друга и тем самым обеспечивают направленный морфогенез.

  • Банковское регулирование и надзор. В России Центробанк является органом банковского регулиро­вания и надзора, хотя во многих странах они возлагаются на специаль­ные органы
  • Валютный контроль: понятие, правовая основа агенты и органы валютного контроля, их задачи и функции. Валютное регулирование
  • Виды органов государственного управления природопользованием и охраной окружающей среды. Органы общей компетенции
  • ВЛИЯНИЕ КОРКОВЫХ И АРСЕНАЛЬНЫХ СТРУКТУР НА НИЖЕРАСПОЛОЖЕННЫЕ ОРГАНЫ И СИСТЕМЫ

  • Развитие зародыша человека - процесс сложный. И немаловажная роль в правильном формировании всех органов и жизнеспособности будущего человека принадлежит внезародышевым органам, которые также называют провизорными. Что это за органы? Когда они формируются и какую роль играют? Какова эволюция внезародышевых органов человека?

    Специфика предмета

    На второй-третьей неделе существования зародыша человека начинается формирование внезародышевых органов, проще говоря - оболочек зародыша.

    У эмбриона пять желточный мешок, амнион, хорион, аллантоис и плацента. Все это временные образования, которых уже не будет ни у родившегося ребенка, ни у взрослого. Кроме того, внезародышевые органы не входят в состав тела самого эмбриона. Но их функции многообразны. Самая главная из них - внезародышевые органы человека играют значительную роль в обеспечении питания и регуляции процессов взаимодействия эмбриона и матери.

    Эволюционный экскурс

    Внезародышевые органы появились на сцене эволюции как адаптация позвоночных животных к обитанию на суше. Самая древняя оболочка - желточный мешок появилась у рыб. Изначально главной его функцией было запасание и хранение питательных веществ для развития зародыша (желтка). Позднее роль провизорных органов расширилась.

    Следом у птиц и млекопитающих формируется дополнительная оболочка - амнион. Внезародышевые органы хорион и плацента - привилегия млекопитающих. Они обеспечивают связь материнского организма и зародыша, посредством которой последний обеспечивается питательными веществами.

    Провизорные органы человека

    К внезародышевым органам относятся:

    • Желточный мешок.
    • Амнион.
    • Хорион.
    • Аллантоис.
    • Плацента.

    В целом, функции внезародышевых органов сводятся к созданию вокруг эмбриона водной среды - самой благоприятной для его развития. Но они выполняют также защитные, дыхательные и трофические функции.

    Самая древняя плодная оболочка

    Желточный мешок появляется у человека на 2 неделе и представляет собой рудиментарный орган. Он образуется из внезародышевого эпителия (энтодермы и мезодермы) - фактически это часть первичной кишки эмбриона, которая вынесена за пределы организма. Именно благодаря этой оболочке возможен транспорт питательных веществ и кислорода из полости матки. Его существование длится около недели, так как с 3 недели зародыш внедряется в стенки матки и переходит на гематотрофное питание. Но в период своего существования именно эта плодная оболочка дает начало эмбриональным процессам кроветворения (кровяные островки) и первичным половым клеткам (гонобластам), которые позже мигрируют в тело эмбриона. Позже эту оболочку сдавят более поздно сформированные плодные оболочки, превратив в желточный стебелек, который полностью исчезнет к 3 месяцу развития эмбриона.

    Водная оболочка - амнион

    Водная оболочка появляется на ранних стадиях гаструляции и представляет собой мешок, заполненный жидкостью. Он образован соединительной тканью - именно его остатки называют «рубашкой» у новорожденного. Эта оболочка заполнена жидкостью, а следовательно - его функция заключается в защите зародыша от сотрясений и в предотвращении слипания растущих частей его тела. Амниотическая жидкость - это на 99 % вода и на 1 % органические и неорганические вещества.

    Аллантоис

    Эта плодная оболочка формируется к 16 дню развития зародыша из колбасовидного выроста задней стенки желточного пузыря. Во многом это также рудиментарный орган, выполняющий функции питания и дыхания эмбриона. В течение 3-5 недели развития в аллантоисе формируются кровеносные сосуды пупочного каната. На 8 неделе он дегенерирует и превращается в тяж, соединяющий мочевой пузырь и пупочное кольцо. После этого аллантоис объединяется с серозными слоями и образует хорион - сосудистую оболочку с множеством ворсинок.

    Хорион

    Хорион - это оболочка со множеством ворсинок, пронизанных кровеносными сосудами. Она формируется в три этапа:

    • Передворсинчатый - оболочка разрушает слизистый эндометрий матки с образованием лакун, заполненных материнской кровью.
    • Образование ворсинок первичного, вторичного и третичного порядков. Третичные ворсинки с кровеносными сосудами знаменуют период плацентации.
    • Стадия котиледонов - структурных единиц плаценты, которые представляют собой стволовые ворсинки с разветвлениями. К 140 дню беременности формируется порядка 12 больших, до 50 мелких и 150 рудиментарных котиледонов.

    Активность хориона сохраняется до конца беременности. В этой плодной оболочке происходит синтез гонадотропина, пролактина, простагландина и других гормонов.

    Детское место

    Важным временным органом для развития плода является плацента (от латинского placenta - «лепешка») - место, где сплетаются (но не сливаются) кровеносные сосуды хориона и эндометрия матки. В местах этих сплетений и происходит газообмен и проникновение питательных веществ из материнского организма к плоду. Месторасположение плаценты чаще не влияет на течение беременности и развитие плода. Формирование ее заканчивается к концу первого триместра, а к моменту родов она имеет диаметр до 20 сантиметров и толщину до 4 сантиметров.

    Переоценить значение плаценты сложно - она обеспечивает газообмен и питание, выполняет гормональную регуляцию течения беременности, выполняет защитную функцию, пропуская антитела крови матери, и формирует иммунную систему плода.

    Плацента имеет две части:

    • плодную (со стороны эмбриона),
    • маточную (со стороны матки).

    Таким образом формируется стойкая система взаимодействия мать-плод.

    Связанные одной плацентой

    Организм матери и ребенка вместе с плацентой образуют систему мать-плод, регулируемую нейрогуморальными механизмами: рецепторными, регуляторными и исполнительными.

    В матке располагаются рецепторы, которые первыми получают информацию о развитии плода. Они представлены всеми типами: хемо-, механо-, термо- и барорецепторы. У матери при их раздражении меняется интенсивность дыхания, артериальное давление и другие показатели.

    Регуляторные функции обеспечиваются отелами ЦНС - гипоталамус, ретикулярная формация, гипоталамо-эндокринная система. Эти механизмы обеспечивают сохранность беременности и функциональную работу всех органов и систем в зависимости от потребностей плода.

    Рецепторы временных органов плода реагируют на изменения в состоянии матери, а регуляторные механизмы созревают в процессе развития. О развитии нервных центров плода свидетельствуют двигательные реакции, которые появляются на 2-3 месяце.

    Самое слабое звено

    В описанной системе таким звеном становится плацента. Именно патологии ее развития чаще всего приводят к прерыванию беременности. Могут быть следующие проблемы развития плаценты:


    Патологии развития плодных оболочек

    Кроме плаценты, амнион и хорион также имеют свое значение в обеспечении нормального течения беременности. Особенно опасны патологии хориона в первом триместре (образование гематом - 50 % патологий, неоднородная структура - 28 % и гипоплазия - 22 %), они повышают вероятность самопроизвольного прерывания беременности от 30 до 90 % в зависимости от патологии.

    В заключение

    Организмы матери и плода в период беременности - это система динамичного соединения. И нарушения в любом его звене ведут к непоправимым последствиям. Нарушения в работе организма матери четко коррелируют с аналогичными нарушениями в работе систем плода. Например, усиленная выработка инсулина у беременной с диабетом приводит к различным патологиям формирования поджелудочной железы у плода. Именно поэтому всем беременным женщинам очень важно следить за своим здоровьем и не пренебрегать профилактическими осмотрами, ведь любое отклонение от нормы может сигнализировать о неблагополучном развитии плода.

    Поделиться: