Альдегиды изомерны другому классу соединений - кетонам. Свойства спиртов, альдегидов, кислот, сложных эфиров, фенола

Лекция № 11

АЛЬДЕГИДЫ И КЕТОНЫ

План

1. Методы получения.

2. Химические свойства.

2.1. Реакции нуклеофильного
присоединения.

2.2. Реакции по a -углеродному атому.

2.3.


Лекция № 11

АЛЬДЕГИДЫ И КЕТОНЫ

План

1. Методы получения.

2. Химические свойства.

2.1. Реакции нуклеофильного
присоединения.

2.2. Реакции по a -углеродному атому.

2.3. Реакции окисления и восстановления.

Альдегиды и кетоны содержат карбонильную группу
С=О. Общая формула:

1. Методы получения.

2. Химические
свойства.

Альдегиды и кетоны – один из наиболее реакционноспособных классов
органических соединений. Их химические свойства определяются присутствием
карбонильной группы. Вследствие большого различия в электроотрицательностях
углерода и кислорода и высокой поляризуемости p -связи связь С=О обладает значительной полярностью
(
m С=О =2,5-2,8 D). Атом углерода карбонильной
группы несет эффективный положительный заряд и является объектом для атаки
нуклеофилов. Основной тип реакций альдегидов и кетонов – реакции
нуклеофильного присоединения Ad
N . Кроме того, карбонильная группа оказывает влияние на
реакционную способность связи С-Н в
a -положении, повышая ее кислотность.

Таким образом, молекулы альдегидов и кетонов
содержат два основных реакционных центра – связь С=О и связь С-Н в a -положении:

2.1. Реакции нуклеофильного
присоединения.

Альдегиды и кетоны легко присоединяют нуклеофильные реагенты по С=О связи.
Процесс начинается с атаки нуклеофила по карбонильному атому углерода. Затем
образующийся на первой стадии тетраэдрический интермедиат присоединяет протон и
дает продукт присоединения:

Активность карбонильных соединений в
Ad N –реакциях зависит от величины
эффективного положительного заряда на карбонильном атоме углерода и объема
заместителей у карбонильной группы. Электронодонорные и объемистые заместители
затрудняют реакцию, электроноакцепторные заместители повышают реакционную
способность карбонильного соединения. Поэтому альдегиды в
Ad
N –реакциях активнее, чем
кетоны.

Активность карбонильных соединений повышается в
присутствии кислотных катализаторов, которые увеличивают положительный заряд на
карбонильном атоме углерода:

Альдегиды и кетоны присоединяют воду, спирты,
тиолы, синильную кислоту, гидросульфит натрия, соединения типа
NH 2 X. Все реакции присоединения
идут быстро, в мягких условиях, однако образующиеся продукты, как правило,
термодинамически не устойчивы. Поэтому реакции протекают обратимо, и содержание
продуктов присоединения в равновесной смеси может быть низким.

Присоединение воды.

Альдегиды и кетоны присоединяют воду с
образованием гидратов. Реакция протекает обратимо. Образующиеся гидраты
термодинамически не стабильны. Равновесие смещено в сторону продуктов
присоединения только в случае активных карбонильных соединений.

Продукт гидратации трихлоруксусного альдегида
хлоральгидрат – устойчивое кристаллическое соединение, которое используется в
медицине как успокаивающее и снотворное средство.

Присоединение спиртов и
тиолов.

Альдегиды присоединяют спирты с образованием полуацеталей . При избытке спирта и в присутствии кислотного катализатора
реакция идет дальше – до образования ацеталей

Реакция образования полуацеталя протекает как
нуклеофильное присоединение и ускоряется в присутствии кислот или
оснований.

Процесс образования ацеталя идет как
нуклеофильное замещение ОН группы в полуацетале и возможен только в условиях
кислотного катализа, когда группа ОН превращается в хорошую уходящую группу
(H 2 O).

Образование ацеталей – обратимый процесс. В
кислой среде полуацетали и ацетали легко гидролизуются. В щелочной среде
гидролиз не идет. Реакции образования и гидролиза ацеталей играют важную роль в
химии углеводов.

Кетоны в аналогичных условиях кеталей не
дают.

Тиолы как более сильные нуклеофилы, чем спирты,
образуют продукты присоединения и с альдегидами, и с кетонами.

Присоединение синильной
кислоты

Синильная кислота присоединяется к карбонильным соединением в условиях
основного катализа с образованием циангидринов.

Реакция имеет препаративное значение и
используется в синтезе a -гидрокси- и a -аминокислот (см. лек. № 14). Плоды некоторых растений
(например, горький миндаль) содержат циангидрины. Выделяющаяся при их
расщеплении синильная кислота оказывает отравляющее действие
.

Присоединение бисульфита
натрия.

Альдегиды и метилкетоны присоединяют бисульфит натрия NaHSO 3 c образованием бисульфитных производных.

Бисульфитные производные карбонильных соединений
– кристаллические вещества, не растворимые в избытке раствора бисульфита натрия.
Реакция используется выделения карбонильных соединений из смесей. Карбонильное
соединение может быть легко регенерировано обработкой бисульфитного производного
кислотой или щелочью.

Взаимодействие с соединениями общей
формулы NH
2 X.

Реакции протекают по общей схеме как процесс
присоединения-отщепления. Образующийся на первой стадии продукт присоединения не
устойчив и легко отщепляет воду.

По приведенной схеме с карбонильными
соединениями реагируют аммиак, первичные амины, гидразин, замещенные гидразины,
гидроксиламин.

Образующиеся производные представляют собой
кристаллические вещества, которые используют для выделения и идентификации
карбонильных соединений.

Имины (основания Шиффа) являются промежуточными
продуктами во многих ферментативных процессах (трансаминирование под действием
кофермента пиридоксальфосфата; восстановительное аминирование кетокислот при
участии кофермента НАД Н). При каталитическом гидрировании иминов образуются
амины. Процесс используется для синтеза аминов из альдегидов и кетонов и
называется восстановительным аминированием.

Восстановительное аминирование протекает in vivo
в ходе синтеза аминокислот (см. лек. № 16)

2.2. Реакции по a -углеродному атому.

Кето-енольная таутомерия.

Водород в a -положении к карбонильной группе обладает кислотными
свойствами, так как образующийся при его отщеплении анион стабилизируется за
счет резонанса.

Результатом протонной подвижности атома водорода
в a -положении
является способность карбонильных соединений к образованию енольных форм за счет
миграции протона из
a -положения к атому кислорода карбонильной группы.

Кетон и енол являются таутомерами .
Таутомеры – это изомеры, способные быстро и обратимо превращаться друг в друга
за счет миграции какой-либо группы (в данном случае – протона). Равновесие между
кетоном и енолом называют кето-енольной таутомерией.

Процесс енолизации катализируется кислотами и
основаниями. Енолизация под действием основания может быть представлена
следующей схемой:

Большинство карбонильных соединений существуют
преимущественно в кетонной форме. Содержание енольной формы возрастает с
увеличением кислотности карбонильного соединения, а также в случае
дополнительной стабилизации енольной формы за счет водородной связи или за счет
сопряжения.

Таблица 8. Содержание енольных форм и
кислотность карбонильных соединений

Например, в 1,3-дикарбонильных соединениях
подвижность протонов метиленовой группы резко увеличивается за счет
электроноакцепторного влияния двух карбонильных групп. Кроме того, енольная
форма стабилизируется за счет наличия в ней системы сопряженных p -связей и внутримолекулярной
водородной связи.

Если соединение в енольной форме представляет
собой сопряженную систему с высокой энергией стабилизации, то енольная форма
преобладает. Например, фенол существует только в енольной форме.

Енолизация и образование енолят-анионов являются
первыми стадиями реакций карбонильных соединений, протекающих по a -углеродному атому. Важнейшими
из них являются галогенирование и альдольно-кротоновая
конденсация
.

Галогенирование.

Альдегиды и кетоны легко вступают в реакцию с галогенами (Cl 2 ,
Br 2 , I 2 ) с образованием
исключительно
a -галогенпроизводных.

Реакция катализируется кислотами или
основаниями. Скорость реакции не зависит от концентрации и природы галогена.
Процесс протекает через образование енольной формы (медленная стадия), которая
затем реагирует с галогеном (быстрая стадия). Таким образом, галоген не
участвует в скорость —определяющей стадии
процесса.

Если карбонильное соединение содержит несколько a -водородных
атомов, то замещение каждого последующего происходит быстрее, чем предыдущего,
вследствие увеличения их кислотности под действием электроноакцепторного влияния
галогена. В щелочной среде ацетальдегид и метилкетоны дают
тригалогенпроизводные, которые затем расщеплятся под действием избытка щелочи с
образованием тригалогенметанов (галоформная реакция)
.

Расщепление трииодацетона протекает как реакция
нуклеофильного замещения. группы CI 3 — гидроксид-анионом, подобно S N -реакциям в карбоксильной группе (см. лек. №12).

Иодоформ выпадает из реакционной смеси в виде
бледно-желтого кристаллического осадка с характерным запахом. Иодоформную
реакцию используют в аналитических целях для обнаружения соединений типа
СH 3 -CO-R, в том числе в
клинических лабораториях для диагностики сахарного диабета.

Реакции конденсации.

В присутствии каталитических количеств кислот
или щелочей карбонильные соединения, содержащие a -водородные атомы,
претерпевают конденсацию с образованием
b -гидроксикарбонильных соединений.

В образовании связи С-С участвуют карбонильный
атом углерода одной молекулы (карбонильной компоненты ) и a -углеродный атом другой
молекулы (метиленовой компоненты ). Эта реакция носит название альдольной конденсации (по названию продукта конденсации ацетальдегида –
альдоля).

При нагревании реакционной смеси продукт легко
дегидратируется с образованием a ,b -непредельного карбонильного
соединения.

Такой тип конденсации носит название кротоновой (по названию продукта конденсации ацетальдегида – кротонового
альдегида).

Рассмотрим механизм альдольной конденсации в
щелочной среде. На первой стадии гидроксид-анион отрывает протон из a -положения карбонильного
соединения с образованием енолят-аниона. Затем енолят анион как нуклеофил
атакует карбонильный атом углерода другой молекулы карбонильного соединения.
Образующийся тетраэдрический интермедиат (алкоксид-анион) является сильным
основанием и отрывает далее протон от молекулы воды.

При альдольной конденсации двух различных
карбонильных соединений (перекрестная альдольная конденсация) возможно
образование 4-х разных продуктов. Однако этого можно избежать, если одно из
карбонильных соединений не содержит a -водородных атомов (например, ароматические альдегиды
или формальдегид) и не может выступать в качестве метиленовой компоненты.

В качестве метиленовой компоненты в реакциях
конденсации могут выступать не только карбонильные соединения, но и другие
С-Н-кислоты. Реакции конденсации имеют препаративное значение, так как позволяют
наращивать цепь углеродных атомов. По типу альдольной конденсации и
ретроальдольного распада (обратный процесс) протекают многие биохимические
процессы: гликолиз, синтез лимонной кислоты в цикле Кребса, синтез нейраминовой
кислоты.

2.3. Реакции окисления и
восстановления

Восстановление

Карбонильные соединения восстанавливаются до
спиртов в результате каталитического гидрирования или под действием
восстановителей, которые являются донорами гидрид-анионов.

[H]: H 2 /кат., кат. – Ni, Pt,
Pd;

LiAlH 4 ; NaBH 4 .

Восстановление карбонильных соединений
комплексными гидридами металлов включает нуклеофильную атаку карбонильной группы
гидрид-анионом. При последующем гидролизе образуется спирт.

Аналогично происходит восстановление
карбонильной группы in vivo под действием кофермента НАД Н, который является
донором гидрид-иона (см. лек. №19).

Окисление

Альдегиды окисляются очень легко практически
любыми окислителями, даже такими слабыми, как кислород воздуха и соединения
серебра (I) и меди (II).

Две последние реакции используются как
качественные на альдегидную группу.

В присутствии щелочей альдегиды, не содержащие a -водородных атомов
диспропорционируют с образованием спирта и кислоты (реакция Канницаро).

2HCHO + NaOH ® HCOONa + CH 3 OH

Это является причиной того, что водный раствор
формальдегида (формалин) при длительном хранении приобретает кислую
реакцию.

Кетоны устойчивы к действию окислителей в
нейтральной среде. В кислой и щелочной средах под действием сильных
окислителей (KMnO 4 ) они
окисляются с разрывом связи С-С. Расщепление углеродного скелета происходит по
двойной углерод-углеродной связи енольных форм карбонильного соединения, подобно
окислению двойных связей в алкенах. При этом образуется смесь продуктов,
содержащая карбоновые кислоты или карбоновые кислоты и кетоны.

Для которых характерна двойная связь между углеродным и кислородным атомами и две одинарные связи этого же атома углерода с углеводородным радикалом, обозначаемым буквой R, и атомом водорода. Группа атомов >С=О называется карбонильной группой, она характерна для всех альдегидов. Многие альдегиды имеют приятный запах. Они могут быть получены из спиртов путем дегидрирования (удаление водорода), благодаря чему получили общее название — альдегиды. Свойства альдегидов определяются наличием карбонильной группы, ее расположением в молекуле, а также длиной и пространственной разветвленностью углеводородного радикала. То есть, зная название вещества, отражающего его можно ожидать определенные химические, а также физические свойства альдегидов.

Есть два основных способа именования альдегидов. Первый метод основан на системе, используемой Международным союзом (IUPAC), его часто называют систематическая номенклатура. Он основывается на том, что самая длинная цепочка, в которой к атому углерода присоединена карбонильная группа, служит основой названия альдегида, то есть его название происходит от названия родственного алкана благодаря замене суффикса -ан на суффикс -аль (метан — матаналь, этан — этаналь, пропан — пропаналь, бутан — бутаналь и так далее). Другой метод образования названия альдегидов использует наименование соответствующей в которую в результате окисления тот превратится (метаналь — альдегид муравьиный, этаналь — альдегид уксусный, пропаналь — альдегид пропионовый, бутаналь — альдегид масляный и так далее).

Именно полярность группы >С=О влияет на физические свойства альдегидов: кипения, растворимость, дипольный момент. Углеводородные соединения, состоящие только из атомов водорода и углерода, плавятся и кипят при низких температурах. У веществ с карбонильной группой они значительно выше. Например, бутан (CH3CH2CH2CH3), пропаналь (CH3CH2CHO) и ацетон (CH3СОСН3) имеют одинаковую молекулярную массу, равную 58, а температура кипения у бутана равняется 0 °C, в то время как для пропаналя она составляет 49 °С, а у ацетона равна 56 °C. Причина большой разницы заключается в том, что полярные молекулы имеют больше возможности друг к другу притягиваться, чем неполярные молекулы, поэтому для их разрыва необходимо больше энергии и, следовательно, требуется более высокая температура, чтобы эти соединения плавились или кипели.

С ростом меняются физические свойства альдегидов. Формальдегид (HCHO) является газообразным веществом при нормальных условиях, ацетальдегид (CH3CHO) кипит при комнатной температуре. Другие альдегиды (за исключением представителей с высоким молекулярным весом) при нормальных условиях являются жидкостями. Полярные молекулы не смешиваются легко с неполярными, потому что полярные молекулы друг к другу притягиваются, и неполярные не в состоянии протиснуться между ними. Поэтому углеводороды не растворяются в воде, так как молекулы воды полярны. Альдегиды, в молекулах которых число атомов углерода менее 5, растворяются в воде, но если число углеродных атомов больше 5, растворение не происходит. Хорошая растворимость альдегидов с низким молекулярным весом обусловлена образованием водородных связей между атомом водорода молекулы воды и атомом кислорода карбонильной группы.

Полярность молекул, образованных различными атомами, может быть количественно выражена числом, называемым дипольным моментом. Молекулы, образованные одинаковыми атомами, не являются полярными и дипольного момента не имеют. Вектор дипольного момента направлен в сторону элемента, стоящего в таблице Менделеева (для одного периода) правее. Если молекула состоит из атомов одной подгруппы, то электронная плотность будет смещаться в сторону элемента с меньшим порядковым номером. Большинство углеводородов не имеют дипольного момента или величина его чрезвычайно мала, но для альдегидов она гораздо выше, что также объясняет физические свойства альдегидов.

Расстановка ударений: АЛЬДЕГИ`ДЫ

АЛЬДЕГИДЫ - класс органических соединений с общей формулой

где R - углеводородный радикал (остаток); в организме являются промежуточными продуктами обмена веществ.

Отдельные представители альдегидов обычно получают название от кислоты, образующейся при их окислении (например, уксусная к-та - уксусный А.). В зависимости от типа радикала различают насыщенные, ненасыщенные, ароматические, циклические А. и др. Если радикалом является остаток спирта, карбоновой к-ты и пр., образуются альдегидоспирты, альдегидокислоты и другие соединения со смешанными функциями, обладающие хим. свойствами, присущими А. и соответствующим R-группам. При замещении водорода альдегидной группы на углеводородный радикал получаются кетоны (см.), дающие многие сходные с А. реакции. Один из простейших А. - уксусный, или ацетальдегид СН 3 - СНО, иногда получают дегидрогенизацией этилового спирта над нагретой медью.

Распространен способ получения А. из углеводородов ацетиленового ряда путем присоединения к ним воды в присутствии катализатора, открытый М. Г. Кучеровым:


Эта реакция применяется при синтетическом производстве уксусной к-ты. Ароматические А. обычно получают окислением ароматических, углеводородов, имеющих боковую метильную группу:

или действием на соответствующие углеводороды окиси углерода в присутствии НСl и катализатора.

Особенности и хим. свойства А. Связаны в основном со свойствами и превращениями альдегидной группы. Так, простейший из А. - муравьиный, или формальдегид


альдегидная группировка к-рого связана с водородом, является газом; низшие А. (напр., ацетальдегид) - жидкости с резким запахом; высшие А. - нерастворимые в воде твердые вещества.

Благодаря присутствию карбонильной группы и подвижного атома водорода А. относятся к числу наиболее реакционноспособных органических соединений. Большинство из разносторонних реакций А. характеризуется участием в них карбонильной группы. К ним относятся реакции окисления, присоединения и замещения кислорода на другие атомы и радикалы.

А. легко полимеризуются и конденсируются (см. Алъдоаьная конденсация ); при обработке А. щелочами или кислотами получаются альдоли, напр.:

При отщеплении воды альдоль превращается в кротоновый альдегид


способный к дальнейшему присоединению молекул (путем полимеризации). Полученные в результате конденсации полимеры носят общее название альдольных смол.

При исследовании биол. субстратов (крови, мочи и т. д.) положительный эффект реакций, основанных на окислении альдегидной группы, дает сумма редуцирующих веществ. Поэтому эти реакции, хотя и применяются для количественного определения сахара (глюкозы) по Хагедорну-Йенсену, а также пробы Ниландера, Гайнеса, Бенедикта и пр., но не могут считаться специфическими.

А. играют большую роль в биол. процессах, в частности биогенные амины в присутствии ферментов аминоксидаз превращаются в А. с последующим их окислением в жирные кислоты.

Радикалы А. высших жирных кислот входят в состав молекул плазмалогенов (см.). Растительные организмы в процессах фотосинтеза для ассимиляции углерода используют муравьиный А. Вырабатываемые растениями эфирные масла состоят в основном из циклических ненасыщенных А. (анисовый, коричный, ванилин и др.).

При спиртовом брожении под действием фермента карбоксилазы дрожжей происходит декарбоксилирование пировиноградной к-ты с образованием уксусного А., превращающегося путем восстановления в этиловый спирт.

А. широко используются в синтезе многих органических соединений. В мед. практике применяются как непосредственно А. (см. Формалин, Паральдегид, Цитраль ), так и синтетические производные, получаемые из А., напр, уротропин (см. Гексаметилентетрамин ), хлоралгидрат (см.) и др.

См. также Муравьиный альдегид. Уксусный альдегид .

Альдегиды как профессиональные вредности . А. широко применяются в промышленном производстве синтетических смол и пластмасс, ванилинокрасочной и текстильной промышленности, в пищевой промышленности и парфюмерии. Формальдегид применяется гл. обр. в производстве пластмасс и искусственных смол, в кожевенно-меховой промышленности и т. д.; акролеин - при всех производственных процессах, где жиры подвергаются нагреванию до t ° 170° (литейные цеха - сушка стержней с масляным крепителем, электротехническая промышленность, маслобойные заводы и салотопенное производство и т. д.). Более подробно - см. статьи, посвященные отдельным А.

Все А., особенно низшие, обладают выраженным токсическим действием.

А. раздражают слизистые оболочки глаз и верхних дыхательных путей. По характеру общетоксического действия А. являются наркотиками, однако наркотический эффект их значительно уступает раздражающему. Степень выраженности интоксикации определяется наряду с величиной действующей концентрации также характером радикала и как следствие - изменением физ.-хим. свойств А.: низшие А. (хорошо растворимые и высоколетучие вещества) обладают резким раздражающим действием на верхние отделы органов дыхания и сравнительно менее выраженным наркотическим действием; при увеличении длины углеводородной цепочки радикала растворимость и летучесть А. падают, в результате чего снижается раздражающее, не нарастает наркотическое действие; раздражающее действие непредельных А. сильнее, чем у предельных.

Механизм токсического действия А. связан с высокой реакционной способностью карбонильной группы А., к-рая, вступая в реакции взаимодействия с тканевыми белками, обусловливает первичный раздражающий эффект, рефлекторные реакции ц. н. с., дистрофические изменения внутренних органов и т. д. Кроме того, попадая в организм, А. подвергаются различным биохимическим превращениям; в этом случае токсическое действие на организм оказывают уже не сами А., а продукты их превращений. А. медленно выводятся из организма, способны кумулировать, чем объясняется развитие хрон. отравлений, основные проявления к-рых наблюдаются в первую очередь в виде патологических изменений органов дыхания.

Первая помощь при отравлонии альдегидами . Вывести пострадавшего на свежий воздух. Промыть глаза 2% щелочным раствором. Щелочные и масляные ингаляции. При явлениях асфиксии - вдыхание кислорода. По показаниям средства, стимулирующие сердечную деятельность и дыхание, успокаивающие средства (бромиды, валериана). При болезненном кашле - горчичники, банки, препараты кодеина. При отравлении через рот - промывания желудка, внутрь 3% раствор бикарбоната натрия, сырые яйца, белковая вода, молоко, солевые слабительные. При попадании на кожу - обмывание водой или 5% нашатырным спиртом.

См. также статьи, посвященные отдельным альдегидам.

Профилактика . Герметизация и автоматизация производственных процессов. Вентиляция помещений (см. Вентиляция ). Использование индивидуальных средств защиты, напр. фильтрующего противогаза марки «А» (см. Противогазы ), спецодежды (см. Одежда ) и т. д.

Предельно допустимые концентрации в атмосфере производственных помещений: для акролеина - 0,7 мг/м 3 , для ацетальдегида, масляного и проппонового альдегидов - 5 мг/м 3 , для формальдегида и кротонового А. - 0,5 мг/м 3 .

Определение альдегидов . Все А. суммарно определяются бисульфитным методом по связыванию кислым сернокислым натрием или колориметрически - с фуксиносернистой к-той. Разработан полярографический метод (Петрова-Яковцевская), спектрофотометрический (Векслер).

См. также Отравления, Яды промышленные .

Библиогр.: Бауер К. Г . Анализ органических соединений, пер. с нем., М., 1953; Несмеянов А. Н . и Несмеянов Н. А . Начала органической химии, кн. 1-2, М., 1969-1970.

Профессиональные вредности - Амирханова Г. Ф . и Латыпова З. В . Экспериментальное обоснование предельно допустимой концентрации ацетальдегида в воде водоемов, в кн.: Пром. загрязн. водоемов, под ред. С. Н. Черкинского, в. 9, с. 137, М., 1969, библиогр.; Быховская М. С ., Гинзбург С. Л . и Xализова О. Д . Методы определения вредных веществ в воздухе, с. 481, М., 1966; Ван Вэнь-янь , Материалы к токсикологии альдегидов жирного ряда, в кн.: Материалы по токсикол. веществ, применяемых в производ. пластич. масс и синтетич. каучуков, под ред. Н. В. Лазарева и И. Д. Гадаскиной, с. 42, Л., 1957, библиогр.; Вредные вещества в промышленности, под ред. Н. В. Лазарева, т. 1, с. 375, Л., 1971, библиогр.; Гурвиц С. С . и Сергеева Т. И . Определение малых количеств альдегидов в воздухе производственных помещений методом производной полярографии, Гиг. труда и проф. заболев., №9, с. 44, 1960; Трофимов Л. В . Сравнительное токсическое действие кротонового и масляного альдегидов, там же, №9, с. 34, 1962, библиогр.; Цай Л. М . К вопросу о превращениях ацетальдегида в организме, там же, № 12, с. 33, 1962, библиогр.; Нinе С. Н . а. о. Studies on the toxicity of glycid aldehyde, Arch, environm. Hlth, v. 2, p. 23, 1961, bibliogr.; Jung F . u. Onnen K . Bindung und Wirkungen des Formaldehyds an Erythrocyten, Naunyn-Schmiedeberg"s Arch. exp. Path. Pharmak., Bd 224, S. 179, 1955; Nova H . a. Touraine R. G . Asthme au formol, Arch. Mai. prof., t. 18, p. 293, 1957; Skоg E . A lexicological investigation of lower aliphatic aldehydes, Actapharmacol. (Kbh.), v. 6, p. 299, 1950, bibliogr.

Б. В. Кулибакин; Н. К. Кулагина (проф.).


Источники:

  1. Большая медицинская энциклопедия. Том 1/Главный редактор академик Б. В. Петровский; издательство «Советская энциклопедия»; Москва, 1974.- 576 с.

КИСЛОРОДСОДЕРЖАЩИЕ СОЕДИНЕНИЯ

КАРБОНИЛЬНЫЕ СОЕДИНЕНИЯ
АЛЬДЕГИДЫ И

Органические соединения, молекулы которых содержат карбонильную группу , называются карбонильными соединениями. В зависимости от характера связанных с карбонильной группой заместителей карбонильные соединения делятся на альдегиды, кетоны, карбоновые кислоты и их функциональные производные.

АЛЬДЕГИДЫ

Альдегидами называются органические соединения, содержащие карбонильную группу, в которой атом углерода связан с радикалом и одним атомом водорода, то есть общая формула альдегидов . Исключение составляет муравьиный альдегид , в котором, как видно, R = H .

Изомерия

Для альдегидов характерна изомерия углеводородного радикала, который может иметь как нормальную (неразветвленную) цепь, так и разветвленную, а также межклассовая изомерия с кетонами. Например ,

O
II
CH 3 –CH 2 –CH 2 –C
I
H

O
II
CH 3 –CH–C
I I
H CH 3

O
II
CH 3 –CH 2 –C



– CH 3

масляный альдегид
или бутаналь

изомасляный
альдегид или
2-метил-пропаналь

метилэтилкетон или
бутанон -2

Получение

1. Наиболее часто применяющимися способами получения альдегидов являются окисление и каталитическое дегидрирование первичных спиртов.

a) Окисление первичных спиртов.
Как видно, при дальнейшем окислении образуются кислоты. Эти реакции приводились уже при рассмотрении химических свойств спиртов.

b) Дегидрирование первичных спиртов. Реакцию проводят, пропуская пары спирта над нагретым до 200-300 ° С катализатором, в качестве которого используются медь, никель, кобальт и др.

2. Разработан метод получения уксусного альдегида окислением этилена кислородом воздуха в присутствии солей меди и палладия.

3. Уксусный альдегид получают гидратацией ацетилена по реакции Кучерова.

O
II

HC º CH + H 2 O –– HgSO 4 ® –– ® CH 3 –C


вини-
ловый
спирт

I
H
уксусный
альдегид

Подробно реакция Кучерова уже рассматривалась при изучении химических свойств ацетиленовых углеводородов.

4. Альдегиды получают гидролизом дигалогенопроизводных углеводородов, однако только тех, у которых оба атома галогена расположены у одного из концевых атомов углерода.

CH 3 –CH 2 –

2H 2 O ® + 2 HCl

1,1- дихлорпропан

1,1-пропандиол
|
|
¯

При действии воды на дигалогеналкил в щелочной или кислой среде реакция его гидролиза проходит стадию образования двухатомного спирта, содержащего две гидроксильных группы у одного атома углерода.
Такие спирты вследствие своей неустойчивости в момент образования теряют воду и образуют альдегиды.

Физические свойства

Простейший альдегид – муравьиный – газ с весьма резким запахом. Другие низшие альдегиды – жидкости, хорошо растворимые в воде. Альдегиды обладают удушливым запахом, который при многократном разведении становится приятным, напоминая запах плодов. Альдегиды кипят при более низкой температуре, чем спирты с тем же числом углеродных атомов. Это c вязано с отсутствием в альдегидах водородных связей. В то же время температура кипения альдегидов выше, чем у соответствующих по молекулярной массе углеводородов, что связано с высокой полярностью альдегидов.
Физические свойства некоторых альдегидов представлены в таблице.

Таблица . Физические свойства некоторых альдегидов

Название

Формула

t ° кип.,
° C

t ° пл.,
° C

d 4 20

Муравьиный
альдегид

O
II
H–C
I
H

92,0

21,0

0,815
(при 20 ° С)

Уксусный
альдегид

O
II
CH 3 –C
I
H

123,5

21,0

0,780

Пропионовый
альдегид

O
II
CH 3 – CH 2 – C
I
H

102,0

48,8

0,807

Масляный
альдегид

O
II
CH 3 –CH 2 –CH 2 –C
I
H

99,0

75,7

0,817

Изомасляный
альдегид

O
II
CH 3 –CH–C
I I
CH 3 H

65,9

64,0

0,794

Химические свойства

Альдегиды характеризуются высокой реакционной способностью. Большая часть их реакций обусловлена наличием карбонильной группы. Атом углерода в карбонильной группе находится в состоянии sp 2 - гибридизации и образует три s - связи (одна из них – связь С–О ), которые расположены в одной плоскости под углом 120 ° друг к другу.



Схема строения карбонильной группы

Двойная связь карбонильной группы по физической природе сходна с двойной связью между углеродными атомами, т. е. это сочетание s - и p - связей, последняя из которых образована р- электронами атомов углерода и кислорода. Ввиду большей электроотрицательности атома кислорода по сравнению с атомом углерода, связь С=О сильно поляризована за счет смещения электронной плотности p - связи к атому кислорода, в результате чего на атоме кислорода возникает частичный отрицательный (d - ) , а на атоме углерода – частичный положительный (d + ) заряды: .

Благодаря поляризации атом углерода карбонильной группы обладает электрофильными свойствами и способен реагировать с нуклеофильными реагентами. Важнейшими реакциями альдегидов являются реакции нуклеофильного присоединения по двойной связи карбонильной группы.

1. Одной из типичных реакций нуклеофильного присоединения альдегидов является присоединение синильной (циановодородной) кислоты , приводящее к образованию a - оксинитрилов.

Эта реакция используется для удлинения углеродной цепи и получения a - оксикислот.

2. Присоединение гидросульфита натрия дает кристаллические вещества, обычно называемые гидросульфитными производными альдегидов.


Упомянутые производные легко гидролизуются в любых средах, приводя к исходному карбонильному соединению. Так, при нагревании с раствором соды гидросульфитного производного уксусного альдегида образуется собственно уксусный альдегид.


Данное свойство используется для очистки альдегидов и выделения их из смесей.

3. Присоединение спиртов к альдегидам приводит к образованию полуацеталей – соединений, в которых атом углерода связан и с гидроксильной (–ОН ), и с алкоксильной (–О R ) группами.


При обработке полуацеталей избытком спирта в кислой среде образуются ацетали – соединения, в которых атом углерода связан с двумя алкоксильными группами (реакция напоминает синтез простых эфиров из спиртов).


В отличие от простых эфиров ацетали гидролизуются под действием кислот с образованием спирта и альдегида.

4. Присоединение водорода к альдегидам осуществляется в присутствии катализаторов (Ni , Co , Pd и др.) и приводит к образованию первичных спиртов.


Все чаще в качестве восстанавливающего агента применяют алюмогидрид лития LiAlH 4 и борогидрид натрия NaBH 4 .
Помимо реакций присоединения по карбонильной группе для альдегидов характерны также реакции окисления.

5. Окисление . Альдегиды легко окисляются, образуя соответствующие карбоновые кислоты.

a) аммиачный раствор оксида серебра [ Ag (NH 3 ) 2 ] OH при нагревании с альдегидами окисляет альдегид до кислоты (в виде ее аммониевой соли) с образованием свободного металлического серебра. Восстановленное серебро ложится тонким слоем на стенки химического сосуда, в котором осуществляется реакция, и получается серебряное зеркало. Эта реакция, получившая поэтому название "серебряного зеркала", служит качественной реакцией на альдегиды.

b) еще одной характерной реакцией является окисление альдегидов гидроксидом меди (II ).


При нагревании голубого гидроксида меди (II ) с раствором уксусного альдегида выпадает красный осадок оксида меди (I ). При этом уксусный альдегид окисляется до уксусной кислоты, а медь со степенью окисления +2 восстанавливается до меди со степенью окисления +1. Муравьиный альдегид (формальдегид) занимает особое место в ряду альдегидов. В связи с отсутствием у муравьиного альдегида радикала, ему присущи некоторые специфические свойства. Окисление формальдегида, например, осуществляется до двуокиси углерода СО 2 .
Формальдегид легко полимеризуется с образованием циклических и линейных полимеров. Так, в кислой среде он образует циклический тример – триоксиметилен.

Сухой газообразный формальдегид в присутствии катализаторов образует высокомолекулярный полиформальдегид. Полимеризация формальдегида напоминает полимеризацию алкенов.

O –– kat ®

H
I
…–C
I
H

H
I
–O–C–O–…
I
H


––––– ®

…–H 2 C–O (H 2 C–O) n H 2 C–O–…

В водных растворах формальдегид образует полимер, называемый параформом.

n CH 2 = O + H 2 O ® HOCH 2 ( OCH 2 ) n-2 OCH 2 OH
(параформ )

Особое практическое значение имеет реакция поликонденсации формальдегида с фенолом с образованием фенолформальдегидных смол. При действии щелочных или кислых катализаторов на смесь фенола и формальдегида конденсация идет в орто- и пара- положениях.

Рост молекулы за счет конденсации фенола с формальдегидом осуществляется при нормальной температуре в линейном направлении.

CH 2 OH
/

и т. д.
Суммарно реакцию поликонденсации фенола с формальдегидом можно изобразить следующим образом:

O + (n+1)

катализатор

NH 2 O

–––––––– ®

Фенолформальдегидные смолы – первенцы промышленных синтетических смол, их производство под названием "бакелит" впервые начато в 1909 году. Фенолформальдегидные смолы используются в производстве различных пластмасс. В сочетании с различными наполнителями такие пластмассы называются фенопластами. Кроме того, фенолформальдегидные смолы применяются при изготовлении различных клеев и лаков, термоизоляционных материалов, древесных пластиков, литейных форм и др.

Применение

Уже много упомянуто о применении формальдегида. Кроме того, он используется для получения карбамидных смол при взаимодействии с мочевиной, на основе которых производятся пластмассы, необходимые для нужд электротехники. Растворы формальдегида (формалин) используются в кожевенной промышленности для дубления кож, для дезинфекции зерно- и овощехранилищ, теплиц, парников, для протравливания семян перед посевом, для хранения анатомических препаратов, а также в производстве некоторых лекарственных препаратов.
Уксусный альдегид является исходным сырьем для получения в промышленном масштабе уксусной кислоты, уксусного ангидрида, этилового спирта, этилацетата и других ценных продуктов, а при конденсации с аминами и фенолами – различных синтетических смол.

КЕТОНЫ


Кетонами называются соединения, в молекуле которых карбонильная группа связана с двумя углеводородными радикалами. Общая формула кетонов , где R может совпадать с R ".

Изомерия


Для кетонов характерна изомерия углеводородных радикалов, изомерия положения карбонильной группы и межклассовая изомерия с альдегидами.

Получение


Почти все способы получения, приведенные ранее для альдегидов (см. " "), применимы и для кетонов.

1. Окисление вторичных спиртов .

2. Дегидрирование вторичных спиртов .

3. Гидратация гомологов ацетилена (реакция Кучерова) .

4. Гидролиз дигалогенопроизводных углеводородов , содержащих оба атома галогена у одного из средних в цепи углеродных атомов.

CH 3 –

Cl
I
C–CH 3 (2,2- дихлорпропан) + 2H 2 O ® (2,2- пропандиол) + 2 HCl

CH 3 –

O
II
C – CH 3 + H 2 O (диметилкетон (ацетон))

5. Кетоны получают, кроме того, пиролизом кальциевых солей карбоновых кислот при их нагревании. O
II
CH 3 –C
I
O

Физические свойства


Низшие кетоны – жидкости, легко растворимые в воде. В основном, кетоны обладают приятным запахом, напоминающим запах цветов. Как и альдегиды, кетоны кипят при более низкой температуре, чем соответствующие спирты, однако выше, чем углеводороды. Физические свойства некоторых кетонов представлены в таблице.

Таблица. Физические свойства некоторых кетонов

Название

Формула

t ° пл.,
° C

t ° кип.,
° C

d 4 20

Ацетон (диметилкетон)

42,0

102,7

0,816

Химические свойства


Как и альдегиды, кетоны характеризуются высокой реакционной способностью. Химическая активность альдегидов и кетонов тем выше, чем больше положительный заряд на атоме углерода карбонильной группы. Радикалы, увеличивающие этот положительный заряд, резко повышают реакционную способность альдегидов и кетонов, а радикалы, уменьшающие поло-жительный заряд, оказывают противоположное действие. В кетонах две алкильные группы являются электронодонорными, откуда становится понятным, почему кетоны менее активны в реакциях нуклеофильного присоединения по сравнению с альдегидами.
Примеры реакций этого типа для альдегидов подробно рассмотрены ранее (см. " "), поэтому, приводя некоторые примеры реакций нуклеофильного присоединения по карбонильной группе кетонов, уделим внимание лишь отличиям их химических свойств от альдегидов.

1. Присоединение синильной кислоты .

R
\
C=O (кетон ) + H– CN – KCN ® CH 3 –
/
R’ (кетон) + H SO 3 Na ® R –
/
R ’

OH
I
C – SO 3 Na (гидросульфитное производное кетона)
I
R ’

Следует отметить, что в реакцию с гидросульфитом натрия вступают только метилкетоны, т. е. кетоны, имеющие группировку CH 3 .

3. По сравнению с альдегидами для кетонов не характерны реакции со спиртами.

4. Присоединение водорода . Присоединение водорода к кетонам приводит к образованию вторичных спиртов.

5. Кетоны окисляются значительно труднее, чем альдегиды. Кислород воздуха и слабые окислители не окисляют кетоны. Кетоны не дают реакции "серебряного зеркала" и не реагируют с гидроксидом меди (II ). При действии сильных окислителей в жестких условиях углеродная цепь молекулы кетона разрушается рядом с карбонильной группой и образуются кислоты (иногда кетоны в зависимости от строения исходного кетона) с меньшим числом атомов углерода.

Применение


Наиболее широкое промышленное применение имеет простейший представитель кетонов – ацетон. Ацетон является ценным растворителем, использующимся в лакокрасочной промышленности, в производстве искусственного шелка, кинопленки,бездымного пороха. Он служит также исходным сырьем при производстве метакриловой кислоты, метилметакрилата (производство небьющегося органического стекла), метилизобутилкетона и др.

КОНЕЦ РАЗДЕЛА

Альдегиды и их химические свойства

Альдегидами называют такие органические вещества, в молекулах которых есть карбонильная группа, связанная, минимум, с одним атомом водорода и углеводородным радикалом.

Химические свойства альдегидов предопределяются в их молекуле наличием карбонильной группы. В связи с этим в молекуле карбонильной группы можно наблюдать реакции присоединения.

Так, например, если взять и пропустить пары формальдегида разом с водородом над разогретым никелевым катализатором, то произойдет присоединение водорода и формальдегид восстановиться в метиловый спирт. Кроме этого полярный характер данной связи порождает и такую реакцию альдегидов, как присоединение воды.

А теперь давайте рассмотрим все особенности реакций от присоединения воды. Следовало бы отметить, что к углеродному атому карбонильной группы, который несет частичный положительный заряд, благодаря электронной паре кислородного атома, добавляется гидроксильная группа.



При таком присоединении характерны следующие реакции:

Во-первых, происходит гидрирование и образуются первичные спирты RСН2ОН.
Во-вторых, происходит добавление спиртов и образование полуацеталей R-СН (ОН) – ОR. А в присутствии хлороводорода НСl, выступающего катализатором и при излишке спирта мы наблюдаем образование ацетали RСН (ОR)2;
В-третьих, происходит добавление гидросульфита натрия NаНSO3 и образуются производные гидросульфитных альдегидов. При окислении альдегидов можно наблюдать такие особенные реакции, как взаимодействие с аммиачным раствором оксида серебра (I) и с гидроксидом меди (II) и образование карбоновых кислот.

При полимеризации альдегидов характерны такие особенные реакции, как линейная и циклическая полимеризация.

Если говорить о химических свойствах альдегидов, следует упомянуть и реакцию окисления. К таким реакциям можно отнести реакцию «серебряного зеркала» и реакцию светофор.

Пронаблюдать за необычной реакцией «серебряного зеркала» можно, проведя в классе интересный опыт. Для этого вам понадобиться чисто вымытая пробирка, в которую следует налить несколько миллилитров аммиачного раствора оксида серебра, а потом к нему добавить четыре или пять капель формалина. Следующим этапом при проведении этого опыта нужно пробирку поместить в стакан с горячей водой и тогда вы сможете увидеть, как на стенках пробирки появляется блестящий слой. Это образовавшееся покрытие является осадком металлического серебра.



А вот так называемая реакция «светофор»:



Физические свойства альдегидов

Теперь давайте приступим к рассмотрению физических свойств альдегидов. Какими же свойствами обладают эти вещества? Следует обратить внимание на то, что ряд простых альдегидов являют из себя бесцветный газ, более сложные представлены в виде жидкости, а вот высшие альдегиды – это твердые вещества. Чем больше молекулярная масса альдегидов, тем выше температура кипения. Так, например, пропионовый альдегид достигает точки кипения при 48,8 градусов, а вот пропиловый спиртзакипает при 97,8 0С.

Если говорить о плотности альдегидов, то она меньше единицы. Так, например, уксусный и муравьиный альдегид имеет свойство неплохо растворяться в воде, а более сложные альдегиды имеют более слабую способность к растворению.

Альдегиды, которые относятся к низшему разряду, имеют резкий и неприятный запах, а твердые и нерастворимые в воде, наоборот характеризуются приятным цветочным запахом.

Нахождение альдегидов в природе

В природе, повсеместно встречаются представители различных групп альдегидов. Они присутствуют в зеленых частях растений. Эта одна из простейших групп альдегидов, к которым относится муравьиный альдегид СН2О.

Также встречаются альдегиды с более сложным составом. К таким видам относятся ванилин или виноградный сахар.

Но так как альдегиды обладают способностью легко вступать во всякие взаимодействия, имеют склонность к окислению и восстановлению, то можно с уверенностью сказать, что альдегиды очень способны к различным реакциям и поэтому в чистом виде они встречаются крайне редко. А вот их производные можно встретить повсеместно, как в растительной среде, так и животной.



Применение альдегидов

Альдегидная группа присутствует в целом ряде природных веществ. Их отличительной чертой, по крайней мере, многих из них, является запах. Так, например представители высших альдегидов, владеют различными ароматами и входят в состав эфирных масел. Ну и, как вам уже известно, такие масла присутствуют в цветочных, пряных и душистых растениях, плодах и фруктах. Они отыскали масштабное использование в производстве промышленных товаров и при производстве парфюмерии.

Алифатический альдегид СН3(СН2)7С(Н)=О можно найти в эфирных маслах цитрусовых. Такие альдегиды имеют запах апельсина, и применяется в пищевой промышленности, как ароматизатор, а также в косметике, парфюмерии и бытовой химии, в качестве отдушки.

Муравьиный альдегид – это бесцветный газ, который имеет резкий специфический запах и легко растворяется в воде. Такой водный раствор формальдегида еще называют формалином. Формальдегид очень ядовит, но в медицине его применяют в разбавленном виде в качестве дезинфицирующего средства. Его используют для дезинфекции инструментов, а его слабый раствор используют для обмывания кожи при сильной потливости.

Кроме того, формальдегид используют при дублении кожи, так как он имеет способности соединяться белковыми веществами, которые имеются в составе кожи.

В сельском хозяйстве формальдегид прекрасно зарекомендовал себя при обработке зерна перед посевными работами. Его применяют для производства пластмасс, которые так необходимы для техники и бытовых нужд.

Уксусный альдегид являет из себя бесцветную жидкость, которая имеет запах прелых яблок и легко растворяется в воде. Применяется он для получения уксусной кислоты и других веществ. Но так как он является ядовитым веществом, то может вызвать отравление организма или воспаление слизистых оболочек глаз и дыхательных путей.

Поделиться: