Биохимия эндокринной системы. Общие свойства гормонов. Эндокринная система человеческого организма

Биологическая химия Лелевич Владимир Валерьянович

Глава 12. Биохимия гормонов

Глава 12. Биохимия гормонов

Гормоны (от греческого hormaino – побуждаю) – это биологически активные вещества, которые выделяются эндокринными клетками в кровь или лимфу и регулируют в клетках-мишенях биохимические и физиологические процессы.

В настоящее время предложено расширить определение гормонов: гормоны – это специализированные межклеточные регуляторы рецепторного действия.

В этом определении слова «специализированные регуляторы» подчеркивают, что регуляторная – главная функция гормонов; слово «межклеточные» означает, что гормоны вырабатываются одними клетками и извне действуют на другие клетки; рецепторное действие – первый этап в эффектах любого гормона.

Биороль гормонов.

Гормоны регулируют многие жизненные процессы – метаболизма, функции клеток и органов, матричные синтезы (транскрипцию, трансляцию) и другие процессы, определяемые геномом (пролиферацию, рост, дифференцировку, адаптацию, клеточный шок, апоптоз и др.)

Рис. 12.1. Схема взаимосвязи регуляторных систем организма.

Эндокринная система функционирует в тесной взаимосвязи с нервной системой как нейроэндокринная.

1. Синтез и секреция гормонов стимулируются внешними и внутренними сигналами, поступающими в ЦНС.

2–3. Эти сигналы по нейронам поступают в гипоталамус, где стимулируют синтез пептидных рилизинг-гормонов (либеринов и статинов), которые стимулируют или ингибируют синтез и секрецию гормонов передней доли гипофиза.

4–5. Гормоны передней доли гипофиза (тропные гормоны) стимулируют образование и секрецию гормонов периферических эндокринных желез, которые поступают в кровь и взаимодействуют с клетками-мишенями.

Уровень гормонов в крови поддерживается благодаря механизмам саморегуляции (регуляция по принципу обратной связи). Изменение концентрации метаболитов в клетках-мишенях подавляет синтез гормонов в эндокринной железе или в гипоталамусе (6, 7). Синтез и секреция тропных гормонов подавляется гормонами эндокринных желез (8).

Из книги Моральное животное автора Райт Роберт

Статус, самооценка и биохимия В глубине поведенческих параллелей между человеком и человекообразными обезьянами лежат параллели биохимические. В стаях обезьян-верветок у доминирующих самцов обнаруживается более высокий уровень нейротрансмиттера серотонина, чем у

Из книги Стой, кто ведет? [Биология поведения человека и других зверей] автора Жуков. Дмитрий Анатольевич

Роль гормонов Копулятивное поведение тесно связано с эндокринной функцией. Человек принципиально отличается от животного тем, что у него оно не запускается гуморальными факторами, как у животных. Поведение спаривания у человека не запускается гуморальными факторами,

Из книги Человек как животное автора Никонов Александр Петрович

Глава 2 Биохимия экономики Также любят они соседа и жмутся к нему, ибо им необходимо тепло. Ницше Ф. Так говорил Заратустра Как правило, люди отвечают добром на добро и испытывают непроизвольную симпатию к тем, кто относится к ним хорошо. Это естественное чувство симпатии

Из книги Мозг в электромагнитных полях автора Холодов Юрий Андреевич

Глава 9. Мембраны и биохимия Электронный микроскоп показал, что биохимические реакции в живой клетке протекают с активным участием мембранных процессов. Это заключение относится и к нервной, и к глиальной клетке, и к внутриклеточным органеллам.Следует признать, что

Из книги Биологическая химия автора Лелевич Владимир Валерьянович

Биороль гормонов. Гормоны регулируют многие жизненные процессы – метаболизма, функции клеток и органов, матричные синтезы (транскрипцию, трансляцию) и другие процессы, определяемые геномом (пролиферацию, рост, дифференцировку, адаптацию, клеточный шок, апоптоз и

Из книги автора

Рецепторы гормонов Биологическое действие гормонов проявляется через их взаимодействие с рецепторами клеток-мишеней. Клетки, наиболее чувствительные к влиянию определенного гормона, называют клеткой-мишенью. Специфичность гормонов по отношению к клеткам-мишеням

Из книги автора

Глава 13. Особенности действия гормонов Гормоны гипоталамуса ЦНС оказывает регулирующее действие на эндокринную систему через гипоталамус. В клетках нейронов гипоталамуса синтезируются пептидные гормоны двух типов. Одни через систему гипоталамо-гипофизарных сосудов

Из книги автора

Глава 14. Биохимия питания Наука о пище и питании называется нутрициологией (от греч. нутрицио - питание). Нутрициология или наука о питании – это наука о пище, пищевых веществах и других компонентах, содержащихся в продуктах питания, их взаимодействии, роли в поддержании

Из книги автора

Глава 22. Метаболизм холестерола. Биохимия атеросклероза Холестерол – стероид, характерный только для животных организмов. Основное место его образования в организме человека – печень, где синтезируется 50% холестерола, в тонком кишечнике его образуется 15–20%, остальное

Из книги автора

Биохимия атеросклероза Атеросклероз – это патология, характеризующаяся появлением атерогенных бляшек на внутренней поверхности сосудистой стенки. Одна из основных причин развития такой патологии – нарушение баланса между поступлением холестерола с пищей, его

Из книги автора

Глава 28. Биохимия печени Печень занимает центральное место в обмене веществ и выполняет многообразные функции:1. Гомеостатическая - регулирует содержание в крови веществ, поступающих в организм с пищей, что обеспечивает постоянство внутренней среды организма.2.

Из книги автора

Глава 30. Биохимия крови Кровь – жидкая подвижная ткань, перемещающаяся по сосудам. Выполняет роль транспортного и коммуникативного средства, интегрирующего обмен веществ в различных органах и тканях в единую систему. Общая характеристика Общий объем крови у взрослого

Из книги автора

Глава 31. Биохимия почек Почка – парный орган, основной структурной единицей которого является нефрон. Благодаря хорошему кровоснабжению почки находятся в постоянном взаимодействии с другими тканями и органами и способны влиять на состояние внутренней среды всего

Из книги автора

Глава 33. Биохимия мышечной ткани Подвижность является характерным свойством всех форм жизни - расхождение хромосом в митотическом аппарате клеток, воздушно-винтовые движения жгутиков бактерий, крыльев птиц, точные движения человеческой руки, мощная работа мышц ног. Все

Из книги автора

Биохимия мышечного утомления Утомление – состояние организма, возникающее вследствие длительной мышечной нагрузки и характеризующееся временным снижением работоспособности.Центральная роль в развитии утомления принадлежит нервной системе. В состоянии утомления в

Из книги автора

Глава 34. Биохимия соединительной ткани Соединительная ткань составляет около половины от сухой массы тела. Все разновидности соединительной ткани, несмотря на их морфологические различия, построены по общим принципам:1. Содержит мало клеток в сравнении с другими

Гормоны — это биологически активные вещества, которые синтезируются в малых количествах в специализированнных клетках эндокринной системы и через циркулирующие жидкости (например, кровь) доставляются к клеткам-мишеням, где оказывают свое регулирующее действие. Гормоны, как и другие сигнальные молекулы, обладают некоторыми общими свойствами. выделяются из вырабатывающих их клеток во внеклеточное пространство; не являются структурными компонентами клеток и не …

Гормоны оказывают влияние на клетки-мишени. Клетки-мишени — это клетки, которые специфически взаимодействуют с гормонами с помощью специальных белков-рецепторов. Эти белки-рецепторы располагаются на наружной мембране клетки, или в цитоплазме, или на ядерной мембране и на других органеллах клетки. Биохимические механизмы передачи сигнала от гормона в клетку-мишень. Любой белок-рецептор состоит, минимум из двух доменов (участков), которые обеспечивают …

Строение гормонов бывает разным. В настоящее время описано и выделено около 160 различных гормонов из разных многоклеточных организмов. По химическому строению гормоны можно классифицировать по трем классам: белково-пептидные гормоны; производные аминокислот; стероидные гормоны. К первому классу относятся гормоны гипоталамуса и гипофиза (в этих железах синтезируются пептиды и некоторые белки), а также гормоны поджелудочной и паращитовидной …

Эндокринная система — совокупность желез внутренней секреции и некоторых специализированных эндокринных клеток в составе тканей, для которых эндокринная функция не является единственной (например, поджелудочная железа обладает не только эндокринной, но и экзокринной функциями). Любой гормон является одним из ее участников и управляет определенными метаболическими реакциями. При этом внутри эндокринной системы существуют уровни регуляции — одни …

Белково-пептидные гормоны. В процессе образования белковых и пептидных гормонов в клетках эндокринных желез происходит образование полипептида, не обладающего гормональной активностью. Но такая молекула в своем составе имеет фрагмент(ы), содержащий(е) аминокислотную последовательность данного гормона. Такая белковая молекула называется пре-про-гормоном и имеет в своем составе (обычно на N-конце) структуру, которая называется лидерной или сигнальной последовательностью (пре-). Эта …

Транспорт гормонов определяется их растворимостью. Гормоны, имеющие гидрофильную природу (например, белково-пептидные гормоны) обычно транспортируются кровью в свободном виде. Стероидные гормоны, йодсодержащие гормоны щитовидной железы транспортируются в виде комплексов с белками плазмы крови. Это могут быть специфические транспортные белки (транспортные низкомолекулярные глобулины, тироксинсвязывающий белок; транспортирующий кортикостероиды белок транскортин) и неспецифический транспорт (альбумины). Уже говорилось о том, …

Белково-пептидные гормоны подвергаются протеолизу, распадаются до отдельных аминокислот. Эти аминокислоты вступают дальше в реакции дезаминирования, декарбоксилирования, трансаминирования и распадаются до до конечных продуктов: NH3, CO2 и Н2О. Гормоны подвергаются окислительному дезаминированию и дальнейшему окислению до СО2 и Н2О. Стероидные гормоны распадаются иначе. В организме нет ферментных систем, которые обеспечивали бы их распад. В основном происходит …

ФГБОУ ВО УГМУ Минздрава России
Кафедра биохимии
Дисциплина: Биохимия
ЛЕКЦИЯ № 14
Регуляторные системы организма.
Биохимия эндокринной системы
Лектор: Гаврилов И.В.
Факультеты: лечебно-профилактический,
педиатрический
Курс: 2
Екатеринбург, 2016г

ПЛАН ЛЕКЦИИ

1. Регуляторные системы организма.
Уровни и принципы организации.
2. Гормоны. Определение понятия. Особенности
действия.
3. Классификация гормонов: по месту синтеза и
химической природе, свойствам.
4. Основные представители гормонов
5. Этапы метаболизма гормонов.

Основные свойства живых организмов
1. Единство химического состава.
2. Обмен веществ и энергии
3. Живые системы – открытые системы: используют внешние
источники энергии в виде пищи, света и т. п.
4. Раздражимость - способность живых систем реагировать
на внешние или внутренние воздействия (изменения).
5. Возбудимость - способность живых систем отвечать на
действие раздражителя.
6. Движение, способность к перемещению.
7. Размножение, обеспечивающее непрерывность жизни в
ряду поколений
8. Наследственность
9. Изменчивость
10.Живые системы – самоуправляющиеся,
саморегулирующиеся, самоорганизующиеся системы

Живые организмы способны поддерживать
постоянство внутренней среды - гомеостаз.
Нарушение гомеостаза приводит к болезни или
смерти.
Показатели гомеостаза млекопитающих
Регуляция рН
Регуляция водно-солевого обмена.
Регуляция концентрации веществ в организме
Регуляция обмена веществ
Регуляция скорости энергетического обмена
Регуляция температуры тела.

Гомеостаз в организме поддерживается за счет регуляции скорости ферментативных реакций, за счет изменения: I). Доступности молекул субстра

Гомеостаз в организме поддерживается за счет
регуляции скорости ферментативных реакций, за
счет изменения:
I). Доступности молекул субстрата и кофермента;
II). Каталитической активности молекул фермента;
III). Количества молекул фермента.
E*
S
S
Кофермент
Витамин
Клетка
P
P

В многоклеточных организмах в поддержании
гомеостаза участвуют 3 системы:
1). Нервная
2). Гуморальная
3). Иммунная
Регуляторные системы функционируют с участием
сигнальных молекул.
Сигнальные молекулы – это органические
вещества, которые переносят информацию.
Для передачи сигнала:
А). ЦНС использует нейромедиаторы (регулирует физиологические
функции и работу эндокринной системы)
Б). Гуморальная система использует гормоны (регулирует
метаболические и физиологические процессы, пролиферацию,
дифференцировку клеток и тканей)
В). Иммунная система использует цитокины (защищает организм от
внешних и внутренних патогенных факторов, регулирует иммунные
и воспалительные реакции, пролиферацию, дифференцировку
клеток, работу эндокринной системы)

Сигнальные молекулы
Неспецифические факторы: рН, t
Специфические факторы: Сигнальные молекулы
Фермент
Субстрат
Продукт

Внешние и внутренние факторы
ЦНС
Системы регуляции образуют
3 иерархических уровня
I.
нейромедиаторы
Гипоталамус
релизинг гормоны
либерины статины
Гипофиз
II.
тропные гормоны
Эндокринные железы
гормоны
Ткани мишени
III.
S
E
P
Первый уровень - ЦНС. Нервные клетки
получают сигналы из внешней и внутренней
среды, преобразуют их в форму нервного
импульса
и
передают
через
синапсы,
используя
нейромедиаторы,
которые
вызывают
изменения
метаболизма
в
эффекторных клетках.
Второй уровень - эндокринная система.
Включает
гипоталамус,
гипофиз,
периферические эндокринные железы, а также
отдельные
клетки
(АПУД
система),
синтезирующие
под
влиянием
соответствующего стимула гормоны, которые
через кровь действуют на ткани-мишени.
Третий уровень - внутриклеточный. На
метаболические процессы в клетке влияют
субстраты и продукты обмена веществ, а также
тканевые гормоны (аутокринно).

Принципы организации нейроэндокринной системы
В основе работы нейроэндокринной системы лежит
принцип прямой, обратной, положительной и отрицательной
связи.
1. Принцип прямой положительной связи – активация
текущего звена системы приводит к активации следующего
звена системы, распространению сигнала в сторону клетокмишеней и возникновению метаболических или
физиологических изменений.
2. Принцип прямой отрицательной связи – активация
текущего звена системы приводит к подавлению следующего
звена системы и прекращению распространения сигнала в
сторону клеток-мишеней.
3. Принцип обратной отрицательной связи – активация
текущего звена системы вызывает подавление предыдущего
звена системы и прекращение его стимулирующего влияния на
текущую систему.
Принципы прямой положительной и обратной отрицательной связи
являются основой для поддержания гомеостаза.

10.

4. Принцип обратной положительной связи –
активация текущего звена системы вызывает
стимуляцию предыдущего звена системы. Основа
циклических процессов.
ГИПОТАЛАМУС
Гонадотропинрелизинг гормон
ГИПОФИЗ
ФСГ
ФОЛЛИКУЛ
Эстрадиол

11.

Гормоны
Термин гормон (hormao - возбуждаю, пробуждаю) введено в 1905
г. Бейлисом и Старлингом для выражения активности секретина.
Гормоны – органические сигнальные молекулы
беспроводного системного действия.
1. Синтезируются в эндокринных железах,
2. транспортируются кровью
3. действуют на ткани мишени (гормоны щитовидной
железы, надпочечников, поджелудочной железы и т.д).
Всего известно более 100 гормонов.

12.

Ткань мишень – ткань, в которой гормон вызывает
специфическую биохимическую или
физиологическую реакцию.
Клетки тканей мишеней для взаимодействия с
гормоном синтезируют специальные рецепторы,
количество и тип которых определяет
интенсивность и характер ответа.
В организме около 200 типов дифференцированных
клеток, лишь некоторые из них продуцируют
гормоны, но все являются мишенями для
действия гормонов.

13.

Особенности действия гормонов:
1. Действуют в малых количествах (10-6-10-12 ммоль/л);
2. Существует абсолютная или высокая специфичность в
действии гормонов.
3. Переносят только информацию. Не используются в
энергетических и строительных целях;
4. Действуют опосредованно через каскадные системы,
(аденилатциклазную, инозитолтрифосфатную и др.
системы) взаимодействуя с рецепторами;
5. Регулируют
активность,
количество
белков
(ферментов), транспорт веществ через мембрану;
6. Зависят от ЦНС;
7. Беспороговый принцип. Даже 1 молекула гормона
способна оказать эффект;
8. Конечный эффект - результат действия множества
гормонов.

14.

Каскадные системы
Гормоны регулируют количество и каталитическую
активность ферментов не напрямую, а
опосредовано через каскадные системы
Гормоны
Каскадные системы
Ферменты
х 1000000
Каскадные системы:
1. Многократно усиливают сигнал гормона (повышают
количество или каталитическую активность фермента) так
что 1 молекула гормона способна вызвать изменение
метаболизма в клетке
2. Обеспечивают проникновение сигнала в клетку
(водорастворимые гормоны в клетку самостоятельно не
проникают)

15.

каскадные системы состоят из:
1. рецепторов;
2. регуляторных белков (G-белки, IRS, Shc, STAT и т.д.).
3. вторичных посредников (messenger - посыльный)
(Са2+, цАМФ, цГМФ, ДАГ, ИТФ);
4. ферментов (аденилатциклаза, фосфолипаза С,
фосфодиэстераза, протеинкиназы А, С, G,
фосфопротеинфосфотаза);
Виды каскадных систем:
1. аденилатциклазная,
2. гуанилатциклазная,
3. инозитолтрифосфатная,
4. RAS и т.д.),

16.

Гормоны оказывают как системное, так и местное
действие:
1. Эндокринное (системное) действие гормонов
(эндокринный эффект) реализуется, когда они
транспортируются кровью и действуют на органы и
ткани всего организма. Характерно для истинных
гормонов.
2. Местное действие гормонов реализуется, когда они
действуют
на
клетки,
в
которых
были
синтезированы (аутокринный эффект), или на
соседние
клетки
(паракринный
эффект).
Характерно для истинных и тканевых гормонов.

17. Классификация гормонов

А. По химическому строению:
1.Пептидные гормоны
Рилизинг-гормоны гипоталамуса
Гормоны гипофиза
Паратгормон
Инсулин
Глюкагон
Кальцитонин
2.Стероидные гормоны
Половые гормоны
Кортикоиды
кальцитриол
3.Производные аминокислот (тирозин)
Тиреоидные гормоны
Катехоламины
4. Эйкозаноиды - производные арахидоновой кислоты
(гормоноподобные вещества)
Лейкотриены, Тромбоксаны, Простагландины, Простациклины

18.

Б. По месту синтеза:
1. Гормоны гипоталамуса
2. Гормоны гипофиза
3. Гормоны поджелудочной железы
4. Гормоны паращитовидной железы
5. Гормоны щитовидной железы
6. Гормоны надпочечников
7. Гормоны гонад
8. Гормоны ЖКТ
9. и т.д

19.

В. По биологическим функциям:
Регулируемые процессы
Гормоны
Обмен углеводов, липидов, Инсулин, глюкагон, адреналин,
аминокислот
тироксин, соматотропин
Водно-солевой обмен
кортизол,
Альдостерон, антидиуретический гормон
Обмен кальция и фосфатов Паратгормон, кальцитонин, кальцитриол
Репродуктивная функция
Синтез
гормонов
желёз
и
Эстрадиол,
тестостерон,
гонадотропные гормоны
секреция Тропные гормоны гипофиза,
эндокринных статины гипоталамуса
прогестерон,
либерины
и
Изменение метаболизма в Эйкозаноиды, гистамин, секретин, гастрин,
клетках, синтезирующих соматостатин, вазоактивный интестинальный
гормон
пептид (ВИП), цитокины

20. Гормоны гипоталамуса и гипофиза

Основные гормоны
Гормоны гипоталамуса и гипофиза

21. Гормоны Гипоталамуса

Релизинг гормоны - поддерживают базальный уровень
и физиологические пики продукции тропных гормонов
гипофиза и нормальное функционирование
периферических желёз внутренней секреции
Релизинг-факторы
(гормоны)
Либерины
Активация секреции
тропных гормонов
Статины
Ингибирование секреции
тропных гормонов

22.

Тиреотропин релизинг гормон (ТРГ)
Трипептид: ПИРО-ГЛУ-ГИС-ПРО-NH2
CO NH CH CO N
CH2
C
O
C
O
N
H
Стимулирует секрецию: Тиреотропного гормона (ТТГ)
Пролактина
Соматотропина
NH2

23.

Гонадотропин релизинг гормон (ГРГ)
Декапептид:
ПИРО-ГЛУ-ГИС-ТРП-СЕР-ТИР-ГЛИ-ЛЕЙ-АРГ-ПРО-ГЛИ-NH2
Стимулирует секрецию: Фоликулостимулирующего гормона
Лютеинезирующего гормона
Кортикотропин релизинг гормон (КРГ)
Пептид 41 амино-кислотный остаток.
Стимулирует секрецию: вазопрессина
окситоцина
катехоламинов
ангиотензина-2

24.

Соматостанин релизинг гормон (СРГ)
Пептид 44 аминокислотных остатка
ингибирует секрецию соматотропина
Соматотропин ингибирующий гормон (СИГ)
Тетрадекопептид (14 аминокислотных остатка)
АЛА-ГЛИ-ЦИС-ЛИЗ-АСН-ФЕН-ФЕН-ТРП-ЛИЗ-ТРЕ-ФЕН-ТРЕ-СЕР-ЦИС-NH2
S
S
Ингибируют секрецию: гормона роста, инсулина, глюкагона.
Меланотропин релизинг гормон
Меланотропин ингибирующий гормон
Регулируют секрецию меланостимулирующего гормона

25.

Гормоны гипофиза
Передняя доля гипофиза
1 Соматомаммотропины:
- гормон роста
- пролактин
- хорионический соматотропин
2 Пептиды:
- АКТГ
- -липотропин
- энкефалины
- эндорфины
- меланостимулирующий гормон
ПОМК
3 Гликопротеиновые гормоны: - тиреотропин
- лютеинезирующий гормон
- фоликулостимулирующий гормон
- хорионический гонадотропин

26.

Задняя доля гипофиза
Вазопрессин
Н-ЦИС-ТИР-ФЕН-ГЛН-АСН-ЦИС-ПРО-АРГ-ГЛИ-CO-NH2
S
S
Синтезируется супраоптическим ядром гипоталамуса
Концентрация в крови 0-12 пг/мл
Выброс регулируется кровопотерей
Функции: 1) стимулирует реабсорбцию воды
2) стимулирует глюконеогенез, гликогенолиз
3) сужает сосуды
4) является компонентом стрессорной реакции

27.

Окситоцин
Н-ЦИС-ТИР-ИЛЕ-ГЛН-АСН-ЦИС-ПРО-ЛЕЙ-ГЛИ-СО-NH2
S
S
Синтезируется паравентрикулярным ядром гипоталамуса
Функции: 1) стимулирует секрецию молока молочными железами
2) стимулирует сокращения матки
3) релизинг фактор для выброса пролактина

28. Основные стероидные гормоны

Гормоны периферических желез
Основные стероидные гормоны
CH2OH
С O
CH3
С O
HO
O
O
Прогестерон
HO
Кортикостерон
CH2OH
С O
OH
O CH2OH
HC С O
HO
O
O
Кортизол
Альдостерон

29.

Тестостерон
Эстрадиол

30.

Яичники
Яички
Плацента
Надпочечники

31. Производные аминокислот

Тирозин
Трийодтиронин
Адреналин
Тироксин

32.

Гастроинтестинальные
(кишечные) гормоны
4. Другие пептиды
1. Семейство гастрин-холецистокинин
-соматостатин
-гастрин
-нейротензин
-холецистокинин
-мотилин
2. Семейство секретин-глюкагона
-вещество Р
-секретин
-панкреостатин
-глюкагон
-желудочно-ингибирующий пектид
-вазоактивный интестинальный пептид
-пептид гистидин-изолейцин
3. Семейство РР
-панкреотический полипептид
-пептид YY
-нейропептид Y

33. Этапы метаболизма гормонов

1.
2.
3.
4.
5.
6.
7.
Синтез
Активация
Хранение
Секреция
Транспорт
Действие
Инактивация
Пути обмена гормонов зависят от их природы

34. Метаболизм пептидных гормонов

35. Синтез, активация, хранение и секреция пептидных гормонов

ДНК
Экзон
Интрон
Экзон
Интрон
транскрипция
Пре м-РНК
процессинг
м-РНК
Рибосомы
Сигнальный
пептид
ШЭР
Цитоплазматическая мембрана
Ядро
трансляция
препрогормон
Комплекс
Гольджи
Протеолиз,
гликозилирование
прогормон
Активный гормон
Секреторные
пузырьки
Сигнальные
молекулы
АТФ

36.

37.

Транспорт пептидных гормонов осуществляется в
свободном виде (водорастворимы) и в комплексе с
белками.
Механизм действия. Пептидные гормоны
взаимодействуют с мембранными рецепторами и через
систему внутриклеточных посредников регулируют
активность ферментов, что влияет на интенсивность
метаболизма в тканях мишенях.
В меньшей степени пептидные гормоны регулируют
биосинтез белка.
Механизм действия гормонов (рецепторы, посредники)
рассмотрен в разделе ферменты.
Инактивация. Гормоны инактивируются гидролизом до
АК в тканях мишенях, печени, почках и т.д. Время
полураспада инсулина, глюкагона Т½ = 3-5мин, у СТГ
Т½= 50 мин.

38.

Механизм действия белковых гормонов
(аденилатциклазная система)
Белковый
гормон
АТФ
Протеинкиназа
АЦ
цАМФ
Протеинкиназа (акт)
Фосфорилирование
Е (неакт)
Е (акт)
Субстрат
Продукт

39. Метаболизм стероидных гормонов

40.

1. Синтез гормонов происходит из холестерина в
гладком ЭПР и митохондриях коры надпочечников,
гонадах, коже, печени, почках. Превращение стероидов
состоит в отщеплении алифатической боковой цепи,
гидроксилировании, дегидрировании, изомеризации, либо
в ароматизации кольца.
2. Активация. Стероидные гормоны часто образуются
уже в активном виде.
3. Хранение. Синтезированные гормоны накапливаются
в цитоплазме в комплексе со специальными белками.
4. Секреция стероидных гормонов происходит пассивно.
Гормоны переходят с цитоплазматических белков в
клеточную мембрану, откуда их забирают транспортные
белки крови.
5. Транспорт. Стероидные гормоны, т.к. они
водонерастворимы, переносятся в крови преимущественно
в комплексе с транспортными белками (альбумины).

41. Синтез кортикоидных гормонов

Прогестерон
17ά
оксипрогестерон
21
дезоксикортизол
Прегненолон
Холестерин
17ά
17ά ,21
11
оксипрегненолон диоксипрегненолон дезоксикортизол
11β
оксипрегненолон
21
оксипрегненолон
кортизол
кортизон
11β
оксипрогестерон
11β,21
диоксипрегненолон
кортикостерон
дезоксикортико
стерон
18
оксипрегненолон
18
оксидезоксикорти
костерон
18
оксикортикостерон
альдостерон

42.

Механизм действия стероидных гормонов
ДНК
Циторецептор
G
R
G R
Ионы
Глюкоза
АК
R
И - РНК
Активированный
гормон – рецепторный
комплекс
Синтез белка

43.

Инактивация. Стероидные гормоны инактивируются
так
же
как
и
ксенобиотики
реакциями
гидроксилирования и конъюгации в печени и тканях
мишенях. Инактивированные производные выводятся
из организма с мочой и желчью. Период полураспада в
крови обычно больше пептидных гормонов. У
кортизола Т½ = 1,5-2 часа.

44. МЕТАБОЛИЗМ КАТЕХОЛАМИНОВ Симпато-адреналовая ось

1. Синтез. Синтез катехоламинов происходит в цитоплазме и гранулах
клеток мозгового слоя надпочечников. Катехоламины сразу образуются в
активной форме. Норадреналин образуется в основном в органах,
иннервируемых симпатическими нервами (80% от общего количества).
норадреналин
OH
OH
О2 Н2О
OH
Fe2+
CH 2
HC
COOH
Тир
OH
OH О2 Н2О
HC
Cu2+
CH 2
NH 2
COOH
H2C
NH 2
дофамин
OH
OH
OH
OH
вит. С
B6
CH 2
NH 2
СО2
3SAM 3SAГ
HC
ОН
HC
H2C
NH 2
H2C
норадреналин
ДОФА

ОН
N+Н-СН
(CH 3)33
адреналин
метилтрансфераза

45.

2. Хранение катехоламинов происходит в секреторных гранулах.
Катехоламины поступают в гранулы путём АТФ-зависимого транспорта и
хранятся в них в комплексе с АТФ в соотношении 4:1 (гормон-АТФ).
3. Секреция гормонов из гранул происходит путём экзоцитоза. В
отличие от симпатических нервов, клетки мозгового слоя надпочечников
лишены механизма обратного захвата выделившихся катехоламинов.
4. Транспорт. В плазме крови катехоламины образуют непрочный
комплекс с альбумином. Адреналин транспортируется в основном к
печени и скелетным мышцам. Норадреналин лишь в незначительных
количествах достигает периферических тканей.
5. Действие гормонов. Катехоламины регулируют активность
ферментов, они действуют через цитоплазматические рецепторы.
Адреналин через α-адренергические и β-адренергические рецепторы,
норадреналин – через α-адренергические рецепторы. Через β-рецепторы
активируется аденилатциклазная система, через α2-рецепторы
ингибируется. Через α1-рецепторы активируется инозитолтрифосфатная
система. Эффекты катехоламинов многочисленны и затрагивают
практически все виды обмена.
7. Инактивация. Основная часть катехоламинов быстро
метаболизируется в различных тканях при участии специфических
ферментов.

46. МЕТАБОЛИЗМ ТИРЕОИДНЫХ ГОРМОНОВ Гипоталамо-гипофизарно-тиреоидная ось

Синтез тиреоидных гормонов (йодтиронины: 3,5,3"трийодтиронин
(трийодтиронин,
Т3)
и
3,5,3",5"тетрайодтиронин (Т4, тироксин)) происходит в клетках и
коллоиде щитовидной железе.
1. В тиреоцитах (в фолликулах) синтезируется белок
тиреоглобулин. (+ ТТГ) Это гликопротеин с массой 660 кД,
содержащий 115 остатков тирозина, 8-10% его массы
приходиться на углеводы.
Сначала
на
рибосомах
ЭПР
синтезируется
претиреоглобулин, который в ЭПР формирует вторичную и
третичную структуру, гликозилируется и превращается в
тиреоглобулин. Из ЭПР тиреоглобулин поступает в аппарат
Гольджи, где включается в секреторные гранулы и
секретируется во внеклеточный коллоид.

47.

2. Транспорт йода в коллоид щитовидной железы. Йод в
виде органических и неорганических соединений поступает
в ЖКТ с пищей и питьевой водой. Суточная потребность в
йоде 150-200 мкг. 25-30% этого количества йодидов
захватывается щитовидной железой. I- поступает в клетки
щитовидной железы активным транспортом при участии
йодид-переносящего белка симпортом с Nа+. Далее Iпассивно по градиенту поступает в коллоид.
3. Окисление йода и йодирование тирозина. В коллоиде
при участии гемсодержащей тиреопероксидазы и Н2О2 Iокисляется в I+, который йодирует остатки тирозина в
тиреоглобулине с образованием монойодтирозинов (МИТ)
и дийодтирозинов (ДИТ).
4. Конденсация МИТ и ДИТ. Две молекулы ДИТ
конденсируются с образованием йодтиронина Т4, а МИТ и
ДИТ - с образованием йодтиронина Т3.

48.

49.

2. Хранение. В составе йодтиреоглобулина тиреоидные
гормоны накапливаются и хранятся в коллоиде.
3. Секреция. Йодтиреоглобулин фагоцитируется из
коллоида в фолликулярную клетку и гидролизуется в
лизосомах с освобождением Т3 и Т4 и тирозина и других АК.
Аналогично стероидным гормонам, водонерастворимые
тиреоидные гормоны в цитоплазме связываются со
специальные белками, которые переносят их в состав
клеточной мембраны. В норме щитовидная железа
секретирует 80-100 мкг Т4 и 5 мкг Т3 в сутки.
4. Транспорт. Основная часть тиреидных гормонов
транспортируется в крови в связанной с белками форме.
Основным транспортным белком йодтиронинов, а также
формой их депонирования служит тироксинсвязывающий
глобулин (ТСГ). Он обладает высоким сродством к Т3 и Т4 и
в нормальных условиях связывает почти всё количество
этих гормонов. Только 0,03% Т4 и 0,3% Т3 находятся в крови
в свободной форме.

50.

БИОЛОГИЧЕСКИЕ ЭФФЕКТЫ
Трийодтиронин и тироксин связываются с ядерным рецептором клеток-мишений
1. На основной обмен. являются разобщителями биологического окисления тормозят образование АТФ. Уровень АТФ в клетках снижается и организм
отвечает повышением потребления О2, усиливается основной обмен.
2. На углеводный обмен:
- повышает всасывание глюкозы в ЖКТ.
- стимулирует гликолиз, пентозофосфатный путь окисления.
- усиливает распад гликогена
- повышает активность глюкозы-6-фосфатазы и др. ферментов
3.На обмен белка:
- индуцируют синтез (как и стероиды)
- обеспечивают положительный азотистый баланс
- стимулируют транспорт аминокислот
4.На липидный обмен:
- стимулируют липолиз
- усиливают окисление жирных кислот
- тормозят биосинтез холестерина
_

51.

Инактивация
йодтиронинов
осуществляется
в
периферических тканях в результате дейодирования Т4 до
«реверсивной» Т3 по 5, полного дейодирования,
дезаминирования
или
декарбоксилирования.
Йодированные продукты катаболизма йодтиронинов
конъюгируют в печени с глюкуроновой или серной
кислотами, секретируются с жёлчью, в кишечнике вновь
всасываются, дейодируются в почках и выделяются с
мочой. Для Т4 Т½ =7 дней, для Т3 Т½ =1-1,5 дня.

52. ЛЕКЦИЯ № 15

ГБОУ ВПО УГМУ Минздрава РФ
Кафедра биохимии
Дисциплина: Биохимия
ЛЕКЦИЯ № 15
Гормоны и адаптация
Лектор: Гаврилов И.В.
Факультет: лечебно-профилактический,
Курс: 2
Екатеринбург, 2016г

53. План лекции

1. Стресс – как общий адаптационный
синдром
2. Стадии стресс-реакций: характеристика
метаболических и биохимических
изменений.
3. Роль гипофизарно-надпочечниковой
системы, катехоламинов, СТГ, инсулина,
гормонов щитовидной железы, половых
гормонов в реализации адаптивных
процессов в организме.

54.

Адаптация (от лат. аdaptatio)приспособление организма к условиям
существования.
Цель адаптации - устранение или
ослабление вредного действия
факторов окружающей cреды:
1. биологических,
2. физических,
3. химических,
4. социальных.

55. Адаптация

НЕСПЕЦИФИЧЕСКАЯ
Обеспечивает
активизацию
защитных систем
организма, для
адаптации к любому
фактору среды.
СПЕЦИФИЧЕСКАЯ
Вызывает изменения в
организме,
направленные на
ослабление или
устранение действия
конкретного
неблагоприятного
фактора.

56. 3 вида адаптационных реакций

1. реакция на слабые воздействия –
реакция тренировки (по Гаркави,
Квакиной, Уколовой)
2. реакция на воздействия средней
силы – реакция активации (по
Гаркави, Квакиной, Уколовой)
3. реакция на сильные, чрезвычайные
воздействия – стресс-реакция (по Г.
Селье)

57.

Впервые представление о стрессе
(от англ. stress - напряжение)
сформулировал
канадский
ученый Ганс Селье в 1936г (19071982 г.г.).
Вначале
для
обозначения
стресса использовался термин
общий адаптационный синдром
(ОАС).
Термин
«стресс»
стали
использовать позднее.
Стресс
особое состояние организма
человека и млекопитающих, возникающее
в ответ на сильный внешний раздражитель стрессор
-

58.

Стрессор (синонимы: стресс-фактор, стрессситуация) - фактор, вызывающий состояние
стресса.
1. Физиологический (чрезмерная боль, сильный шум,
воздействие экстремальных температур)
2. Химический (прием ряда лекарственных препаратов,
например, кофеина или амфетаминов)
3. Психологический
(информационная
перегрузка,
соревнование,
угроза
социальному
статусу,
самооценке, ближайшему окружению и др.)
4. Биологический (инфекции)

59.

Классическая триада ОАС:
1. разрастание коры
надпочечников;
2. уменьшение вилочковой
железы (тимус);
3. изъязвление желудка.

60. Механизмы, повышающие адаптационные возможности организма к стрессору при ОАС:

Мобилизации энергетических ресурсов (Повышение
уровня глюкозы, жирных кислот, аминокислот и
кетоновых тел)
Увеличение эффективности внешнего
дыхания.
Усиление и централизация кровоснабжения.
Увеличение свертывающей способности крови
Активация работы ЦНС (улучшение внимания, памяти,
сокращение времени реакции и т.д.).
Снижение чувства боли.
Подавление воспалительных реакций.
Снижение пищевого поведения и полового влечения.

61. Негативные проявления ОАС:

Подавление иммунитета (кортизол).
Нарушение репродуктивной функции.
Нарушение пищеварения (кортизол).
Активация ПОЛ (адреналин).
Деградация тканей (кортизол, адреналин).
Кетоацидоз, гиперлипидемия,
гиперхолестеринемия.

62. Стадии изменения адаптационных возможностей организма при стрессе

Уровень
резистентности
1 – фаза тревоги
А – шока
Б - противошока
2 – фаза резистентности
3 – фаза истощения
или адаптации
стрессор
2
1
А
Б
3
Болезни адаптации, смерть
Время

63.

Стресс, в зависимости от изменения уровня
адаптационных возможностей делится:
эустресс
(адаптация)
дистресс
(истощение)
стресс, при котором
стресс, при котором
адаптационные
адаптационные
возможности организма
возможности организма
повышаются, происходит
снижаются. Дистресс
его адаптация к
приводит к развитию
стрессовому фактору и
болезней адаптации,
ликвидация самого стресса.
возможно к гибели.

64. Общий адаптационный синдром

Развивается с участием систем:
гипоталамо-гипофизарно-надпочечниковой.
симпато-адреналовой
гипоталамо-гипофизарно-тиреоидная ось
и гормонов:
АКТГ
кортикостероидов (глюкокортикоиды,
минералокортикоиды, андрогены, эстрогены)
Катехоламинов (адреналин, норадреналин)
ТТГ и тиреоидных гормонов
СТГ

65. Регуляция секреции гормонов при стрессе

Стресс
ЦНС
СНС: параганглии
Гипоталамус
Вазопрессин
Гипофиз
Мозговое
вещество
надпочечников
Адреналин
Норадреналин
АКТГ
ТТГ
Корковое
вещество
надпочечников
Щитовидная
железа
Тиреоидные
гормоны
Глюкокортикоиды
Минералокортикоиды
Ткани мишени
СТГ
Печень
Соматомедины

66.

Уровень
езистенности
Участие гормонов в стадиях ОАС
II стадия – резистентности
Гормоны: кортизол, СТГ.
эустресс
III
I
II
время
дистресс
I стадия – тревоги
шок
противошок
Гормоны:
адреналин,
вазопрессин,
окситоцин,
кортиколиберин,
кортизол.
III стадия – адаптации или
истощения
При адаптации:
- анаболические гормоны:
(CТГ, инсулин, половые гормоны).
При истощении:
-снижение гормонов адаптации.
Накопление повреждений.

67. Симпато-адреналовая ось

Симпатоадреналовая ось

68.

Синтез адреналина
OH
норадреналин
OH
О2
OH
Fe2+
CH 2
HC
COOH
Тир
OH
OH
HC
2+
Cu
CH 2
NH 2
COOH
О2
OH
OH
H2C
NH 2
дофамин
OH
OH
вит. С
B6
CH 2
NH 2
СО2
SAM SAГ
HC
ОН
HC
H2C
NH 2
H2C
норадреналин
ДОФА
ДОФАТирозиндофаминмонооксигеназа декарбоксилаза монооксигеназа
ОН
NНCH 3
адреналин
метилтрансфераза

69.

Эффекты
Норадреналин
Адреналин
++++
+++
++++
++
++
++
Теплопродукция
Сокращение ГМК
+++
+++
++++
+ или -
Липолиз (Мобилизация жирных
кислот)
Синтез кетоновых тел
Гликогенолиз
+++
++
+
+
+
+++
-
---
Артериальное давление
Частота сердечных сокращений
Периферическое сопротивление
Гликогенез
Моторика желудка и кишечника
Потовые железы (Выделение пота)
-
+
-
+

70. Гипоталамо-гипофизарно-надпочечниковая ось

Гипоталамо-гипофизарнонадпочечниковая ось
Гормоны коры надпочечников
Кортикостероиды
Глюкокортикоиды (кортизол) + стресс, травма,
гипогликемия
Минералокортикоиды (альдостерон) +
гиперкалиемия, гипонатриемия, ангиотензин II,
простагландины, АКТГ
Андрогены
Эстрогены

71.

Схема синтеза
кортикостероидов

72.

Кортикотропин релизиг гормон
кортикотропные клетки
передней доли гипофиза
дофамин
меланотропные клетки
средней доли гипофиза
Проопиомеланокортин (ПОМК)
241АК

73.

АКТГ
Максимальная секреция АКТГ (а также либерина и
глюкокортикоидов) наблюдается утром в 6-8 часов, а
минимальная - между 18 и 23 часами
АКТГ
MC2R (рецептор)
кора надпочечников
жировая ткань
глюкокортикоиды
липолиз
меланокортиновые
рецепторы клеток кожи,
меланоцитов, клеток
иммунной системы и др
Повышение
пигментации

74. Реакции синтеза кортикостероидов

митохондрия
липидная
капля
Н2О
Жирная
кислота
Эфир
2
холестерина
холестеролэстераза HO
АКТГ
11
12
1 19
10
5
3
4
17
13
9
14
8
7
6
Холестерин
24
22
18 21
20
23
25
CH 3
С O
26
27
16
15
холестеролдесмолаза
Р450
HO
Прегненолон

75. Синтез кортизола и альдостерона

CH 3
С O
CH 3
С O
гидроксистероид-ДГ
HO
цитоплазма
Прегненолон
CH 3
С O
ОН
O
Прогестерон
ЭПР
17-гидроксилаза
O
O
Гидроксипрогестерон
CH 3OH
С O
ЭПР
21-гидроксилаза
Дезоксикортикостерон
11-гидроксилаза
ЭПР 21-гидроксилаза (Р450)
CH 3OH
С O
ОН
O
O
Дезоксикортизол
11-гидроксилаза (Р450)
митохондрия
4 HO
O
HO
CH 3OH
С O
CH 3OH 3
С O
ОН 2
Пучковая
и сетчатая
зона
1
Кортикостерон
18-гидроксилаза
митохондрия
Кортизол
HO
CH 3OH
CHO С O
клубочковая
зона
O
Альдостерон

76. Действие глюкокортикоидов (кортизол)

в печени в основном оказывают анаболический
эффект (стимулирует синтез белков и нуклеиновых
кислот).
в мышцах, лимфоидной и жировой ткани, коже и
костях тормозят синтез белков, РНК и ДНК и
стимулирует распад РНК, белков, аминокислот.
стимулируют глюконеогенез в печени.
стимулируют синтез гликогена в печени.
тормозят потребление глюкозы инсулинзависимыми
тканями. Глюкоза идет в инсулиннезависимые ткани
– ЦНС.

77. Действие минералокортикоидов (основной представитель альдостерон)

Стимулируют:
Ингибируют:
реабсорбцию Na+ в
почках;
секрецию К+, NH4+ ,Н+
в почках, потовых,
слюнных железах,
слиз. обол-ке
кишечника.
синтез белковтранспортёров Na;
Na+,K+-АТФ-азы;
синтез белковтранспортёров К+;
синтез
митохондрльных
ферментов ЦТК.

78. Половые гормоны

79. Синтез андрогенов и их предшественников в коре надпочечников

В НАДПОЧЕЧНИКАХ
CH 3
С O
Синтез андрогенов и их
предшественников в
коре надпочечников
CH 3
С O
ЭПР
HO
Прегненолон
изомераза
O
ЭПР
гидроксилаза
Прогестерон
CH 3
С O
ОН
HO
CH 3
С O
ОН
O
Гидроксипрегненолон
Гидроксипрогестерон
О
О
HO
Дегидроэпиандростерон
митохондрия
активный
предшественник
гидроксилаза
Андростендион
малоактивный
предшественник
мало
ОН
HO
O
Андростендиол
мало
ОН
O
Тестостерон
ОН
мало
HO
Эстрадиол

80. Регуляция синтеза и секреции мужских половых гормонов

-
Гипоталамус
Гонадотропин-рилизинг гормон
+
-
ингибин
-
ПЕРЕДНЯЯ ДОЛЯ ГИПОФИЗА
ФСГ
+
Клетки
Сертоли
ЛГ
+
Клетки
Лейдига
тестостерон
+
сперматогенез

81. Регуляция синтеза и секреции женских половых гормонов

+
-
Гипоталамус
Гонадотропин-рилизинг гормон
+
-
-
ПЕРЕДНЯЯ ДОЛЯ ГИПОФИЗА
ФСГ
ЛГ
+
+
Фолликул
Жёлтое тело
эстрадиол
прогестерон

82. Действие половых гормонов

Андрогены:
-регулируют синтез белков у эмбриона в
сперматогониях, мышцах, костях,
почках и мозге;
-оказывают анаболическое действие;
-стимулируют клеточное деление и т.д..

83.

Эстрогены:
-стимулируют развитие тканей, участвующих в
размножении;
-определяют развитие женских вторичных половых
признаков;
-подготавливают эндометрий к имплантации;
-анаболическое действие на кости и хрящи;
-стимулируют синтез транспортных белков
тиреоидных и половых гормонов;
-увеличивают синтез ЛПВП и тормозят
образование ЛПНП, что ведёт к снижению ХС в
крови и т.д.
-влияет на репродуктивную функцию;
-действует на ЦНС и т.д..

84.

Прогестерон:
1. влияет на репродуктивную функцию
организма;
2. увеличивает базальную температуру тела
после
3. овуляции и сохраняется во время лютеиновой
фазы менструального цикла;
4. в высоких концентрациях взаимодействует с
рецепторами альдостерона почечных
канальцев (альдостерон теряет возможность
стимулировать реабсорбцию натрия);
5. действует на ЦНС, вызывая некоторые
особенности поведения в предменструальный
период.

85. Соматотропный гормон

СТГ

соматотропный
гормон
(гормон
роста),
одноцепочечный
полипептид из 191 АК, имеет 2
дисульфидных мостика. Синтезируется в
передней
доли
гипофиза
как
классический
белковый
гормон.
Секреция импульсная с интервалами в
20-30 мин.

86.

- соматолиберин
+ соматостатин
Гипоталамус
соматолиберин
соматостатин
-
+
-
ПЕРЕДНЯЯ ДОЛЯ ГИПОФИЗА
СТГ
Печень
Кости
+ глюконеогенез
+ синтез белка
+ рост
+ синтез белка
ИФР-1
Адипоциты
Мышцы
+ липолиз
- утилизация
глюкозы
+ синтез белка
- утилизация
глюкозы

87.

Под действием СТГ в тканях вырабатываются
пептиды - соматомедины.
Соматомедины
или инсулиноподобные
факторы
роста
(ИФР)
обладают
инсулиноподобной активностью и мощным
ростстимулирующим
действием.
Соматомедины
обладают
эндокринным,
паракринным и аутокринным действием. Они
регулируют
активность
и
количество
ферментов, биосинтез белков.

К гормонам относят разнообразные по химической природе соединения, вырабатываемые в эндокринных железах, секретируемые непосредственно в кровь, оказывающие дистанционный биологический эффект. Они являются гуморальными посредниками, которые обеспечивают поступление сигнала в клетки-мишени и вызывают специфические изменения в сенситивных к ним тканях и органах. Отдельно выделяют тканевые гормоны, синтезируемые особыми эндокринными или рабочими клетками внутренних органов (почек, кишечника, легких, желудка и так далее), крови и оказывающие действие преимущественно в месте выработки.

Гормоны оказывают свой эффект в очень малых концентрациях (10 -3 –10 -12 моль/л). У каждого из них существует свой ритм секреции в течение суток, месяца или времени года, специфический для каждого гормона период жизни, как правило, очень короткий (секунды, минуты, редко часы).

По химической природе гормональные молекулы относят к трем группам соединений:

  • белки и пептиды;
  • производные аминокислот;
  • стероиды и производные жирных кислот.

Регуляция

Регуляцию деятельности эндокринных органов осуществляет центральная нервная система посредством прямых иннервационных воздействий (нейро-проводниковый компронент), а также через управление работой гипофиза гипоталамическими рилизинг-факторами: стимулирующими либеринами и тормозящими статинами (нейро-эндокринный компонент). Гипофиз транслирует эти сигналы в виде своих тропных гормонов соответствующим эндокринным железам. Гормоны влияют на работу нервной системы попосредством изменения содержания глюкозы, регуляции синтеза белка в мозге, потенцирования действия медиаторов и т. д. Чаще всего это влияние осуществляется по механизму отрицательной обратной связи. Тот же механизм действует внутри эндокринной системы: гормоны периферических желез снижают активность центральной железы – гипофиза.

Синтез

Синтез гормонов в эндокринных железах и клетках завершается, как правило, на стадии образования активной формы. Иногда синтезируются малоактивные или вообще неактивные молекулы, называемые прогормонами. В таком виде может осуществляться резервирование или транспортировка к месту рецепции (например, после ферментативного отщепления C‑пептида от проинсулина освобождается активный инсулин).

Секреция

Секреция гормонов в кровь осуществляется посредством активного выброса и зависит от нервных, эндокринных, метаболических воздействий. В эндокринных опухолях такая зависимость может быть нарушена и гормоны секретируются спонтанно.

Молекулы гормонов способны депонироваться в клетках эндокринных желез (иногда – рабочих органов) за счет образования комплекса с белками, ионами двухвалентных металлов, РНК или накопления внутри субклеточных структур.

Транспорт

Транспорт гормона от места синтеза к месту действия, метаболизма или выведения осуществляется кровью. В свободной форме циркулирует до 10% общего количества гормона, остальной пул ‑ в комплексе с белками плазмы и форменными элементами крови. С неспецифическим транспортным белком – альбумином связано менее 10% гормона, со специфическими белками более 90%. Специфическими белками являются: транскортин для кортикостероидов и прогестерона, секс-стероидсвязывающий глобулин для андрогенов и эстрогенов, тироксинсвязывающий и интер-a‑глобулины для тиреоидов, инсулинсвязывающий глобулин и другие. Вступив в комплекс с белками, гормоны депонируются в кровяном русле, временно выключаясь из сферы биологического действия и метаболических превращений (обратимая инактивация). Активной становится свободная форма гормона. С учетом этого факта разработаны методы определения общего количества гормона, свободной и связанной с белками форм и самих белков-переносчиков.

Рецепция

Рецепция и эффект гормона на органы-мишени является основным звеном эндокринной регуляции. Способность гормона к передаче регуляторного сигнала обусловлена наличием в клетках-мишенях специфических рецепторов.

Рецепторы в большинстве случаев – белки, преимущественно гликопротеиды, имеющие специфическое фосфолипидное микроокружение. Связывание гормона с рецептором определяется законом действующих масс по кинетике Михаэлиса. При рецепции возможно проявление положительного или отрицательного кооперативных эффектов, когда ассоциация первых молекул гормона с рецептором облегчает или затрудняет связывание последующих.

Рецепторный аппарат обеспечивает избирательный прием гормонального сигнала и инициацию специфического эффекта в клетке. Локализация рецепторов в определенной мере обусловливает тип действия гормона. Выделяют несколько групп рецепторов :

1) Поверхностные : при взаимодействии с гормоном меняют конформацию мембран, стимулируя перенос ионов или субстратов в клетку (инсулин, ацетилхолин).

2). Трансмембранные : имеют контактный участок на поверхности и внутримембранную эффекторную часть, связанную с аденилат- или гуанилатциклазой. Образование внутриклеточных мессенджеров – цАМФ и цГМФ – стимулирует специфические протеинкиназы, влияющие на синтез белка, активность ферментов и т.д. (полипептиды, амины).

3) Цитоплазматические : связываются с гормоном и в виде активного комплекса поступают в ядро, где контактируют с акцептором, приводя к усилению синтеза РНК и белка (стероиды).

4) Ядерные : существуют в виде комплекса негистонового белка и хроматина. Контакт с гормоном напрямую включает механизм его действия (гормоны щитовидной железы).

Величина эффекта гормона зависит от концентрации гормонального рецептора, поступающего к клеткам-мишеням, от числа специфических рецепторов, степени их сродства и избирательности к гормону. На величину эффекта может влиять действие других гормонов, как антагонистическое (инсулин и глюкокортикоиды разнонаправленно действуют на поступление глюкозы в клетку), так и потенцирующее (глюкокортикоиды усиливают влияние катехоламинов на сердце и мозг).

Изучение функционирования рецепторного аппарата актуально в клинике, особенно при сахарном диабете, вызванном рецепторной инсулинорезистентностью, при синдроме тестикулярной феминизации или определении гормон-чувствительных опухолей молочной железы.

Инактивация

Инактивация гормонов происходит под влиянием соответствующих ферментных систем в самих железах внутренней секреции, в органах-мишенях, а также в крови, печени и почках.

Основные химические превращения гормонов:

  • образование эфиров серной или глюкуроновой кислот;
  • отщепление участков молекул;
  • изменение структуры активных участков с помощью метилирования, ацетилирования и т.д.;
  • окисления, восстановления или гидроксилирования.

Катаболизм является важным механизмом регуляции активности гормонов. Через влияние на концентрацию свободного гормона в крови, по механизму обратной связи, контролируется скорость его секреции железой. Усиление катаболизма смещает в крови динамическое равновесие между свободным и связанным гормоном в сторону его свободной формы, тем самым, повышая доступ гормона в ткани. Длительное усиление распада некоторых гормонов может подавлять биосинтез специфических транспортных белков, увеличивая пул свободного ‑ активного гормона. Скорость разрушения гормона – его метаболический клиренс – оценивают величиной объема плазмы, очищенной от исследуемых молекул за единицу времени.

Выведение

Выведение гормонов и их метаболитов осуществляется почками с мочой, печенью с желчью, желудочно-кишечным трактом с пищеварительными соками, кожей с потом. Продукты распада пептидных гормонов поступают в общий пул аминокислот организма.

Способ выведения зависит от свойств гормона или его метаболита: структуры, растворимости и т.д.

Приоритетным материалом при изучении выведения гормонов в клинике является моча . Исследование порционной или суммарной величины экскреции гормонов и метаболитов с мочой дает представление об общей величине секреции гормона за сутки или в отдельные их периоды.

Таким образом, эндокринная функция представляет собой сложную, многокомпонентную систему взаимосвязанных процессов, определяющих на различных уровнях как специфику и силу гормонального сигнала, так и чувствительность клеток и тканей к данному гормону.

Нарушения в системе эндокринной регуляции могут быть связаны с любым из названных звеньев.

  • Вперёд >

Биохимия гормонов, их химический состав и функции настолько сложны, что составили отдельную отрасль биологической химии, сложившейся, как наука, в начале прошлого столетия.

Важность изучения механизма воздействия гормонов

Практически все гормоны участвуют в естественном метаболизме человеческого организма, выполняя при этом сигнальные и регуляторные функции, в любых его процессах.

Механизм, с помощью которого биологически активные химические вещества, вырабатываемые в клетках одних органов тела, влияют, посредством химических реакций, на деятельность других клеток и органов настолько же сложен, насколько и до сих пор не изучен. Непосредственное на жизнедеятельность человеческого организма неоспорима, но знаний о них пока недостаточно, чтобы в должной мере ими управлять.

Структура уже изученных гормонов показала, что они обладают общими свойствами, как и другие сигнальные молекулы, и служат источником передачи информации. Почему некоторые из них собраны в отдельные железы, притом, что другие циркулируют по организму, почему одна железа вырабатывает несколько видов различных биологически активных веществ, какие именно химические вещества оказывают влияние на запуск сложного механизма цепной реакции, еще предстоит изучать.

В тот момент, когда человечество научится управлять, с достоверной точностью, деятельностью гормонов в отдельном организме, откроется новая страница в его науке, и истории.

Эндокринная система человеческого организма

Только в середине прошлого столетия были открыты гормоны и витамины, и изучены реакции, которые обеспечивают клеткам энергетический потенциал. Деятельность эндокринной системы, которая их синтезирует, и регулирует поставляемость к необходимым зонам воздействия посредством циркулирующих жидкостей, распространяется по всему организму человека.

Биология, изучающая гландулярный аппарат, осуществляет общее изучение структуры, но, для того, чтобы исследовать весь механизм взаимодействия, включая свободно транспортируемые компоненты деятельности эндокринных желез, потребовались совместные усилия двух наук, на грани которых появилась биохимия. Изучение деятельности гормонов имеет огромное значение, потому что занимает важнейшее место в работе организма, и осуществлении его жизненных функций.

В процессе жизнедеятельности эндокринная система:

  • обеспечивает координацию органов и структур;
  • участвует практически во всех химических процессах;
  • стабилизирует деятельность относительно условий внешней среды;
  • контролирует развитие и рост;
  • отвечает за половую дифференциацию;
  • превалирующе влияет на репродуктивную функцию;
  • выступает одним из генераторов человеческой энергии;
  • формирует психоэмоциональные реакции и поведение.

Все это обеспечивает сложная по структуре система, состоящая из гландулярного аппарата, и диффузной части в виде эндокринных клеток, рассеянных по организму. Воздействие на рецептор определенного раздражителя приводит к сигналу, посылаемому центральной нервной системой в , продуцирующий соответствующий посыл в гипофиз.

Передает команду тропным гормонам, которые выделяет для этой цели, и рассылает их в другие железы. Те, в свою очередь, вырабатывают собственных агентов, выбрасывая их в кровь, где происходит химическая реакция от взаимодействия с определенными клетками.

Многообразие и вариабельность обеспечиваемых функций, и провоцируемых реакций, заставляет эндокринную систему вырабатывать значительный ассортимент химически и биологически активных веществ абсолютно различного типа воздействия, которые, для простоты их осознания, описываются под общим собирательным термином гормоны.

Виды гормонов и их функции

Перечисление всех вырабатываемых человеческим организмом невозможно, хотя бы потому, что не все из них еще выявлены и изучены. Однако, и известных человеку веществ достаточно для очень длинного списка. Передняя доля гипофиза продуцирует:

  • гормон роста (соматропин);
  • меланин, отвечающий за красящий пигмент;
  • тиреотропный гормон, регулирующий деятельность щитовидной железы;
  • пролактин, который отвечает за деятельность грудных желез и лактацию.

Лютеинизирующий и фолликулостимулирующий стимулируют половые железы, и поэтому отнесены к гонадотропинам. Задняя доля гипофиза вырабатывает:

  • , поддерживающий в норме кровеносные сосуды;
  • окситоцин, вызывающий тонус матки.

У многих гормонов основная функция не является единственной, и они обеспечивают дополнительно некоторые процессы.

Щитовидная железа вырабатывает:

  • тиреоидиные гормоны, отвечающие за синтез белка и распад питательных веществ. Обмен углеводов, и стимуляция естественного метаболизма осуществляется с их участием и взаимодействием с другими химическими соединениями;
  • кальцитонин, который ранее ошибочно считали продуктом деятельности паращитовидных желез, тоже вырабатывается в щитовидной железе, и отвечает за уровень кальция, а его гипервыработка, или недостаток, могут стать причиной серьезных патологий.

Другие гормонопродуцирующие органы

Мозговой слой надпочечников вырабатывает адреналин, обеспечивающий реакцию организма на опасность, и, соответственно, выживаемость самого организма. Это далеко не единственная функция адреналина, если рассматривать его взаимодействие в химических реакциях с другими биологически активными веществами.

Которые вырабатывает кора надпочечников, еще более многообразны:

  • глюкокортикоиды влияют на обмен веществ и иммунную деятельность;
  • минералокортикоиды поддерживают солевой баланс;
  • андрогены и эстрогены выступают в роли половых стероидов.

Вырабатывают также семенники, а яичники вырабатывают эстрогены и прогестерон. Они готовят матку к оплодотворению.

Поджелудочная железа вырабатывает инсулин и глюкагон, несущие ответственность за уровень глюкозы в крови, осуществляют регуляцию посредством химических реакций.

Желудочно-кишечные гормоны – , холецистокинин, секретин и панкреозимин являются ответом слизистой ЖКТ на специфическую стимуляцию, и обеспечивают переваривание пищи. Нервные клетки синтезируют группу нейрогормонов, представляющих собой гормоноподобные вещества. Это химические соединения, которые стимулируют, или подавляют деятельность других клеток.

Структура некоторых из них изучена относительно хорошо, и применяется для регуляции секреторных механизмов, в виде готовых лекарственных средств. Многие гормоны удалось с этой целью синтезировать, однако, это все еще непаханое поле для научной деятельности, творческих экспериментов, и будущих монографий исследователей.

Несомненно, что дальнейшее исследование биохимических взаимодействий, и деятельности эндокринных желез, принесет значительную пользу для излечения многих наследственных заболеваний и патологий.

Классификация гормонов

На сегодняшний день науке известно более ста видов различных гормонов, и их многообразие служит серьезным препятствием для сколько-нибудь обоснованной номенклатурной классификации. Четыре распространенные гормональные типологии составлены по различным классифицирующим признакам, и ни одна не дает достаточно полного представления.

Наиболее распространена классификация по месту синтезирования, которая относит активные вещества к продуцирующей железе. Несмотря на то, что это очень удобно людям, не имеющим к биохимии гормонов, как к науке, никакого отношения, место выработки не вполне дает представление о строении и характере биологического компонента эндокринной системы.

Классификация по химическому строению еще более запутывает дело, потому что условно делит гормоны на:

  • стероиды;
  • белково-пептидные вещества;
  • производные жирных кислот;
  • производные аминокислот.

Но это условное деление, потому что одинаковые химические соединения выполняют различные биологические функции, и это затрудняет понимание механизма взаимодействий.

Функциональная классификация делит гормоны на:

  • эффекторные (действующие на одиночную мишень);
  • тропные, отвечающие за выработку эффекторных;
  • рилизинг-гормоны, которые продуцируют синтез тропных и других гипофизарных гормонов.

Основной классификацией, которой можно руководствоваться в понимании биохимии гормонов, является их подразделение по биологическим функциям:

  • липидный, углеводный и аминокислотный обмен;
  • кальциево-фосфатный обмен;
  • метаболический обмен в гормонопродуцирующих клетках;
  • контроль и обеспечение деятельности репродуцирующей функции.

Химический состав биологических веществ, условно соотнесенных в терминологическую группу под общим название гормоны, отличается своеобразием строения, которое обусловлено выполняемыми функциями.

Структурное строение и биосинтез

Строение гормонов – тема довольно общая, потому что многие из них образуются специализированными клетками, и синтезируются в различных железах эндокринной системы. Структура отдельного гормона обусловлена как химическими веществами в нее входящими, так и качественным производным реакций, в которые вступает каждый отдельно взятый реагент.

Большинство эндокринных желез вырабатывает по нескольку химически и биологически активных веществ, каждое из которых имеет индивидуальное строение, и соответствующие этому обустройству функциональные обязанности. Дефекты в структуре гормона могут быть причиной системных, или наследственных заболеваний, и нарушать осуществление метаболизма, деятельность их рецепторов, деструктурировать механизм передачи сигнала в эффект-мишени.

По химическому строению гормоны делятся на 3 основные большие группы:

  • белково-пептидные;
  • смешанные, не относящиеся к первым двум.

Структура белковых гормонов состоит из аминокислот, которые связаны пептидными связями, а полипептидными называются те, что состоят из менее чем 75 аминокислот. Те из них, что содержат углеводные остатки, носят собственное название – гликопротеины.

Несмотря на сходную структуру, белковые гормоны продуцируются различными железами и ничего общего по месту воздействия, или его механизму, и даже по размерам, и строению молекул не имеют. К белковым относятся:

  • рилизинг-гормоны;
  • обменные;
  • тканевые;
  • гипофизарные.

Структура большинства белковых гормонов на сегодняшний день расшифрована, и продуцируется в виде синтетических, используемых для лечебных мероприятий средств.

Стероиды образуются только в надпочечниках (коре), и половых железах, и содержат циклопентанпергидрофенантреновое ядро. Все стероиды являются производными холестерина, и самыми известными их представителями являются кортикостероиды.

Многие стероиды также синтезированы в научных лабораториях. Третья группа, в некоторых источниках именуемая амины, практически не поддается каким-либо обобщающим характеристикам, потому что содержит и пептидные группы, и химических посредников, вроде окиси азота, и длинноцепочечные жирные кислоты, и производные аминов. Химический состав смешанной группы, безусловно, нельзя свести только к аминам, потому что в нее условно внесены многие химические производные.

Механизм действия и его особенности

Выполняемые гормонами функции, настолько многообразны, что их сложно даже сложно представить непосвященному воображению:

  • пролиферативные процессы, которые они регулируют в совмещенных и чувствительных к ним тканях;
  • развитие вторичных половых признаков;
  • действие сократительных мускулов;
  • интенсивность метаболического обмена, его ход;
  • адаптация, посредством химических реакций сразу в нескольких системах, к меняющимся условиям внешней среды;
  • психоэмоциональное возбуждение и действие определенных органов.

Все это осуществляется посредством определенных механизмов взаимодействия. Их механизмы взаимодействия, несмотря на разное химическое строение биологически и химически активных веществ, имеют некоторые сходные особенности.

Гормоны, биохимия которых направлена на осуществление нескольких десятков видов реакций, взаимодействуют с мишенями в клеточном ядре, или после присоединения к клеточной мембране. Эффект взаимодействия обеспечивается только в том случае, если гормон соединился с рецептором, и привел в действие его механизм. В некоторых исследованиях рецептор сравнивается с замком, ключом которого и является гормон.

Только тесное взаимодействие, поворот ключа, открывает закрытый, до поры до времени, замок. Немаловажным в этом примере является и соответствие гормона рецептору.

Механизм взаимодействия гормонов и других структур

Активность синтеза, дерепрессии, трансляции и транскрипции, обусловливает интенсивность обмена веществ. Действие гормонов на процессы, в которые вовлекаются ферменты, подтверждается, или блокируется цитостатиками, имеющимися в клетке.

Информационная РНК выполняет роль второго посредника, в обеспечении ферментативной активности. Будучи производными эндокринных желез, которые выделяются в кровь, они достигают очень низкой концентрации в циркулирующей жидкости, и только наличие специфических рецепторов позволяет мишени улавливать направленный к ней активатор.

Современные исследования позволили установить наличие специализированных активных веществ, которые отвечают за синтез и репродукцию гормонов, необходимых организму, а участие гормонов и нейрогормонов, действующих через нервные ткани для передачи нервных импульсов, происходит через разные механизмы.

Гормоны взаимодействуют с моторной концевой пластинкой, в то время, как нейрогормоны проходят транспортными путями ЦНС, или через портальную систему гипофиза.

Гормональный механизм взаимодействия обусловлен не только химическим строением активного вещества, но и способом его транспортировки, транспортными путями и местом, где гормон синтезируется.

Механизм действия является четкой системой осуществления контакта и влияния на клеточную мембрану, или ядро, обусловленной биохимическими реакциями и информацией, заложенной на генетическом уровне.

Несмотря на существенную разницу в строении гормонов, механизме передачи, и собственно, рецептора, некоторые общие моменты в этом процессе несомненно наличествуют. Фосфорилирование белков является несомненным участником передачи сигнала. Активация, и ее прекращение происходит с помощью специальных механизмов регуляции, в которых имеется несомненный момент отрицательной обратной связи.

Гормоны – гуморальные регуляторы функций организма, причем основных его специфических функций, и их задачей является поддержание его физиологического равновесия, с помощью специальных химических и биохимических реакций.

Биохимические механизмы передачи сигнала и воздействия на клетку-мишень

Белок-рецептор, имеет на одном из своих доменов, участок, который по своему составу комплементарен составляющей сигнальной молекулы. Определяющим в процессе взаимодействия становится момент, когда часть сигнальной молекулы подтверждена в относительном тождестве, и сопровождается моментом, схожим с образованием фермент-субстратного сообщества.

Механизм этой реакции изучен недостаточно хорошо, равно, как и большинство рецепторов. Биохимии гормонов известно лишь, что в момент установления комплементарности между рецептором, и частью сигнальной молекулы, устанавливаются гидрофобные и электростатические взаимодействия.

В момент, когда белок-рецептор связывается с комплексом сигнальной молекулы, происходит биохимическая реакция, которая и запускает весь механизм, внутриклеточные реакции, иногда весьма специфического свойства.

Практически все эндокринные нарушения базируются на утрате способности клеточного рецептора распознавать сигнал, или осуществлять стыковку с сигнальными молекулами. Причиной таких нарушений могут быть как генетические изменения, так и выработка организмом специфических антител, или недостаточность синтеза рецепторов.

Если стыковка все же благополучно состоялась, то начинается процесс взаимодействия, который, в изученном на сегодняшний день формате, дифференцируется по двум типам:

  • липофильному (рецептор находится внутри клетки-мишени);
  • гидрофильному (месторасположение рецептора в наружной мембране).

Какой механизм передачи избирается в конкретном случае, зависит от способности молекулы гормона проникать через липидный слой клетки-мишени, или, если ее величина этого не позволяет, или она полярна, осуществлять связь снаружи. В клетке находятся вещества-посредники, которые обеспечивают передачу сигнала и регулируют активность ферментных групп внутри мишени.

На сегодня известно об участии в механизме урегулирования циклических нуклеотидов, инозитолтрифосфата, протеинкиназы, кальмодулина (белка, связывающего кальций), ионов кальция, и некоторых ферментов, участвующих в фосфорилировании белков.

Биологическая роль гормонов в организме

Гормоны играют огромную роль в обеспечении жизнедеятельности человеческого организма. Об этом свидетельствует тот факт, что нарушение выработки определенного гормона эндокринными железами, способно привести к появлению у человека серьезных патологий как врожденных, так и приобретенных.

Избыток, или недостаточная выработка гормона в человеческом теле нарушает нормальный, физиологический процесс его жизни, и создают конкретное ухудшение физического, или психоэмоционального состояния. Дисфункция паращитовидной железы создает проблемы с опорно-двигательным аппаратом, влияет на костную систему, нарушает работу печени и почек.

В отличном от нормы количестве приводит к психическим расстройствам, кальцинации стенок сосудов, или даже внутренних органов. Головные боли, мышечные судороги, учащение ритма сердца – все это последствия сбоя в работе только одной из эндокринных желез. Ненормальная выработка гормонов коры надпочечников:

  • лишает человека возможности подготовиться к стрессовому состоянию;
  • нарушает обмен углеводов;
  • приводит к патологической беременности, негативным ее протеканиям, выкидышам;
  • половому бесплодию.
  • регулируют процесс пищеварения;
  • выработку инсулина;
  • активируют процесс расщепления жиров;
  • повышают уровень глюкозы в крови.

Гипофиз влияет на образование , лютеинизирующего гормона, влияющего на репродуктивную функцию, отвечает за нормальное развитие человеческого организма во все его периоды.

Все виды обмена, рост и развитие, репродуктивная функция, генетическая информация, формирование плода во внутриутробном развитии, процесс овуляции и зачатия, гомеостаз, адаптация к внешней среде – вот только некоторые из процессов, обеспечение механизма которых возложено на гормоны.

Внешние и общие симптомы гормонального сбоя

Биохимия гормонов – наука, выделенная в самостоятельное изучение, и это обусловлено той важной ролью, которую гормоны играют в организме. Ее невозможно переоценить, потому что от нормального гормонального фона зависит и жизненный цикл, и работоспособность, и психоэмоциональное состояние. Неполадки с воспроизводством гормонов легко диагностируются даже без проведения специальных анализов, потому что человека начинают сопровождать:

  • головные боли;
  • нарушения нормального, полноценного сна;
  • циклические, или спонтанные перепады настроения;
  • необоснованная агрессия и перманентная раздражительность;
  • приступы внезапной паники и страха.

Все это прямое следствие нарушения гормональной выработки, и эти тревожные симптомы служат сигналом для обращения к врачу. Выработка, и биохимия гомонов – сложные процессы, которые зависят от многих составляющих, в том числе, и от наследственных факторов. Изучение этих процессов способно оказать значительную помощь современной медицине, поэтому биохимии гормонов и уделяется такое пристальное внимание.

Доказано, что число человеческих гормонов даже больше, чем сто с лишним, изученных на сегодняшний день, а механизмы рецепторной связи и нейрогуморальные реакции все еще требуют самого пристального изучения.

Только после расшифровки анализов специалист может приступать к лечению гормональных нарушений, и регулировать деятельность человеческого организма с помощью гормональных препаратов, разработать и синтезировать которые в огромной степени позволила биохимия гормонов, наука, созданная на грани биологии, химии и медицины, и являющаяся одним из самых перспективных биохимических направлений на сегодняшний день.

Дальнейшее ее развитие может привести к предотвращению старения, препятствованию появления генетических уродств, излечению раковых опухолей, решению многих глобальных проблем человеческого здоровья.

Поделиться: