Эффект кратковременной аэрации - условия развития и активности дрожжей. Брожение - большая советская энциклопедия

Жизнь микробов возможна и без доступа кислорода воздуха. Энергия, необходимая для жизнедеятельности организма, в этих условиях образуется в результате процессов брожения. Наиболее распространены виды брожений, в процессе которых происходит распад органических веществ (преимущественно Сахаров) под влиянием микроорганизмов, представляющий совокупность окислительно-восстановительных реакций. Брожения никогда не приводят к полному окислению органических веществ. Многие характерные формы брожения протекают беэ участия кислорода воздуха - анаэробно .


Поскольку свободный кислород, имеющийся на нашей планете, образовался в результате фотосинтеза, возникшего на более поздних этапах развития жизни на Земле, совершенно очевидно, что анаэробный способ извлечения энергии - брожение - более древний, чем процесс дыхания.


Брожение известно людям с незапамятных времен. Тысячелетиями человек пользовался спиртовым брожением при изготовлении вина. Еще раньше было известно о молочнокислом брожении. Люди употребляли в пищу молочные продукты, готовили сыры. При этом они не подозревали, что эти процессы происходят с помощью микроорганизмов. Термин «брожение» был введен голландским алхимиком Ван Хельмонтом в XVII в. для процессов, идущих с выделением газов (fermentatio - кипение). Затем в XIX в. основоположник современной микробиологии Луи Пастер показал, что брожение является результатом жизнедеятельности микробов, и установил, что различные брожения вызываются разными микроорганизмами.


Спиртовое брожение - это процесс окисления углеводов, в результате которого образуются этиловый спирт, углекислота и выделяется энергия.


Сбраживание сахаров известно с глубокой древности. В течение столетий пивовары и виноделы использовали способность некоторых дрожжей вызывать спиртовое брожение, в результате которого сахара превращаются в спирт.


Брожение производят главным образом дрожжи, а также некоторые бактерии и грибы. В различных странах для получения спирта используют различные микроорганизмы. Например, в Европе используют в основном дрожжи из рода Saccharomyces, в Южной Америке - бактерии Pseudomonas lindneri, в Азии - мукоровые грибы.


Сбраживаться могут лишь углеводы, и притом весьма избирательно. Дрожжи сбраживают только некоторые 6-углеродные сахара (глюкозу, фруктозу, маннозу).


Схематично спиртовое брожение может быть изображено уравнением



Процесс спиртового брожения - многоступенчатый, состоящий из цепи химических реакций. Превращения глюкозы до образования пировиноградной кислоты происходят так же, как и при дыхании. Эти реакции происходят без участия кислорода (анаэробно). Далее пути дыхания и брожения расходятся.


При спиртовом брожении пировиноградная кислота превращается в конечном итоге в спирт и углекислоту. Эти реакции протекают в две стадии. Сначала от пирувата отщепляется СО2 и образуется уксусный альдегид; затем уксусный альдегид присоединяет водород, восстанавливаясь в этиловый спирт. Все реакции катализируются ферментами. В восстановлении альдегида участвует НАД-H2.


Обычно при спиртовом брожении, кроме главных продуктов, образуются побочные. Они довольно разнообразны, но присутствуют в небольшом количестве: амиловый, бутиловый и другие спирты, смесь которых называется сивушным маслом - соединение, от которого зависит специфический аромат вина. Образование побочных веществ связано с тем, что превращение глюкозы частично идет другими путями.


Биологический смысл спиртового брожения заключается в том, что образуется определенное количество энергии, которая запасается в форме АТФ, а затем расходуется на все жизненно необходимые процессы клетки.


Молочнокислое брожение. При молочнокислом брожении конечным продуктом является молочная кислота.


С этим брожением люди знакомы издавна. Сквашивание молока, приготовление простокваши, кефира, квашение овощей - результаты молочнокислого сбраживания сахара молока или углеводов растений. Этот вид брожения осуществляется с помощью молочнокислых бактерий, которые подразделяются на две большие группы (в зависимости от характера брожения): гомоферментативные , образующие из сахара только молочную кислоту, и гетероферментативные , образующие, кроме молочной кислоты, спирт, уксусную кислоту, углекислый газ.


Гомоферментативное молочнокислое брожение вызывают бактерии рода Lactobacillus и стрептококки. Они могут сбраживать различные сахара с 6-ю (гексозы) или 5-ю (пентозы) углеродными атомами, некоторые кислоты. Однако круг сбраживаемых ими продуктов ограничен.


У молочнокислых бактерий нет ферментативного аппарата для использования кислорода воздуха. Кислород для них или безразличен, или угнетает развитие.


Молочнокислое брожение может быть описано уравнением



Процесс образования молочной кислоты чрезвычайно близок к процессу спиртового брожения. Глюкоза также расщепляется до пировиноградной кислоты. Но затем ее декарбоксилирование (отщепление СО2), как при спиртовом брожении, не происходит, так как молочнокислые бактерии лишены соответствующих ферментов. У них активны дегидрогеназы (НАД). Поэтому пировиноградная кислота сама (а не уксусный альдегид, как при спиртовом брожении) принимает водород от восстановленной формы НАД и превращается в молочную кислоту. В процессе молочнокислого брожения бактерии получают энергию, необходимую им для развития в анаэробных условиях, где использование других источников энергии затруднено.


Гетероферментативное молочнокислое брожение - процесс более сложный, чем гомоферментативное: сбраживание углеводов приводит к образованию ряда соединений, накапливающихся в зависимости от условий процесса брожения. Одни бактерии образуют, помимо молочной кислоты, этиловый спирт и углекислоту, другие - уксусную кислоту; некоторые гетероферментативные молочнокислые бактерии могут образовывать различные спирты, глицерин, маннит.


Гетероферментативное молочнокислое брожение вызывают бактерии рода Lactobacterium и рода Streptococcus. Химизм этих брожений изучен не так хорошо, как спиртового или гомоферментативного молочнокислого брожения.


Гетероферментативные бактерии образуют молочную кислоту иным путем. Последняя стадия - восстановление пировиноградной кислоты до молочной - та же самая, что и в случае гомоферментативного брожения. Но сама пировиноградная кислота образуется при ином расщеплении глюкозы - гексозомонофосфатном. Выход энергии гораздо меньше, чем при спиртовом брожении.


Гетероферментативные бактерии сбраживают ограниченное число веществ: некоторые гексозы (причем определенного строения), пентозы, сахароспирты и кислоты.


Молочнокислое брожение широко используется при выработке молочных продуктов: простокваши, ацидофилина, творога, сметаны. При производстве кефира, кумыса наряду с молочнокислым брожением, вызываемым бактериями, имеет место и спиртовое брожение, вызываемое дрожжами. Молочнокислое брожение происходит на первом этапе изготовления сыра, затем молочнокислые бактерии сменяются пропионово кислыми.


Молочнокислые бактерии нашли широкое применение при консервировании плодов и овощей, в силосовании кормов. Чистое молочнокислое брожение применяется для получения молочной кислоты в промышленных масштабах.


Молочная кислота находит широкое применение в производстве кож, красильном деле, при выработке стиральных порошков, изготовлении пластмасс, в фармацевтической промышленности и во многих других отраслях. Молочная кислота также нужна в кондитерской промышленности и для приготовления безалкогольных напитков.


Маслянокислое брожение. Превращение углеводов с образованием масляной кислоты было известно давно. Природа маслянокислого брожения как результат жизнедеятельности микроорганизмов была установлена Луи Пастером в 60-х годах прошлого века.


Возбудителями брожения являются маслянокислые бактерии, получающие энергию для жизнедеятельности путем сбраживания углеводов. Они могут сбраживать разнообразные вещества - углеводы, спирты и кислоты, способны разлагать и сбраживать даже высокомолекулярные углеводы - крахмал, гликоген, декстрины.


Маслянокислое брожение в общем виде описывается уравнением



При этом брожении накапливаются различные побочные продукты. Наряду с масляной кислотой, углекислым газом и водородом образуются этиловый спирт, молочная и уксусная кислоты.


Некоторые маслянокислые бактерии, кроме того, образуют ацетон, бутанол и изопропиловый спирт.


Брожение начинается с процесса фосфорилирования глюкозы и далее идет по гликолитическому пути до стадии образования пировиноградной кислоты. Затем образуется уксусная кислота, которая активируется ферментом. После чего при конденсации (соединении) из двууглеродного соединения получается четырехуглеродная масляная кислота. Таким образом, при маслянокислом брожений происходит не только разложение веществ, но и синтез.


По данным В. Н. Шапошникова, в маслянокислом брожении различаются две фазы. В первой параллельно с увеличением биомассы накапливается уксусная кислота, а масляная кислота образуется преимущественно во второй фазе, когда синтез веществ тела замедляется.


Маслянокислое брожение происходит в природных условиях в гигантских масштабах: на дне болот, в заболоченных почвах, илах и всех тех местах, куда ограничен доступ кислорода. Благодаря деятельности маслянокислых бактерий разлагаются огромные количества органического вещества.


Спиртовое, гомоферментативное молочнокислое и маслянокислое брожения являются основными типами брожений. Все другие виды брожений представляют собой комбинацию этих трех типов. Так, например, пропионовокислое брожение, играющее важную роль при производстве сыров и сопровождающееся накоплением пропионовой и уксусной кислот и углекислого газа, может рассматриваться как комбинация гомоферментативного молочнокислого и спиртового брожений. Брожения клетчатки и пектиновых веществ являются разновидностями маслянокислого брожения.


Итак, три основных типа брожения органически связаны между собой - начальные пути разложения углеводов у них одинаковы.


Процессы дыхания и брожения являются основными источниками энергии, необходимой микроорганизмам для нормальной жизнедеятельности, осуществления процессов синтеза важнейших органических соединений.

4.5. ЗНАЧЕНИЕ КИСЛОРОДА В МЕТАБОЛИЗМЕ ДРОЖЖЕЙ

Значение:

1. От кислорода зависит потребление субстрата клеткой (источников С и N), катаболизм и анаболизм клетки. О 2 входит в состав веществ клетки, является акцептором электронов, регулятором синтеза ферментов.

2. С помощью кислорода можно управлять размножением дрожжей; сбраживанием сусла; формировать букет готового продукта.

Низкая обеспеченность дрожжей кислородом приводит к следующему:

· не могут синтезироваться стиролы и ненасыщенные жирные кислоты, поэтому снижается синтез клеточных мембран и рост клетки;

· синтезируется недостаточно гликогена, поэтому повышается уровень диацетила, уксусного альдегида, SO 2 при брожении;

· размножение клеток замедляется, в результате бродильная активность не изменяется, но активность популяции снижается из-за снижения количества клеток.

Высокая обеспеченность дрожжей кислородом приводит к следующему:

· накопление излишней биомассы;

· образование метаболитов брожения, отрицательно влияющих на вкус;

· окисляются полифенолы и увеличивается ОВП, в результате удлиняется лаг-фаза при внесении засевных дрожжей.

Способы аэрации:

1) аэрация суспензии дрожжей до их введения в сусло;

2) аэрация сусла после внесения дрожжей.

Первый вариант лучше, т.к. в дрожжах накапливается больше гликогена и стеринов; состав летучих компонентов в продукте также лучше, т.к. не происходит сильного обогащения продуктами анаболизма.

Второй вариант приводит к повышению скорости размножения, в результате наблюдается раннее образование и редукция диацетила.

По потребности в кислороде дрожжи делятся на 4 группы, мг О 2 /л:

I – 4; II – 8; III – 40; IV – более 40 (пивоваренные дрожжи до 12 мг О 2 /л).

Критическая концентрация растворенного О 2 0,015-0,03 мг/л; ниже этой концентрации рост культуры ограничивается, в результате ухудшается физиологическое состояние (для каждого штамма концентрация кислорода своя).

На растворение кислорода и потребление его дрожжами влияют: количество клеток; дыхательная активность клеток; степень перемешивание; высота столба среды; концентрация сусла (чем больше сухих веществ, тем меньше растворимость кислорода).

Кислород должен вноситься в сусло как можно более мелкими пузырьками (например, через свечи).


4.6. ВЛИЯНИЕ ДРОЖЖЕЙ НА ОБРАЗОВАНИЕ И РАСЩЕПЛЕНИЕ ПОБОЧНЫХ ПРОДУКТОВ БРОЖЕНИЯ

Во время брожения дрожжи выделяют ряд продуктов метаболизма (ПМ), которые влияют на качество готового продукта. Состав, количество, изменения ПМ во многом зависят от условий брожения и свойств штамма.

ПМ

Вещества, формирующие Вещества, формирующие

букет молодого пива, вина букет готового пива, вина

Вицинальные дикетоны - высшие спирты

Альдегиды - эфиры

Сернистые соединения

(удаляются из пива, вина биохимическим

путем=цель дображивания пива, вина)

Вицинальные дикетоны

1. Дрожжи образуют предшественники вицинальных дикетонов - ацетогидроксикислоты.

На образование этих предшественников влияют:

· норма внесения дрожжей (чем больше дрожжей, тем больше предшественников, тем быстрее идет расщепление);

· специфические свойства штамма.

2. На превращение предшественников в дикетоны дрожжи не влияют.

3. Дрожжи восстанавливают (расщепляют) дикетоны, снижая их отрицательное влияние на вкус.

Данному процессу способствует следующее:

· дрожжи могут при брожении восстанавливать в 10 раз больше, чем имеют.

· многие штаммы сходны по способности к расщеплению дикетонов;

· уровень расщепления зависит от концентрации дрожжей; от степени контакта среды и дрожжей (перекачка, сброс давления и т.п.).

Т.е. для фазы созревания нужна определенная концентрация активных живых клеток; и необходимо препятствовать оседанию дрожжей.

Альдегиды

1. Уксусный альдегид (наиболее важный) выделяется клетками дрожжей на 1-3 сутки брожения. Его концентрация возрастает при повышенной норме внесения дрожжей.

2. Для расщепления уксусного альдегида нужна повышенная концентрация дрожжей при созревании.

Сернистые соединения (Н 2 S, SO 2 , меркаптаны, диметилсульфид)

1. Многие данные вещества образуются дрожжами. Увеличению их количества способствуют недостаток факторов роста для дрожжей или потери. См. пп. 4.4., 4.5.

Высшие спирты

1. Выделяются дрожжами, образуясь различными путями. Максимум выделяется до 100 мг/л.

Образование высших спиртов можно регулировать. При понижении нормы внесения дрожжей, а также при некоторых условиях культивирования (низкой температуре, большом количестве аминокислот в сусле) высших спиртов образуется меньше.

Существует связь между образованием эфиров и обеспеченностью дрожжей кислородом. Чем больше кислорода, тем больше образуется жиров, а пока идет синтез жиров, эфиры не образуются.

На процесс образования эфиров легче повлиять через экстрактивность пива: чем выше СВ, тем больше эфиров.

Органические кислоты

Образуются из аминокислот в результате деятельности дрожжей: они отнимают NH 2 , а углеродные остатки выделяют наружу.

Другие превращения

С помощью дрожжей можно влиять на другие показатели:

1. Так, цветность пива снижается на 3 единицы из-за сорбции красящих веществ на дрожжах.

2. После завершения главного брожения выдержка на дрожжах способствует созреванию продукта. Выдержка на живых клетках приводит к обогащению продукта аминокислотами, пептидами, витаминами, фосфором, энзимами и др. Но далее наступает выдержка на мертвых клетках (они возникают в результате автолиза живых), которая ухудшает качество продукта.

Начало автолиза дрожжей можно контролировать по увеличению аминного азота. Также на автолиз указывает повышение рН. Понизить рН можно увеличением температуры брожения и увеличением нормы внесения дрожжей.

4.7. РЕГУЛЯЦИЯ И ИНТЕНСИФИКАЦИЯ МЕТАБОЛИЗМА ДРОЖЖЕЙ

1. Можно регулировать метаболизм дрожжей изменением количества и состава источников С, N, жиров, минеральных веществ, кислорода (пп. 4.1-4.6).

2. Можно регулировать использованием непрерывного способа культивирования. Так, в проточных средах имеется максимальная возможность для достижения максимума скорости роста и размножения дрожжей, т.е. максимального уровня метаболизма, следовательно, максимального выхода спирта (повторить непрерывное культивирование и его достоинства).

3. Можно регулировать внесением повышенной концентрации дрожжей.

· высокая дозировка дрожжей влияет на уровень образования и расщепления побочных продуктов (п. 4.5);

· при увеличении дозировки снижается удельная скорость роста, а уровень сбраживания увеличивается, следовательно, значительно сокращается продолжительность брожения. При этом большая часть сахаров идет на брожение

Способы обеспечения высокой концентрации дрожжей:

· непрерывное размножение в аппарате (при периодическом клетка образует 4-5 почек, при непрерывном – все возможное количество);

· непрерывная подача в аппарат дрожжей;

· частичный возврат дрожжей в систему после главного брожения;

· задержка внутри аппарата (сильная флокуляция, фильтрация);

· использование иммобилизованных дрожжей

4. Можно регулировать повышенной температурой брожения.

Температура 13-24 о С ускоряет рост, следовательно, сокращает период главного брожения. Но температура может повлиять на качество конечного продукта:

Более быстро будут образовываться и разрушаться побочные продукты метаболизма;

химический состав ухудшится.

5. Можно ускорить процесс дображивания (вино, пиво) за счет использования дрожжевых лизатов.

Дрожжевые лизаты получают в результате разрушения клеточной стенки дрожжей, при этом освобождаются внутриклеточные ферменты, усиливается их контакт с внешней средой, интенсифицируются все биохимические процессы созревания, сокращается период созревания.



Количество не только ведёт к расточительству и увеличению расходов, но иногда вызывает и ухудшение фильтруемости. Аэробная переработка отходов. Аэробная переработка стоков - это самая обширная область контролируемого использования микроорганизмов в биотехнологии. Она включает следующие стадии: 1) адсорбция субстрата на клеточной поверхности: 2) расщепление адсорбированного субстрата...

При помощи моноклональ-ных антител или иммунофер-ментного анализа опреде­ляют присутствие вирусов и бактерий. При помощи фер­ментов контролируют при­сутствие в среде определен­ных веществ Экологическая биотехнология бурно развивается, появляются системы для утилизации органических и неорганических веществ, загрязняющих среду и попадающих в нее с жидкими и газовыми выбросами. В аэробных и...

Наумова. Особенно сильное влияние на изучение дрожжей, также как и большинства других групп микроорганизмов, оказало бурное развитие в конце XX в. молекулярной биологии. В современной систематике дрожжей широко используются методы геносистематики, основанные на непосредственном сравнении геномов и секвенировании нуклеотидных последовательностей. Применение единых молекулярно-биологических методов...

В дальнейшем многие исследователи детально изучили ферментативную природу и механизм спиртового Б. (см. схему). Первая реакция превращения глюкозы при спиртовом Б. - присоединение к глюкозе под влиянием фермента глюкокиназы остатка фосфорной кислоты от аденозинтрифосфорной кислоты (АТФ, см. Аденозинфосфорные кислоты). При этом образуются аденозиндифосфорная кислота (АДФ) и глюкозо-6-фосфорная кислотата. Последняя под действием фермента глюкозофосфати-зомеразы превращается в фруктозо-6-фосфорную кислоту, которая, получая от новой молекулы АТФ (при участии фермента фосфофруктокиназы) ещё один остаток фосфорной кислоты, превращается в фруктозо-1,6-дифосфорную кислоту. (Эта и следующая реакции, обозначенные встречными стрелками, обратимы, т. е. их направление зависит от условий - концентрации фермента, pH и др.) Под влиянием фермента кетозо-1-фосфатальдолазы фруктозо-1,6-дифосфорная кислота расщепляется на глицеринальдегидфосфорную и диоксиацетонфосфорную кислоты которые могут превращаться друг в друга под действием фермента триозофосфатизомеразы. Глицеринальдегидфосфорная кислота, присоединяя молекулу неорганической фосфорной кислоты и окисляясь под действием фермента дегидрогеназы фосфоглицеринальдегида, активной группой которого у дрожжей является никотинамидадениндинуклеотид (НАД), превращается в 1,3-дифосфоглицериновую кислоту. Молекула диоксиацетонфосфорной кислоты под действием триозофосфатизомеразы даёт вторую молекулу глицеринальдегидфосфорной кислоты, также подвергающуюся окислению до 1,3-дифосфоглицериновой кислоты; последняя, отдавая АДФ (под действием фермента фосфоглицераткиназы) один остаток фосфорной кислоты, превращается в З-фосфоглицериновую кислоту, которая под действием фермента фосфоглицеро-мутазы превращается в 2-фосфоглицериновую кислоту, а она под влиянием фермента фосфопируват-гидратазы - в фосфоенол-пировиноградную кислоту. Последняя при участии фермента пируваткиназы передаёт остаток фосфорной кислоты молекуле АДФ, в результате чего образуется молекула АТФ и молекула енолпировиноградной кислоты, которая весьма нестойка и переходит в пировиноградную кислоту. Эта кислота при участии имеющегося в дрожжах фермента пируватдекарбоксилазы расщепляется на уксусный альдегид и двуокись углерода. Уксусный альдегид, реагируя с образовавшейся при окислении глицеринальдегидфосфорной кислоты восстановленной формой никотинамидадениндинуклеотида (НАД-Н), при участии фермента алкогольдегидрогеназы превращается в этиловый спирт. Суммарно уравнение спиртового Б. может быть представлено в следующем виде:

C6H12O6 + 2H3PO4 + 2АДФ ® 2CH3CH2OH + 2CO2 + 2АТФ.

Т. о., при сбраживании 1 моля глюкозы образуются 2 моля этилового спирта, 2 моля CO2, а также в результате фосфорилирования 2 молей АДФ образуются 2 моля АТФ. Термодинамические расчёты показывают, что при спиртовом Б. превращение 1 моля глюкозы может сопровождаться уменьшением свободной энергии примерно на 210 кдж (50 000 кал ), т. е. энергия, аккумулированная в 1 моле этилового спирта, на 210 кдж (50 000 кал ) меньше энергии 1 моля глюкозы. При образовании 1 моля АТФ (макроэргических - богатых энергией фосфатных соединений) используется 42 кдж (10 000 кал ). Следовательно, значительная часть энергии, освобождающейся при спиртовом Б., запасается в виде АТФ, обеспечивающей разнообразные энергетические потребности дрожжевых клеток. Такое же биологическое значение имеет процесс Б. и у др. микроорганизмов. При полном сгорании 1 моля глюкозы (с образованием CO2 и H2O) изменение свободной энергии достигает 2,87 Мдж (686 000 кал ). Иначе говоря, дрожжевая клетка использует лишь 7% энергии глюкозы. Это показывает малую эффективность анаэробных процессов по сравнению с процессами, идущими в присутствии кислорода. При наличии кислорода спиртовое Б. угнетается или прекращается и дрожжи получают энергию для жизнедеятельности в процессе дыхания. Наблюдается тесная связь между Б. и дыханием микроорганизмов, растений и животных. Ферменты, участвующие в спиртовом Б., имеются также в тканях животных и растений. Во многих случаях первые этапы расщепления сахаров, вплоть до образования пировиноградной кислоты, - общие для Б. и дыхания. Большее значение процесс анаэробного распада глюкозы имеет и при сокращении мышц (см. Гликолиз), первые этапы этого процесса также сходны с начальными реакциями спиртового Б.

Сбраживание углеводов (глюкозы, ферментативных гидролизатов крахмала, кислотных гидролизатов древесины) используется во многих отраслях промышленности: для получения этилового спирта, глицерина и др. технических и пищевых продуктов. На спиртовом Б. основаны приготовление теста в хлебопекарной промышленности, виноделие и пивоварение.

Пропионовокислое Б. Основные продукты пропионовокислого Б., вызываемого несколькими видами бактерий из рода Propionibacterium, - пропионовая (CH3CH2OH) и уксусная кислоты и CO2. Химизм пропионовокислого Б. сильно изменяется в зависимости от условий. Это, по-видимому, объясняется способностью пропионовых бактерий перестраивать обмен веществ, например в зависимости от аэрации. При доступе кислорода они ведут окислительный процесс, а в его отсутствии расщепляют гексозы путём Б. Пропионовые бактерии способны фиксировать CO2, при этом из пировиноградной к-ты и CO2 образуется щавелевоуксусная к-та, превращающаяся в янтарную к-ту, из которой декарбоксилированием образуется пропионовая к-та:

Существуют Б., которые сопровождаются и восстановительными процессами. Примером такого "окислительного" Б. служит лимоннокислое Б. Многие плесневые грибы сбраживают сахара с образованием лимонной кислоты. Наиболее активные штаммы Aspergillus niger превращают до 90% потребленного сахара в лимонную кислоту. Значительная часть лимонной кислоты, используемой в пищевой промышленности, производится микробиологическим путём - глубинным и поверхностным культивированием плесневых грибов.

Иногда по традиции и чисто окислительные процессы, осуществляемые микроорганизмами, называется Б. Примерами таких процессов могут служить уксуснокислое и глюконовокислое Б.

Уксуснокислое Б. Бактерии, относящиеся к роду Acetobacter, окисляют этиловый спирт в уксусную кислоту в соответствии с суммарной реакцией:

Промежуточное соединение при окислении спирта в уксусную кислоту - уксусный альдегид. Многие уксуснокислые бактерии, кроме окисления спирта в уксусную кислоту, осуществляют окисление глюкозы в глюконовую и кетоглюконовую кислоты.

Глюконовокислое Б. осуществляют и некоторые плесневые грибы, способные окислять альдегидную группу глюкозы, превращая последнюю в глюконовую кислоту:

Кальциевая соль глюконовой кислоты служит хорошим источником кальция для людей и животных.

Лит.: Шапошников В. Н., Техническая микробиология, М., 1948; Прескот С., Дан С., Техническая микробиология, пер. с англ., М., 1952; Пастер Л., Избр. труды, пер. с франц., т. 1-2, М., 1960; Кретович В. Л., Основы биохимии растений, 4 изд., М., 1964; Фробишер М., Основы микробиологии, пер. с англ., М., 1965; Фердман Д. Л., биохимия, М., 1966; Работнова И. Л., Общая микробиология, М., 1966.

В. И. Любимов.

Страница 5 из 10

Аэрация, проводимая в процессе анаэробного брожения, ускоряет его и позволяет сбраживать больше сахара. В общем можно заменить стимуляцию, которую дает постоянный доступ кислорода, кратковременной, перемежающейся аэрацией. Иллюстрацией к этому положению является следующий опыт (Риберо-Гайон и сотрудники, 1951).

Аэрация в различные моменты брожения

Виноградное сусло бродит при 25° С в серии бутылей под пробками с тонкими суживающимися трубками, следовательно, при полном отсутствии воздуха. Через 2, 4 или 8 дней с начала брожения вводят за один раз приблизительно известные количества растворенного кислорода (от 0,14 до 6 см3/л). Затем измеряют количества сброженного сахара и подсчитывают дрожжевые клетки, сравнивая полученные результаты с данными контрольного образца, где брожение происходило без доступа воздуха.
Чтобы ввести достаточно определенные количества кислорода, его вводят в измеренные объемы бродящей среды, дегазированной и насыщенной кислородом (около 6 см3 на 1 л), путем длительного взбалтывания сначала под вакуумом, затем в воздухе.
Параллельное брожение в бутыли, закрытой ватой, дает скорость брожения и развитие дрожжей в условиях, когда воздух поступает постоянно. Наконец, в бутыль, снабженную пробкой с суживающейся тонкой трубкой, помещали то же самое сусло, которое насыщали воздухом перед обсеменением.
Наиболее показательные результаты приведены в табл. 7.4.
Таблица 7.4
Действие кислорода, вводимого в различные моменты брожения, на виноградное сусло, содержащее 228 г/л восстанавливающих сахаров


Условия брожения

После 14 дней брожения

число клеток, млн./см3

сброженный сахар, г/л

Брожение в присутствии воздуха, постоянная аэрация

Брожение без доступа воздуха, без аэрации

до брожения

на 2-й день

В бутыли, закупоренной пробкой с тонкой суживающейся трубкой, брожение остановилось при 26 г сахара, тогда как в бутыли, закрытой ватой, оно завершилось быстро и полностью. Показательно также число дрожжевых клеток: 93 млн. на 1 см3 при аэробном брожении, 51 млн. - при анаэробном.
Брожение без доступа воздуха в сусле, предварительно насыщенном кислородом, протекало в первые дни более активно, чем в контрольном; число дрожжевых клеток увеличилось. Таким образом, действие, оказываемое небольшим количеством кислорода, вводимого в бродящую среду, вначале значительно, но оно не сохраняется и не способствует лучшему завершению брожения.
Положение меняется, когда кислород вводят в среду, где дрожжи находятся в состоянии активности. Аэрация через 2 дня после обсеменения, когда брожение уже началось, была очень эффективной. Даже введение незначительных количеств кислорода, порядка 0,15 см3/л (т. е. около 0,2 мг), заметно влияло на скорость брожения и на число дрожжевых клеток, которое возрастает на 15%. Введение 0,75 см3 кислорода увеличивает популяцию на 20%, 1,5 см3 - на 25 и 6 см3 - на 50%. Однако в последнем случае не достигают концентрации клеток, полученной при брожении под ватным тампоном, следовательно, количество кислорода, которое проникает в среду через вату, значительно превосходит дозу, равную 6 см3/л.

Рис. 7.5. Эффект от аэрации в различные моменты брожения иа популяцию живых дрожжевых клеток:
1 - контрольные живые клетки; 2 - аэрация на 8-й день; 3 - аэрация на 4-й день; 4 - аэрация на 2-й день.
Аэрация, проводимая на 2-й день из расчета 6 см3 кислорода на 1 л сусла, обеспечивает практически такое же быстрое завершение брожения, как и в бутыли, закрытой ватой, но меньшая аэрация была бы недостаточной. Введение таких же количеств кислорода, проводимое через 4 дня после обсеменения, в момент когда 1/3 сахара уже сброжена, имеет явно менее выраженное действие; 0,15 см3 кислорода не оказали на этот раз никакого влияния на число дрожжевых клеток и на скорость брожения. 0,75 см3 повышают количество сброженного сахара только с 15 до 20 г. Чтобы получить ощутимый эффект, нужно ввести 1,5 см3. Наконец, аэрации, проводимые на 8-й день, когда остается еще 100 г несброженного сахара, практически не производят никакого действия.
На рис. 7.5 показаны кривые эволюции числа живых клеток в различных случаях аэрации (Лафуркад, 1954).
В конце брожения с доступом воздуха все дрожжи еще живы, тогда как при анаэробном брожении активность проявляет только половина популяции. Ввод воздуха на 2-й день вызывает брожение, которое по своей скорости и по числу образующихся дрожжевых клеток является типично аэробным.
Аэрация на 4-й день проводится в условиях, когда жидкость уже имеет высокую концентрацию спирта и когда 15% дрожжей уже не способны больше размножаться. Хотя через 2 дня после введения воздуха число живых клеток возрастает на 12%, этот эффект непродолжителен.
Через 8 дней после обсеменения в бутыли, содержимое которой находится в условиях полного анаэробиоза, лишь только 50% клеток все еще остаются живыми. Аэрация, проводимая в этот момент, вызывает быстрое оживление популяции. В течение трех последующих дней число клеток, способных размножаться, достигает 78% общей численности, которая остается неизменной. Следовательно, действие кислорода, вводимого во время брожения, выражается в увеличении общего числа дрожжей и особенно активных клеток, способных к самовоспроизводству. На основании этих данных можно сделать следующий вывод для практики: для того, чтобы брожение было полным, нужно воздействовать на среду таким образом, чтобы возможно большая часть дрожжевых клеток оставалась живыми и активными вплоть до полного израсходования сахара.
Изменение условий аэрации в различные периоды брожения
Риберо-Гайон и сотрудники (1951) описали следующий эксперимент, который представляет особый случай отношений между ростом дрожжей и кислородом. Виноградное сусло, содержащее 245 г/л восстанавливающих сахаров, подвергают брожению в двух сериях бутылей. Одни закрывают ватными тампонами, другие - пробками с проходящими через них тонкими суживающимися трубками. Через различное время после начала брожения (2 дня, 4 или 8 дней) взаимно меняют закупорку бутылей; брожение, начавшееся с доступом воздуха, продолжается при его полном отсутствии, и наоборот. В общем, таким путем реализуют до некоторой степени условия открытых емкостей на производстве, которые в различное время закрывают, и условия в закрытых чанах, люки которых открываются во время брожения. В табл. 7.5 приведены полученные результаты.
Закрытие бутылей пробкой с тонкой трубкой на 2-й день брожения, когда сброжена "Д часть сахара, выражается в замедлении брожения и уменьшении числа клеток. Но когда закупорка производится на 4-й день, ход брожения и численность популяции дрожжей больше не изменяются.
Изменение условий аэрации в ходе брожения

После 11 дней брожения

Условия брожения

число дрожжевых клеток, млн. /см3

сбраживание сахара,
г/л

Аэробное брожение контроль

без доступа воздуха на 2-й день

Анаэробное брожение контроль

с доступом воздуха на 2-й день

В серии бутылей, снабженных тонкими отводными трубками, где контрольное брожение. не могло завершаться, открытие бутыли на 2-й день вызвало ускорение брожения и увеличение числа клеток; импульс, который дает эта аэрация, был таков, что на 11-й день брожение находится на той же стадии, как в бутыли, первоначально закрытой ватой. Если открытие производят позднее, на 4-й или на 8-й день, возрастание числа клеток и ускорение брожения становятся незначительными, так как дрожжи уже не способны использовать этот кислород для своего размножения.
Таким образом, эти результаты подтверждают использование кислорода дрожжами только на первой стадии брожения и их неспособность воспользоваться аэрацией, когда брожение продвинулось очень далеко и содержание спирта в среде стало слишком большим.

Поделиться: