Динамика синтеза иммуноглобулинов в процессе развития инфекции. Классы иммуноглобулинов и их возрастная динамика. Основные биологические характеристики антител

В состав иммуноглобулина G входят антитела, играющие ведущую роль в защите от многих вирусных (корь, оспа, бешенство и др.) и бактериальных инфекций, вызываемых преимущественно грамположительными микроорганизмами, а также от столбняка и малярии, антирезусные гемолизины, антитоксины (дифтерийный, стафилококковый и др.). lgG-антитела губительно действуют с помощью комплемента, опсонизации, активации фаго-цитоза, обладают вируснейтрализуюицим свойством. Подфракции иммуноглобулина G, их соотношения не только могут определяться специфичностью антигенного раздражителя (инфекции), но и быть свидетелями неполной иммунологической компетентности. Так, дефицит иммуноглобулина G2 может быть сопряжен с дефицитом иммуноглобулина А, а повышение концентрации иммуноглобулина G4 для многих детей отражает вероятность атопического предрасположения или атопии, но иного типа, чем классическая, основанная на продукции и реакциях иммуноглобулина Е.

Иммуноглобулин М

Иммуноглобулин М играет важную роль в защите организма от инфекций. В его состав входят антитела против грамотрицательных бактерий (шигелл, брюшного тифа и др.), вирусов, а также гемолизины системы АВО, ревматоидный фактор, противоорганные антитела. Антитела, относящиеся к классу иммуноглобулина М, обладают высокой агглютинирующей активностью и способны активировать комплемент по классическому пути.

Иммуноглобулин A

Роль и значение сывороточного иммуноглобулина А до сих пор изучены недостаточно. Он не участвует в активации комплемента, в лизисе бактерий и клеток (например, эритроцитов). В то же время обосновано предположение, что сывороточный иммуноглобулин А является основным источником для синтеза секреторного иммуноглобулина А. Последний же образуется лим-фоидными клетками слизистых оболочек пищеварительной и дыхательной систем и, таким образом, участвует в системе местного иммунитета, препят-ствуя инвазии патогенов (вирусов, бактерий и др.) в организм. Это так называемая первая линия защиты организма от инфицирования.

Иммуноглобулин D

О функции антител, относящихся к иммуноглобулину Д пока известно мало. Иммуноглобулин D обнаруживается в ткани миндалин и аденоидов, что позволяет предполагать его роль в местном иммунитете. Иммуноглобулин D находится на поверхности В-лимфоцита (вместе с мономерным IgМ) в виде mIg, контролируя его активацию и супрессию. Установлено также, что иммуноглобулин D активирует комплемент по альтернативному типу и обладает антивирусной активностью. В последние годы интерес к иммуноглобулину D возрастает в связи с описанием острого лихорадочного заболевания по типу ревматической лихорадки (увеличение лимфатических узлов, полисерозит, артралгии и миалгии) в сочетании с гипериммуноглобулинемией D.

Иммуноглобулин E

С иммуноглобулином Е, или реагинами, связано представление об аллергических реакциях немедленного типа. Основным методом распознавания специфической сенсибилизации к самым разным аллергенам является исследование общего или суммарного иммуноглобулина Е сыворотки крови, а также титров иммуноглобулин-Е-антител в отношении конкретных аллергенов быта, пищевых веществ, пыльцы растений и т. д. Иммуноглобулин Е активирует также макрофаги и эозинофилы, что может усиливать фагоцитоз или активность микрофагов (нейтрофилов).

В постнатальном периоде наблюдается весьма существенная динамика по содержанию в крови детей иммуноглобулинов разных классов. Она связана с тем, что в течение первых месяцев жизни продолжается распад и удаление тех иммуноглобулинов класса в, которые были переданы трансплацентарно от матери. Одновременно происходит нарастание концентраций иммуноглобулинов всех классов уже собственного производства. В течение первых 4-6 мес материнские иммуноглобулины полностью разрушаются и начинается синтез собственных иммуноглобулинов. Обращает на себя вни-мание, что В-лимфоциты синтезируют преимущественно иммуноглобулин М, содержание которого быстрее достигает показателей, свойственных взрослым, чем остальных классов иммуноглобулинов. Синтез же собственного иммуноглобулина в происходит медленнее.

Как было указано, к рождению у ребенка отсутствуют секреторные иммуноглобулины. Их следы начинают обнаруживаться с конца первой недели жизни. Их концентрация постепенно нарастает, причем содержание секреторного иммуноглобулина А достигает максимальных значений лишь к 10-12 годам.

Иммуноглобулин Е в сыворотке крови, кЕ/л

Возраст детей

Здоровые дети

У взрослых при заболеваниях

Максимум

Максимум

Новорож-денные

Аллергический ринит

Астма атопическая

Атопический дерматит

Аспергиллез бронхолегочный:

ремиссия

Взрослые

обострение

Гипер-IgЕ синдром

IgЕ миелома

Более 15 000

Иммуноглобулины сыворотки крови у детей, г/л

Иммуноглобулин G

Иммуноглобулин А

Иммуноглобулин М

Максимум

Максимум

Максимум

Низкое содержание секреторного иммуноглобулина А обнаруживается у детей первого года жизни в секретах тонкой и толстой кишки, а также в фекалиях. В смывах из носа детей первого месяца жизни секреторный иммуноглобулин А отсутствует и очень медленно нарастает в последующие месяцы (до 2 лет). Этим объясняют более легкую заболеваемость детей раннего возраста респираторными инфекциями.

Иммуноглобулин D в сыворотке крови у новорожденных имеет концентрацию 0,001 г/л. Затем она нарастает после 6-й недели жизни и достигает значений, свойственных взрослым, к 5-10 годам.

Такая сложная динамика создает изменения количественных соотношений в сыворотке крови, чего нельзя не учитывать в оценке результатов диагностических исследований системы иммунитета, равно как и в трактовке особенностей заболеваемости и иммунологической конституции в разные возрастные периоды. Низким содержанием иммуноглобулинов в течение первого года жизни объясняют легкую восприимчивость детей к различным заболеваниям (органов дыхания, пищеварения, гнойничковым поражениям кожи). С увеличением контакта между детьми на втором году жизни, на фоне относительно низкого содержания иммуноглобулинов в этот период, наблюдается особенно высокая их заболеваемость по сравнению с детьми других периодов детства.

Гетерогемагглютинины, относящиеся к классу иммуноглобулинов М, обнаруживаются к 3-му месяцу жизни, затем их содержание увеличивается, но более заметно - в 2-2 1/2 года. У новорожденных содержание стафилококкового антитоксина равно таковому у взрослого человека, а затем оно снижается. Вновь его достоверное повышение наблюдается к 24-30 мес жизни. Динамика концентрации стафилококкового антитоксина в крови ребенка позволяет предполагать, что первоначально высокий ее уровень обусловлен трансплацентарной передачей его от матери. Собственный же синтез происходит позднее, чем и объясняется большая частота гнойничковых поражений кожи (пиодермий) у детей раннего возраста. При заболевании кишечными инфекциями (сальмонеллез, коли-энтерит, дизентерия) антитела к их возбудителям у детей первых 6 мес жизни обнаруживаются редко, в возрасте от 6 до 12 мес - лишь у 1/3 больных, а у детей на втором году жизни - почти у 60%.

При заболевании острыми респираторными инфекциями (аденовирусная, парагрипп) сероконверсия у детей одного года жизни обнаруживается лишь у 1/3 переболевших ими, а на втором году - уже у 60%. Это еще раз подтверждает особенности становления гуморального звена иммунитета у детей раннего возраста. Неслучайно во многих руководствах по педиатрии и иммунологии описанный клинико-иммунологический синдром или феномен получает права нозологической формы и обозначается как «физиологическая транзиторная гипоилшуноглобулинемия детей раннего возраста».

Прохождение ограниченного количества антигенного материала пищи через кишечный барьер само по себе не является патологическим феноменом. У здоровых детей любого возраста, а также у взрослых следовые количества пищевых белков могут поступать в кровь, вызывая образование специфических антител. Почти у всех детей, вскармливаемых коровьим молоком, вырабатываются прецицитирующие антитела. Вскармливание коровьим молоком приводит к повышению концентрации антител против молочных белков уже через 5 дней после введения смеси. Иммунный ответ особенно выражен у детей, получавших коровье молоко с периода новорожденности. Предшествующее грудное вскармливание результируется более низким содержанием антител и медленным его нарастанием. С возрастом, особенно после 1-3 лет, параллельно уменьшению проницаемости стенки кишечника определяется снижение концентрации антител к пищевым белкам. Возможность пищевой антигенемии у здоровых детей доказана прямым выделением пищевых антигенов, находящихся в крови в свободном виде или в составе иммунного комплекса.

Формирование относительной непроницаемости для макромолекул, так называемого кишечного блока, у человека начинается внутриутробно и про-исходит очень постепенно. Чем младше ребенок, тем выше проницаемость его кишечника для пищевых антигенов.

Специфической формой защиты от вредного влияния пищевых антигенов является иммунная система желудочно-кишечного тракта, состоящая из клеточного и секреторного компонентов. Основную функциональную нагрузку несет димерный иммуноглобулин А (SIgА). Содержание этого иммуноглобулина в слюне и пищеварительных секретах намного выше, чем в сыворотке. От 50 до 96% его синтезируется местно. Основные функции в отношении пищевых антигенов заключаются в препятствовании всасыванию макромолекул из желудочно-кишечного тракта (иммунное исключение) и регуляции проникновения пищевых белков через эпителий слизистой оболочки во внутреннюю среду организма. Относительно небольшие антигенные молекулы, пенетрирующие эпителиальную поверхность, стимулируют местный синтез SIgА, который препятствует последующему внедрению антигенов путем формирования комплекса на мембране. Однако желудочно-кишечный тракт новорожденного лишен этой специфической формы защиты, и все сказанное выше сможет полностью реализоваться очень нескоро, по мере полного созревания системы синтеза SIgA. У грудного ребенка сроки минимально-достаточного созревания могут колебаться от 6 мес до 1 "/2 года и более. Это и будет сроком формирования «кишечного блока». До этого срока система местной секреторной защиты и блокирования пищевых антигенов может быть обеспечена только и исключительно молозивом и молоком матери. Окончательное же созревание секреторного иммунитета может произойти и после 10-12 лет.

Биологический смысл значительного увеличения содержания иммуноглобулина А в молозиве непосредственно перед родами заключается в его специализированной функции иммунного исключения антигенов (инфекционных и пищевых) на слизистых оболочках.

Содержание SIgA в молозиве очень высоко и достигает 16-22,7 мг/л. С переходом молозивного молока в зрелое концентрация секреторных иммуноглобулинов существенно снижается. Реализации защитных функций SIgA способствует его выраженная устойчивость к протеолитическому действию ферментов, благодаря чему SIgA сохраняет свою активность во всех отделах желудочно-кишечного тракта, и у ребенка, находящегося на естественном вскармливании, почти полностью выводится в неизмененном виде с калом.

Участие SIgА женского молока в иммунных процессах, связанных с пищевыми антигенами, доказано обнаружением в человеческом молоке иммуноглобулин-А-антител против ряда пищевых белков: α-казеина, β-казеина, β-лактоглобулина коровьего молока.

На втором месте по концентрации иммуноглобулинов находится иммуноглобулин G, и особый интерес представляет относительно высокое содержание иммуноглобулина G4. Отношение концентрации иммуноглобулина G4 в молозиве к содержанию в плазме крови превосходит отношение концентрации иммуноглобулина G в молозиве к содержанию в плазме крови более чем в 10 раз. Этот факт, по мнению исследователей, может свидетельствовать о местной продукции иммуноглобулина G4 или его избирательном транспорте из периферической крови в молочные железы. Роль молозивного иммуноглобулина G4 неясна, однако его участие в процессах взаимодействия с пищевыми антигенами подтверждается обнаружением как в плазме, так и в молозиве специфических иммуноглобулин-С4-антител против β-лактоглобулина, бычьего сывороточного альбумина и α-глиадина. Высказано предположение, что иммуноглобулин G4 усиливает антигенную активацию тучных клеток и базофилов, приводя к выделению медиаторов, необходимых для осуществления хемотаксиса и фагоцитоза.

Таким образом, состояние синтеза иммуноглобулинов не только определяет готовность ребенка раннего возраста к инфекциям, но и оказывается причинным механизмом для проникновения через кишечный барьер и барьер других слизистых оболочек широкого потока аллергенных субстанций. Совокупно с другими анатомо-физиологическими особенностями детей раннего возраста это формирует особенную и вполне самостоятельную форму «транзиторной атопической конституции, или диатеза детей раннего возраста». Этот диатез может иметь очень яркие, прежде всего кожные проявления (экзема, аллергодерматоз) до 2-3-летнего возраста с быстрой последующей ремиссией изменений кожи или полным выздоровлением в последующие годы. У многих детей с наследственным предрасположением к атопии повышение проницаемости слизистых оболочек в период транзитор- ного атопического диатеза способствует реализации наследственного предрасположения и формированию длительной цепи уже непроходящих аллергических заболеваний.

Таким образом, возрастные физиологические особенности иммунитета у детей раннего возраста определяют существенное повышение их чувствительности как к инфекционным факторам среды, так и к экспозиции аллергенов. Это определяет многие требования по уходу за детьми и профилактике их заболеваний. Сюда включается необходимость особого контроля за риском контакта с инфекциями, целесообразность индивидуального или минигруппового воспитания, контроль за качеством пищевых продуктов и их переносимостью по симптоматике аллергических реакций. Существует и выход из положения, выработанный многотысячелетней эволюцией млекопитающих - это полноценное грудное вскармливание детей. Молозиво и нативное женское молоко, содержащие большое количество иммуноглобулина А, макрофагов и лимфоцитов, как бы компенсируют незрелость общего и местного иммунитета у детей первых месяцев жизни, позволяют благополучно миновать возраст критического или пограничного состояния иммунной системы.

Ответ: Иммуноглобулины:

Иммуноглобулинами называются белки, которые синтезируются под влиянием антигена и специфически с ним реагируют. При электрофорезе они локализуются в глобулиновых фракциях.

Иммуноглобулины состоят из полипептидных цепей. В молекуле иммуноглобулина различают четыре структуры:

Первичная – это последовательность определенных аминокислот. Она строится из нуклеотидных триплетов, генетически детерминируется и определяет основные последующие структурные особенности.

Вторичная определяется конформацией полипептидных цепей.

Третичная определяет характер расположения отдельных участков цепи, создающих пространственную картину.

Четвертичная характерна для иммуноглобулинов. Из четырех полипептидных цепей возникает биологически активный комплекс. Цепи попарно имеют одинаковую структуру.

Любая молекула иммуноглобулина имеет Y-образную форму и состоит из 2 тяжелых (Н) и 2 легких (L) цепей, связанных между собой дисульфидными мостиками. Каждая молекула ИГ имеет 2 одинаковых антигенсвязывающих фрагмента Fab (англ. Fragment antigen binding) и один Fc-фрагмент (англ. Fragment cristalisable), с помощью которого ИГ комплементарно связываются с Fc-рецепторами клеточной мембраны.

Концевые участки легких и тяжелых цепей молекулы ИГ достаточно разнообразны (вариабельны), а отдельные области этих цепей отличаются особенно выраженным разнообразием (гипервариабельностью). Остальные участки молекулы ИГ относительно низменны (константны). В зависимости от строения констатных областей тяжелых цепей ИГ разделяются на классы (5 классов) и подвиды (8 подвидов). Именно эти константные области тяжелых цепей, существенно отличаясь по аминокислотному составу у различных классов ИГ, в конечном итоге определяют особые свойства каждого класса антител:

lgM активируют систему комплемента;

IgE связывается со специфическими рецепторами на поверхности тучных клеток и базофилов с высвобождением из этих клеток медиаторов аллергии;

IgA секретируется в различные жидкости организма, обеспечивая секреторный иммунитет;

IgD функционирует в основном в качестве мембранных рецепторов для антигена;

в IgG проявляет разнообразные виды активности, в том числе способность проникать через плаценту.

Классы иммуноглобулинов.

Иммуноглобулины G, IgG

Иммуноглобулины G – это мономеры, включающие 4 субкласса (IgGl – 77%; IgG2 – 11%; IgG3 – 9%; IgG4 – 3%), которые отличаются друг от друга по аминокислотному составу и антигенным свойствам. Их содержание в сыворотке крови колеблется от 8 до 16,8 мг/мл. период полураспада составляет 20-28 дней, а синтезируется в течение суток от 13 до 30 мг/кг. На их долю приходится 80% от общего содержания ИГ. Они защищают организм от инфекций. Антитела субклассов IgGl и IgG4 специфически связываются через Fc-фрагменты с возбудителем (иммунное опсонирование), а благодаря Fc- фрагментам взаимодействуют с Fc-рецепторами фагоцитов (макрофагов, полиморфноядерных лейкоцитов), способствуя тем самым фагоцитозу возбудителя. IgG4 участвует в аллергических реакциях и не способен фиксировать комплемент.

Антитела класса IgG играют основополагающую роль в гуморальном иммунитете при инфекционных заболеваниях, вызывая гибель возбудителя с участием комплемента и опсонизируя фагоцитарные клетки. Они проникают через плаценту и формируют антиинфекционный иммунитет у новорожденных. Они способны нейтрализовать бактериальные экзотоксины, связывать комплемент, участвовать в реакции преципитации.

Иммуноглобулины М, IgM

Иммуноглобулины М – это наиболее «ранние» из всех классов ИГ, включающие 2 субкласса: IgMl (65%) и IgM2 (35%). Их концентрация в сыворотке крови колеблется от 0,5 до 1,9 г/л или 6% от общего содержания ИГ. За сутки синтезируется 3-17 мг/кг, а период их полураспада составляет 4-8 суток. Они не проникают через плаценту. IgM появляется у плода и участвует в антиинфекционной защите. Они способны агглютинировать бактерий, нейтрализовать вирусы, активировать комплемент. IgM играют важную роль в элиминации возбудителя из кровеносного русла, в активации фагоцитоза. Значительное повышение концентрации IgM в крови наблюдается при ряде инфекций (малярия, трипаносомозе) как у взрослых, так и у новорожденных. Это показатель внутриутробного заражения возбудителя краснухи, сифилиса, токсоплазмоза, цитомегалии. IgM – это антитела, образующиеся на ранних сроках инфекционного процесса. Они отличаются высокой активностью в реакциях агглютинации, лизиса и связывания эндотоксинов грамотрицательных бактерий.

Иммуноглобулины A, IgA

Иммуноглобулины А – это секреторные ИГ, включающие 2 субкласса: IgAl (90%) и IgA2 (10%). Содержание IgA в сыворотке крови колеблется от 1.4 до 4.2 г/л или 13% от общего количества ИГ; ежедневно синтезируется от 3 до 50 мкг/кг. Период полураспада антител составляет 4-5 суток. IgA содержится в молоке, молозиве, слюне, в слезном, бронхиальном и желудочно-кишечном секрете, желчи, моче. В состав IgA входит секреторный компонент, состоящий из нескольких полипептидов, который повышает устойчивость IgA к действию ферментов. Это основной вид ИГ, участвующих в местном иммунитете. Они препятствуют прикреплению бактерий к слизистой, нейтрализуют энтеротоксин, активируют фагоцитоз и комплемент. IgA не определяется у новорожденных. В слюне он появляется у детей в возрасте 2 месяца., причем первым обнаруживается секреторный компонент SC. И только позднее полная молекула SigA. Возраст 3 мес. Многими авторами определяется как критический период; этот период особенно важен для диагностики врожденной или транзиторной недостаточности местного иммунитета.

Иммуноглобулины Е, IgE

Иммуноглобулины D, IgD

Иммуноглобулины D – это мономеры; их содержание в крови составляет 0,03-0.04 г/л или 1% от общего количества ИГ; в сутки их синтезируется от 1 до 5 мг/кг, а период полураспада колеблется в пределах 2-8 дней. IgD участвуют в развитии местного иммунитета, обладают антивирусной активностью, в редких случаях активируют комплемент. Плазматические клетки, секретирующие IgD, локализуются преимущественно в миндалинах и аденоидной ткани. IgD выявляются на B-клетках и отсутствуют на моноцитах, нейтрофилах и Т-лимфоцитах. Полагают, что IgD участвуют в дифференцировке В-клеток, способствуют развитию антиидиотипического ответа, участвуют в аутоиммунных процессах.

Динамика продукции антител в ответ на антигенную стимуляцию опреде-ляется в значительной степени видовой принадлежностью индивидуума, по-скольку генетически детерминирована (Вершигора А.В., 1990). Тем не менее, обнаружены общие закономерности антителообразования, свойственные раз-личным видам животных и человеку. Последние заключаются в следующем.

Интенсивность антителообразования зависит от структурных особен-ностей антигена, способа введения антигена и пути его проникновения в ор-ганизм.

Выработка антител зависит от состояния иммунологической реактив-ности организма, определяемой, в свою очередь, уровнем представи-тельности того клона лимфоцитов, который способен рецептировать данный антиген, наличием или отсутствием мутаций указанного клона, способных повлиять на количество и качество синтезируемых иммуно - глобулинов.

Характер иммунного ответа, безусловно, определяется функциональной активностью макрофагальных элементов, включающих различные популя-ции классических фагоцитов с менее выраженной способностью к презента-ции антигена в реакциях первичного иммунного ответа, а также антигенпре-зентирующих макрофагов с незначительно выраженной фагоцитарной актив-ностью.

Интенсивность антителообразования зависит от гормонального статуса, функциональной активности центральной нервной системы. Избыточный гормональный фон, создаваемый АКТГ, глюкокортикоидами, а также недос-таточность инсулина могут сказаться неблагоприятно на процессах антите-лообразования.

Сила иммунного ответа зависит и от общего состояния организма, дли-тельности предшествующих заболеваний инфекционной и неинфекционной природы, характера воздействия стрессорных раздражителей, состояния электролитного баланса организма, кислотно-основного состояния, степени интенсификации свободнорадикального окисления липидов в биологических мембранах.

Общеизвестно, что при развитии разнообразных типовых патологических процессов возникают неспецифическая дестабилизация биологических мем-бран клеток различных органов и тканей, набухание митохондрий, дефицит АТФ, подавление всех энергозависимых реакций в клетках, в том числе и синтеза антител различных классов иммуноглобулинов.

Установлено, что иммунизация человека антигенами белковой, вирусной природы, липополисахаридными антигенами энтеробактерий стимулирует образование антител преимущественно класса IgG, а у морских свинок по-добные же антигены в основном усиливают синтез антител класса IgM. На одну молекулу введенного антигена синтезируется сравнительно большое количество антител. Так, на каждую молекулу введенного дифтерийного ана-токсина в течение 3 недель синтезируется свыше миллиона молекул антиток-сина.

Для каждого антигена имеются оптимальные дозы воздействия на иммун-ную систему. Малые дозы индуцируют слабый ответ, чрезвычайно большие могут вызвать развитие иммунологической толерантности или оказать ток-сическое влияние на организм.

При первичном антигенном воздействии развиваются 4 фазы иммунного ответа.

1-я фаза выработки антител

1-я фаза выработки антител (фаза покоя, лаг-фаза, фаза индукции, или ла-тентная фаза), то есть период между временем поступления антигена в орга-низм и до начала экспотенциального прироста антител (Йегер Л.,1986; Лед-ванов М.Ю., Киричук В.Ф., 1990).

Длительность указанной фазы может быть различной в зависимости от характера антигена: от нескольких минут и часов до месяца.

Сущность указанной фазы заключается в развитии макрофагальной реак-ции, фагоцитозе или эндоцитозе антигена антигенпредставляющими или фа-гоцитирующими макрофагами, в образовании высокоиммуногенных фракций антигена в комплексе с антигенами МНС I и II класса, презентации антигена В- и Т-лимфоцитам, кооперативном взаимодействии макрофагальных кле-точных элементов и антигенчувствительных субпопуляций Т- и В-лимфоцитов, развитии плазматизации лимфоидной ткани. Как указывалось выше, одной из особенностей лимфоидных клеток является сохранение в них уникального репарирующего хромосомы фермента стволовой кроветворной клетки - теломеразы, что обеспечивает возможность неоднократной цикличе-ской пролиферации в течение жизни на фоне антигенной стимуляции.

Как известно, существуют два механизма активации покоящихся В-лимфоцитов с последующим включением их в пролиферацию и дифферен-цировку.

Для основной субпопуляции В2-лимфоцитов, дифференцирующихся в ко-стном мозге, включение в иммунный ответ обеспечивается их взаимодейст-вием с Т-хелперами, рестриктированными по главному комплексу гистосов-местимости, а также различными цитокинами - факторами роста и пролифе-рации.

Отобранный клон В-лимфоцитов вступает в фазу пролиферации, что обеспечивает увеличение представительства в лимфоидной ткани антиген-чувствительного клона В-лимфоцитов, способного к дальнейшей трансфор-мации.

ВI (CD5) субпопуляция лимфоцитов, покидающая костный мозг в раннем периоде эмбрионального развития и дифференцирующаяся вне костного моз-га, способна на Т- независимую активацию под влиянием определенной группы антигенов - бактериальных полисахаридов. В процессе плазматиза-ции ВI-субпопуляции лимфоцитов на фоне антигенной стимуляции образу-ются иммуноглобулины класса М с широкой перекрестной реактивностью.

2-я фаза выработки антител

2-я фаза выработки антител (логарифмическая фаза, лог-фаза, продуктив-ная фаза). Эта фаза получила название фазы экспотенциального прироста ан-тител. Она занимает промежуток времени от появления антител до достиже-ния максимального количества их в крови, в среднем продолжается от 2 до 4 дней. В некоторых случаях длительность фазы возрастает до 15 дней.

Экспотенциальный рост количества антител, удвоение их титров, проис-ходят первоначально каждые 2-4 часа, а затем каждые- 4-6 часов. Однако скорость антителообразования уже к концу вторых-третьих суток замедляет-ся, оставаясь на определенном уровне в течение различного периода време-ни.

3-я фаза выработки антител

3-я фаза выработки антител - фаза стабилизации, или стационарный пери-од, в течение которого титр антител остается стабильно высоким. В этот пе-риод прекращается переход клеток из класса активированных предшествен-ников в класс антителообразующих клеток.

Длительность фазы стабилизации в значительной мере определяется структурными особенностями антигенов-аллергенов. В ряде случаев она продолжается в течение нескольких дней, недель, месяцев. Антитела к неко-торым микробным антигенам продолжают синтезироваться в достаточно вы-соком титре на протяжении ряда лет.

Касаясь значимости указанной фазы стабилизации, следует отметить, что антитела не только обеспечивают инактивацию бактериальных, токсических, аллергических патогенных факторов в различных реакциях агглютинации, преципитации, активации комплемента, антителозависимого цитолиза, но и выполняют роль ауторегуляторов иммунопоэза.

4-я фаза снижения продукции антител

Длительность этой фазы различна и зависит от сохранности антигена в тканях.

Вышеописанная динамика антителообразования возникает в случае пер-вичной иммунизации. Повторная иммунизация спустя несколько месяцев из-меняет динамику иммунного ответа. Латентный период и период нарастания титра антител становятся значительно короче, количество антител достигает максимума быстрее и дольше сохраняется на высоком уровне, повышается аффинность антител.

В развитии вторичного иммунного ответа важная роль отводится возрас-танию уровня клеток иммунологической памяти к данному антигену. С уве-личением длительности иммунизации повышается специфичность антител к растворимым антигенам.

Следует отметить, что образование комплексов антиген-антитело в про-цессе многократной иммунизации увеличивает силу антигенного воздействия и интенсивность антителообразования.

Как установлено на протяжении последних десятилетий, синтез иммуног-лобулинов является саморегулирующимся процессом. Доказательством этого служит ингибирующее воздействие на продукцию антител специфических иммуноглобулинов, введенных в кровоток, причем, чем выше аффинность антител, тем интенсивнее их ингибирующее действие на процессы иммуно-поэза. Антитела могут оказывать тормозящее влияя-ние на синтез не только гомологичных, но и родственных иммуноглобулинов. Образование антител могут тормозить и большие дозы неспецифических -глобулинов.

Структура и функциональная значимость иммуноглобулинов.

Белки, входящие в семейство иммуноглобулинов, имеют одинаковый принцип строения: их молекулы включают легкие и тяжелые полипептидные цепи (Долгих Р.Т.,1998).

Согласно номенклатуре ВОЗ (1964) различают 5 классов иммуно-глобулинов: IgG, IgA, IgM, IgE, IgD. Для каждого класса иммуно-глобулинов характерны свои специфические тяжелые Н-цепи, обозна-чаемые соответст-венно классу иммуноглобулинов (m, g, а, d, e). Именно особенности структу-ры Н-цепей определяют принадлежность иммуно-глобулина к тому или ино-му классу.

Иммуноглобулины образованы по меньшей мере четырьмя поли-пептидными цепями, соединенными между собой дисульфидными мостика-ми. Две из них представлены тяжелыми Н-цепями, а две - легкими L-цепями. Различают два вида легких цепей k и l, которые могут встречаться в имму-ноглобулинах каждого из 5 классов. Иммуноглобулины классов G, D и E яв-ляются мономерами, в то же время IgM встречается преимущественно в виде пентамера, а IgA - в виде моно-, ди- и тетрамера. Полимеризация мономеров в молекулах иммуноглобулинов классов А и М обеспечивается наличием до-полнительных J-цепей (Вершигора А.В., 1990; Ройт А., 1991; Стефани Д.Ф., Вельтищев Ю.Е.,1996).

Как в тяжелых, так и в легких цепях, имеются вариабельная V-область, в которой последовательность аминокислот непостоянна, а также постоянная, константная, С-область.

Вариабельные участки легких и тяжелых цепей принимают участие в формировании активного центра антител, определяют специфичность струк-туры антидетерминанты антител, обеспечивающей связывание детерминанты антигена.

У одной молекулы антител могут быть однозначными легкие цепи (k или l).

Антитела разной специфичности могут содержаться в любом из классов иммуноглобулинов. В лимфоидной ткани в ответ на действие одного и того же антигена одновременно происходит синтез полипептидных цепей различ-ных классов иммуноглобулинов.

Общим в структуре иммуноглобулинов различных классов является нали-чие так называемых Fab-фрагментов (Fragment antigen binding), Fc-фрагмента (Fragment crystalline) и Fd-фрагмента (Fragment difficult).

Fab-фрагмент включает антигенчувствительные рецепторные групппы, способные специфически связывать антиген. В формировании Fab-фрагмента принимает участие CD-участок (аминоконцевая часть тяжелой цепи), а, воз-можно, и фрагмент вариабельной части легкой цепи.

Fc-фрагмент определяет неспецифические функции антител: фиксацию комплемента, способность проходить через плаценту, фиксацию иммуногло-булинов на клетках.

Исследование структуры иммуноглобулинов затруднено из-за их гетеро-генности. Гетерогенность иммуноглобулинов обусловлена тем, что молекулы иммуноглобулинов являются носителями различных совокупностей детер-минант. Различают три основных разновидности гетерогенности антител: изотипию, аллотипию, идиотипию.

Изотипические варианты антител встречаются у всех индивидов. К ним следует отнести подклассы различных типов иммуноглобулинов.

В классе IgG известны 4 изотипа (IgG1, IgG2, IgG3, IgG4) , в классах IgA, IgM и IgD имеются 2 изотипа, или подкласса.

Изотипические детерминанты антител одного класса и подкласса у особей данного вида идентичны. Изотипические различия определяются аминокис-лотной последовательностью в постоянной части тяжелых цепей, а также ко-личеством и положением дисульфидных мостиков. Так, IgG1 и IgG4 имеют четыре межцепочечные дисульфидные связи, две из которых соединяют Н-цепи. В молекуле IgG2 есть шесть дисульфидных мостиков, четыре из кото-рых связывают полипептидные цепи.

К изотипическим вариантам следует причислить k и l - типы и подтипы L-цепей.

Вариабельные области легких цепей определенного типа могут быть раз-делены на подгруппы. У L-цепей k-типа существует 4 подгруппы, у L-цепей l - 5 подгрупп. Цепи разных подгрупп помимо отличий первичной структуры характеризуются вариацией последовательности двадцати N-концевых ами-нокислот.

Для вариабельной части Н-цепи описаны 4 подгруппы.

Аллотипические варианты иммуноглобулинов у человека и животных генетически детерминированы, частота их варьирует у индивидов различных видов. Аллотипы представляют собой аллельные варианты полипептидных цепей, возникающие в процессе мутаций. Синтез аллотипов контролируется различными аллелями генов. Имеется шесть аллотипов глобулинов кролика. В настоящее время известно много систем аллотипических маркеров имму-ноглобулинов человека, расположенных в С-области L и Н-цепей. Существо-вание некоторых из этих маркеров обусловлено развитием точечной мутации и заменой лишь одной аминокислоты в полипептидной последовательности. Если мутация затрагивает структуру области, специфичную для определен-ного класса и подкласса иммуноглобулинов, образуется аллотипический ва-риант.

В сыворотке одного индивидуума можно обнаружить несколько аллоти-пических маркеров.

Идиотипические различия антител по существу отражают специфич-ность антител. Они связаны с вариабельными участками полипептидных це-пей, не зависят от особенностей структуры различных классов иммуноглобу-линов, оказываются идентичными у разных лиц при наличии у них антител к одному и тому же антигену.

Идиотипических вариантов существует примерно столько же, сколько и различных по специфичности антител. Принадлежность антитела к опреде-ленному идиотипу иммуноглобулинов обусловливает специфичность взаи-модействия его с антигеном. Принято считать, что наличие от 5000 до 10000 различных вариантов специфичности антител достаточно, чтобы связать с большей или меньшей аффинностью любую из возможных разновидностей антигенных детерминант. В настоящее время антигенные детерминанты V-областей также принято называть идиотипами.

Аффинность и авидность являются важнейшими свойствами антител раз-личных классов иммуноглобулинов, причем аффинность отражает прочность связи активного центра антител с детерминантой антигена, в то время как авидность характеризует степень связывания антигена антителом, опреде-ляемую аффинностью и количеством активных центров антитела.

Гетерогенная популяция антител имеет набор различных по аффинности антидетерминант, поэтому, определяя ее авидность, мы определяем усред-ненную аффинность. При равной аффинности авидность IgM может быть больше, чем авидность IgG, поскольку IgM функционально имеет пять ва-лентностей, а IgG двухвалентен.

Генетика образования антител

Как указывалось выше, иммуноглобулины различных классов и подклас-сов представлены тяжелыми и легкими полипептидными цепями, в каждой из которых имеются вариабельные и константные участки. В настоящее вре-мя установлено, что синтез вариабельной области находится под контролем многих V-генов, количество которых ориентировочно равняется 200.

В противоположность этому для константной области известно ограни-ченное число С-генов в соответствии с ее незначительной вариабельностью (класс, подкласс, тип, подтип).

На начальных этапах формирования лимфоидной ткани V- и С- гены рас-полагаются в далеко отстоящих друг от друга сегментах ДНК, а в геноме со-зревающих иммунокомпетентных клеток они объединяются за счет трансло-кации в одном сублокусе, контролирующем синтез Н- и L-цепей.

Формирование многообразия антител объясняется гипотезой соматиче-ской гипермутабельности V-генов, что маловероятно, а также гипотезами ге-нетической рекомбинации генов и ошибок рекомбинации.

Общая характеристика отдельных классов иммуноглобулинов

В связи с особенностями физико-химической структуры, антигенности и биологических функций различают 5 основных классов иммуноглобулинов (IgM, IgG, IgA, IgE, IgD).

Следует отметить, что антитела одной специфичности могут принадле-жать к различным классам иммуноглобулинов; в то же время к одному клас-су иммуноглобулинов могут принадлежать антитела различной специфично-сти.

Иммуноглобулины класса М

Иммуноглобулины класса М являются наиболее ранними как в филогене-тическом, так и в онтогенетическом отношении. В эмбриональном периоде и у новорожденных синтезируются в основном IgM. На долю IgM приходится около 10% общего количества иммуноглобулинов, средняя концентрация их в сыворотке женщин составляет 1,1 г/л, в сыворотке мужчин - 0,9 г/л.

Антитела класса IgM пятивалентны, обладают выраженной способ-ностью агглютинировать, преципитировать и лизировать антигены. Из всех типов антител IgM проявляют наибольшую способность к связыванию ком-племента. IgM находятся преимущественно в плазме крови и лимфе, ско-рость их биосинтеза составляет около 7 мг/сутки, период полужизни - 5,1 дня. IgM не проходят через плаценту. Обнаружение у плода IgM в высокой концентрации свидетельствует о внутриматочной инфекции.

Касаясь структурной организации IgM, необходимо отметить, что моле-кулы IgM имеют ММ, равную 900“000 с константой седиментации 19S, включают 5 субъединиц, соединенных дисульфидными связями между тяже-лыми цепями. Каждая субъединица IgM имеет ММ 180“000 и константу се-диментации 7S, идентична по структуре молекуле IgG.

Воздействуя на молекулу IgM пепсином, трипсином, химотрипсином, па-паином, можно получить различные фрагменты (Fab, Fd, Fc). В составе IgM имеется J-цепь,участвующая в полимеризации молекулы.

В зависимости от способности фиксировать комплемент при участии Fc-фрагмента IgM делятся на два подкласса: IgM1 и IgM2. IgM1 связывают ком-племент, IgM2 не связывают комплемент.

При электрофоретическом исследовании макроглобулины мигрируют в зоне -глобулиновой фракции.

К концу 2-го года жизни ребенка содержание IgM составляет 80% от его содержания у взрослых. Максимальная концентрация IgM отмечается в 8 лет.

Иммуноглобулины класса G

IgG представляют собой наиболее изученный класс иммуноглобу-линов, содержатся в сыворотке крови в максимально высокой по сравнению с дру-гими иммуноглобулинами концентрации (в среднем 12,0 г/л) , составляют 70-75% общего количества иммуноглобулинов.

Молекулярная масса IgG равна 150“000, константа седиментации-7S.

Обладая двумя антигенсвязывающими центрами,IgG образуют с полива-лентными антигенами сетевую структуру, вызывают преципитацию раство-римых антигенов, а также агглютинацию и лизис корпускулярных и патоген-ных агентов.

Выделяют наличие 4 подклассов IgG: IgG1, IgG2, IgG3, IgG4.

Максимальной способностью активировать комплемент по классическому пути обладают подклассы IgG3, IgG1 и IgG2. Подкласс IgG4 способен акти-вировать комплемент по альтернативному пути.

Антитела, относящиеся к подклассам IgG1, IgG3, IgG4, беспрепятственно проникают через плаценту, антитела подкласса IgG2 обладают ограниченной способностью трансплацентарного транспорта.

IgG образуют основную линию специфических иммунологических меха-низмов защиты против различных возбудителей. Антитела подкласса IgG2 в основном продуцируются против антигенов полисахаридной природы, анти-резусные антитела относятся к IgG4.

Молекулы IgG свободно диффундируют из плазмы крови в тканевую жидкость, где находится почти половина (48,2 %) имеющегося в организме IgG.

Скорость биосинтеза IgG составляет 32 мг/кг массы в сутки, период полу-распада - 21-23 дня. Исключение составляют IgG3, для которых период полу-распада значительно короче - 7-9 дней.

Трансплацентарный переход IgG обеспечивается особой группировкой Fc-фрагмента. Переходящие через плаценту антитела от матери к ребенку имеют существенное значение для защиты организма ребенка от ряда микро-бов и токсинов: возбудителей дифтерии, столбняка, полиомиелита, кори. К концу первого года жизни ребенка в крови содержится 50-60% IgG от их со-держания у взрослого человека, к концу 2-го года - около 80% такового пока-зателя у взрослых.

Дефицит IgG2 и IgG4 в первые годы жизни определяет высокую чувстви-тельность ребенка к патогенному воздействию пневмококков, менингококков и других возбудителей.

Иммуноглобулины класса A

В соответствии с особенностями структуры выделяют три типа иммуног-лобулинов класса А:

 сывороточные IgA, имеющие мономерную структуру и состав-ляющие 86% всего содержащегося в сыворотке IgA;

 cывороточные димерные IgA;

 cекреторные IgA, представляющие собой полимер, чаще всего димер, характеризуются наличием добавочного секреторного компонента, отсутствующего у сывороточного IgA.

IgA не определяются в секретах новорожденных; в слюне они появляются у детей в возрасте 2 месяцев. Содержание секреторного IgA в слюне достига-ет его уровня у взрослого к 8 годам. К концу первого года жизни ребенка в крови содержится примерно 30% IgA. Плазматический уровень IgA достига-ет такового у взрослых к 10-12 годам. Иммуноглобулины класса А составля-ют около 20% общего количества иммуноглобулинов.

В норме в сыворотке крови отношение IgG/IgA составляет 5-6, а в секре-тируемых биологических жидкостях (слюна, кишечный сок, молоко) оно уменьшается до 1 и менее. IgA содержатся в количестве до 30 мг на 100 мл секрета.

По физико-химическим свойствам IgA гетерогенны, могут встречаться в форме мономеров, димеров и тетрамеров с константами седиментации 7, 9, 11, 13. В сыворотке крови IgA представлены преимущественно мономерной формой; сывороточный IgA синтезируется в селезенке, лимфатических узлах и слизистых оболочках.

Биологическая функция IgA заключается в основном в местной защите слизистых оболочек от инфекции. Проникшие под эпителий антигены встре-чают димерные молекулы IgA. Образующиеся при этом комплексы активно выносятся на поверхность слизистых после их соединения с транспортным фрагментом в мембранах эпителия.

Высказывается предположение о возможности активации комплемента при участии IgA альтернативным путем и, таким образом, обеспечения при участии IgA процессов опсонизации и лизиса бактерий.

Известно также, что секреторный IgA препятствует адгезии бактерий к эпителиальным клеткам, затрудняя этим колонизацию слизистых бактерия-ми.

Помимо секреторного IgA существенное значение имеют содер-жащиеся в секретах у человека IgM и IgG, причем IgM могут активно секретироваться за счет наличия секреторного компонента и играть важную роль в обеспече-нии местного иммунитета в пищеварительном тракте. IgG могут проникать в секреты лишь пассивным путем.

Система секреторных иммуноглобулинов обеспечивает интенсивный, но непродолжительный иммунный ответ и не формирует клеток иммунологиче-ской памяти, препятствует контакту антигенов с плазматическими IgG и IgM, последующей активации комплемента и цитолитического разрушения собст-венных тканей.

Иммуноглобулины класса D

Иммуноглобулины класса D составляют около 2% общего количества им-муноглобулинов крови. Концентрация их в сыворотке достигает 30 мг/л, ММ составляет, по данным разных авторов, от 160“000 до 180“000; константы се-диментации колеблются от 6,14 до 7,04 S. IgD не связывают комплемент, не проходят через плаценту и не связываются тканями. 75% IgD содержится в плазме крови, период полураспада составляет 2,8 дня, скорость биосинтеза 0,4 мг/кг в день. Биологическая функция IgD неясна; на определенных стади-ях дифференцировки В-лимфоцитов IgD выполняют роль рецептора. Кон-центрация IgD возрастает почти вдвое во время беременности, а также уве-личивается при некоторых хронических воспалительных процессах.

Иммуноглобулины класса E

Концентрация IgE в плазме составляет 0,25 мг/л, процентное содержание от общего количества иммуноглобулинов - 0,003%, период полураспада 2,3 - 2,5 дня; скорость биосинтеза - 0,02 мг/кг массы в день.

IgE не связывают комплемент, не проходят через плаценту, термо-лабильны, быстро и прочно связываются аллогенными тканями, не преципи-тируют антигены. При аллергических заболеваниях концентрация IgE резко возрастает и достигает в среднем 1,6 мг/л.

Плазматические клетки, синтезирующие IgE, обнаруживаются в основном в слизистых оболочках бронхов и бронхиол, желудочно-кишечного тракта, мочевого пузыря, в миндалинах и аденоидной ткани. Распределение клеток, продуцирующих IgE, сходно с распределением IgA - продуцирующих клеток.

В случае преодоления барьера, образованного секреторными IgA, проис-ходит взаимодействие антигена с IgE - антителами, фиксированными на туч-ных клетках, индуцируется развитие аллергических реакций. Концентрация IgE в крови достигает уровня взрослых примерно к 10 годам. При участии Fc-фрагмента IgE фиксируются на поверхности клеток за счет Fc-рецепторов.

Различают классические высокоаффинные рецепторы тучных клеток и ба-зофилов для IgE, причем на одном базофиле могут фиксироваться от 30ґ103 до 400ґ103 молекул IgE, а также низкоаффинные рецепторы. Последние представлены в основном на макрофагах, эозинофилах, тромбоцитах.

Антитела класса IgE ответственны за развитие анафилактических (атопи-ческих) аллергических реакций гуморального типа.

Следует отметить, что в крови присутствует лишь около 1% IgE, более 99% IgE секретируются энтероцитами в просвет кишечника, причем секрети-руемые в просвет кишечника IgE создают противогельминтозную защиту, в частности, за счет IgE-зависимого цитолиза, обеспечиваемого эозинофилами. Как известно, эозинофилы могут продуцировать два токсических белка - большой основной протеин и катионный протеин эозинофилов.

Динамика образования антител имеет различный характер в зависимости от силы антигенного воздействия (дозы антигена), частоты воздействия антигена и его иммунной системы. Антителообразование протекает в несколько стадий:

1) латентная фаза - происходит переработка и представление антигена иммунокомпетентным клеткам и размножение клона плазматических клеток. Начинается синтез антител. В этом периоде антитела в крови не обнаруживаются;

2) логарифмическая фаза - синтезированные антитела высвобождаются из плазмоцитов и поступают в лимфу и кровь;

3) стационарная фаза - количество антител достигает максимума и стабилизируется;

4) фаза снижения уровня антител.

При первичном введении антигена (первичный иммунный ответ) латентная фаза составляет 3-5 суток, стационарная - 15-30 суток, фаза снижения - 1-6 месяцев и более.

Особенностью первичного иммунного ответа является то, что первоначально синтезируется IgM, затем IgG, а позже IgA.

Основные отличия вторичного ответа от первичного следующие:

Укороченный латентный период (до нескольких часов или 1-2 дня); более быстрый подъем и более высокий уровень концентрации антител (максимальная концентрация увеличивается в 3 раза); медленное снижение уровня антител, иногда в течение нескольких лет; синтезируется главным образом IgG.

Такое различие антителообразования при первичном и вторичном иммунном ответе объясняется тем, что после первичного введения антигена в иммунной системе формируется клон лимфоцитов с иммунологической памятью о данном антигене. После повторной встречи с этим же антигеном клон лимфоцитов с иммунологической памятью быстро размножается и интенсивно включает процесс антителогенеза.

Очень быстрое энергичное антителообразование при повторной встрече с антигеном используется для получения высоких титров антител при производстве диагностических и лечебных сывороток от иммунизированных животных, а также для экстренного создания иммунитета при вакцинации.

18.ХАРАКТЕРИСТИКА ГУМОРАЛЬНОГО И КЛЕТОЧНОГО ИММУННОГО ОТВЕТА.

Принято различать следующие формы иммунного ответа: 1) гуморальный ответ, 2) клеточный ответ, 3) гиперчувствительность немедленного типа, 4) гиперчувствительность замедленного типа; 5) иммунологическая память; 6) иммунологическая толерантность.

Иммунный ответ происходит в результате взаимодействия АПК (дендритных клеток, макрофагов), Т- и В-лимфоцитов, цитокинов. Он включает: 1) распознавание антигена; 2) активация клеток; 3) их дифференцировка и пролиферация.

Клетки взаимодействуют: 1) при контакте через специальные рецепторы на мембране клеток; 2) при помощи цитокинов .

Гуморальный иммунный ответ (антителообразование) . Основой гуморального иммунного ответа является активация В-лимфоцитов и их дифференцировка в антителообразующие плазматические клетки – плазмоциты.

В нем участвуют В-лимфоциты и Т H 2-хелперы .

В-лимфоциты играют роль антигенпрезентирующей и антителообразующей клетки.

Т H 2-хелперы дифференцируются из Т H 0-хелперов (наивных, нулевых) после распознавания комплекса антиген -MHC II класса на антигенпрезентирующих клетках (АПК, например, макрофагах).

Презентация макрофагами данного комплекса Т H 0-хелперам включает:

1) поглощение антигена и его расщепление (процессинг) до антигенных пептидов;

2) связывание антигенных пептидов с молекулами MHC II класса, образующимися внутри клетки («загрузка» в желобки молекул МНС);

3) выход комплекса антиген -MHC II класса на поверхность клетки для контакта с TCR Т H 0-хелпера.

При презентации антигена формируется иммунный синапс – зона (место)контакта между клетками для распознавания антигена и проведения сигнала в клетку. Включает: TCR (на Т H 0) + антиген - MHC II класса (на макрофаге)+ корецептор СД4 (на Т H 0). Таким образом, TCR распознает измененное «свое», осуществляя двойное распознавание «своего» от «чужого». При этом TCR одного лимфоцита распознают только один антиген. Т H 0-хелпер превращается в Т H 2-хелпер .

После этого Т H 2-хелперы взаимодействуют с В-лимфоцитами. В-лимфоцит распознает антиген при помощи BCR (иммуноглобулиновый рецептор) и клетка поглощает его. После расщепления антигена до низкомолекулярного пептида (процессинга ) и встраивания его в MHC II класса, В-лимфоцит представляет комплекс антиген -MHC II класса Т H 2-хелперу, который взаимодействует с ним при помощи TCR и корецептораСД4. Иммунный синапс включает: TCR (на Т H 2)+ антиген - MHC II класса (на В-лимфоците) +корецептор СД4 (на Т H 2). Далее, на поверхности Т H 2-хелпера появляется СД40-лиганд, который связывается с СД40-рецептором на В-лимфоците. После чего запускается пролиферация, дифференцировка клеток в плазмоциты, синтезирующие иммуноглобулины различных классов. Пролиферация В-лимфоцитов усиливается под воздействием ИЛ-3. Интерлейкины (ИЛ-4, ИЛ-5, ИЛ-6, ИЛ-10, ИЛ-13), продуцируемые Т H 2, участвуют в переключении синтеза классов иммуноглобулинов. Плазмоциты синтезируют антитела одной специфичности.

Образовавшиеся антитела специфически связываются с антигенами, вызвавшими их образование - формируются комплексы антиген-антитело . Комплексы антиген-антитело разрушаются при помощи комплемента (за счет образования МАК) или поглощаются и перевариваются макрофагами (иммунный фагоцитоз).

На поверхности одного микроба может быть множество различных антигенов, поэтому обычно вырабатывается целая серия антител, каждое из которых при этом направлено на определенный антиген.

Клеточный иммунный ответ - формирование клона цитотоксических Т-лимфоцитов – ЦТЛ (СД8), способных разрушать клетки мишени, мембраны которых содержат чужеродные материалы (например, вирусные белки).

Клеточный иммунный ответ лежит в основе противоопухолевого, противовирусного иммунитета и в реакциях отторжения трансплантата, т.е. трансплантационного иммунитета.

В клеточном иммунном ответе участвуют Т H 1-хелперы, ЦТЛ и АПК. Антигепрезентирующие клетки – АПГ (макрофаги и дендритные клетки) поглощают антиген и после процессинга представляют:

1) комплекс антиген -MHC I класса ® ЦТЛ; иммунный синапс включает: TCR (на ЦТЛ)+ антиген - MHC I класса (на макрофаге)+ корецептор СД8 (на ЦТЛ);

2) комплекс антиген-MHC II класса ® Т H 0;иммунный синапс включает:TCR (на Т H 0) + антиген-MHC II класса (на макрофаге)+ корецептор СД4 (на Т H 0) (как и при гуморальном иммунном ответе, но при этом Т H 0 ® Т H 1).

Таким образом, ЦТЛ с помощьюTCR и корецептора СД8 распознает антиген и MHC I класса (двойное распознавание), а Т H 0 с помощьюTCR и корецептора СД4 распознает антиген и MHC II класса и дифференцируются в Т H 1. Т H 1 секретируют ИЛ-2, под действием которого происходит пролиферация ЦТЛ. После чего ЦТЛ «узнают» клетки-мишени, инфицированные внутриклеточными микробами (например, вирусами). На клетках-мишенях выставляются микробные антигены в комплексе с MHC I класса, распознаваемые TCR и корецептором СД8. Активированные и дифференцированные ЦТЛ вызывают гибель клеток-мишеней с помощью выделяемых имицитотоксических белков: перфорины, гранулизины, гранзимы , которые, встраиваясь в мембрану клетки-мишени, образуют поры, способствующие проникновению гранзимов, которые запускают апоптоз клетки-мишени.

Разновидностью клеточного иммунного ответа является гиперчувствительность замедленного типа (ГЗТ) с участиемТ H 1-хелперов и активированных макрофагов. Наибольшую роль в активации макрофагов и NK-клеток выполняет γ-интерферон, выделяемый Т H 1. Активированные макрофаги производят эффективную деструкцию антигена.

Первичный ответ- при первичном контакте с возбудителем (антигеном), вторичный- при повторном контакте. Основные отличия:

Продолжительность скрытого периода (больше- при первичном);

Скорость нарастания антител (быстрее- при вторичном);

Количество синтезируемых антител (больше- при повторном контакте);

Последовательность синтеза антител различных классов (при первичном более длительно преобладают IgM, при вторичном- быстро синтезируются и преобладают IgG- антитела).

Вторичный иммунный ответ обусловлен формированием клеток иммунной памяти. Пример вторичного иммунного ответа- встреча с возбудителем после вакцинации.

Роль антител в формировании иммунитета.

Антитела имеют важное значение в формировании приобретенного постинфекционного и поствакцинального иммунитета.

1. Связываясь с токсинами, антитела нейтрализуют их, обеспечивая антитоксический иммунитет.

2. Блокируя рецепторы вирусов, антитела препятствуют адсорбции вирусов на клетках, участвуют в противовирусном иммунитете.

3. Комплекс антиген- антитело запускает классический путь активации комплемента с его эффекторными функциями (лизис бактерий, опсонизация, воспаление, стимуляция макрофагов).

4. Антитела принимают участие в опсонизации бактерий, способствуя более эффективному фагоцитозу.

5. Антитела способствуют выведению из организма (с мочой, желчью) растворимых антигенов в виде циркулирующих иммунных комплексов.

IgG принадлежит наибольшая роль в антитоксическом иммунитете, IgM- в антимикробном иммунитете (фагоцитоз корпускулярных антигенов), особенно в отношении грамотрицательных бактерий, IgA- в противовирусном иммунитете (нейтрализация вирусов), IgAs- в местном иммунитете слизистых оболочек, IgE- в реакциях гиперчувствительности немедленного типа.

Лекция № 13. Т- и В- лимфоциты. Рецепторы, субпопуляции. Кооперация клеток в иммунном ответе.(4)

К клеткам иммунной системы относят лимфоциты, макрофаги и другие антиген- представляющие клетки (А- клетки, от англ. accessory- вспомогательный), а также так называемую третью популяцию клеток (т.е. клеток, не имеющих основных поверхностных маркеров Т- и В- лимфоцитов, А- клеток).

По функциональным свойствам все иммунокомпетентные клетки разделяют на эффекторные и регуляторные. Взаимодействие клеток в иммунном ответе осуществляется с помощью гуморальных медиаторов - цитокинов . Основные клетки иммунной системы- Т- и В- лимфоциты.

Лимфоциты.

В организме лимфоциты постоянно рециркулируют между зонами скопления лимфоидной ткани. Расположение лимфоцитов в лимфоидных органах и их миграция по кровеносному и лимфатическому руслу строго упорядочены и связаны с функциями различных субпопуляций.

Лимфоциты имеют общую морфологическую характеристику, однако их функции, поверхностные CD (от claster differenciation) маркеры, индивидуальное (клональное) происхождение, различны.

По наличию поверхностных CD маркеров лимфоциты разделяют на функционально различные популяции и субпопуляции, прежде всего на Т- (тимусзависимые , прошедшие первичную дифференцировку в тимусе) лимфоциты и В - (bursa- зависимые, прошедшие созревание в сумке Фабрициуса у птиц или его аналогах у млекопитающих) лимфоциты.

Т- лимфоциты .

Локализация.

Обычно локализуются в так называемых Т- зависимых зонах периферических лимфоидных органов (периартикулярно в белой пульпе селезенки и паракортикальных зонах лимфоузлов).

Функции.

Т- лимфоциты распознают процессированный и представленный на поверхности антиген- представляющих (А) клеток антиген. Они отвечают за клеточный иммунитет , иммунные реакции клеточного типа. Отдельные субпопуляции помогают В- лимфоцитам реагировать на Т- зависимые антигены выработкой антител.

Происхождение и созревание.

Родоначальницей всех клеток крови, в том числе лимфоцитов, является единая стволовая клетка костного мозга . Она генерирует два типа клеток- предшественников- лимфоидную стволовую клетку и предшественника клеток красной крови, от которой происходят и клетки- предшественники лейкоцитов и макрофагов.

Образование и созревание иммунокомпетентных клеток осуществляется в центральных органах иммунитета (для Т- лимфоцитов- в тимусе). Клетки- предшественники Т- лимфоцитов попадают в тимус, где пре- Т- клетки (тимоциты) созревают, пролиферируют и проходят дифференцировку на отдельные субклассы в результате взаимодействия с эпителиальными и дендритными клетками стромы и воздействия гормоноподобных полипептидных факторов, секретируемых эпителиальными клетками тимуса (альфа1- тимозин, тимопоэтин, тимулин и др.).

При дифференцировке Т- лимфоциты приобретают определенный набор мембранных CD- маркеров. Т-клетки разделяют на субпопуляции в соответствии с их функцией и профилем CD- маркеров.

Т- лимфоциты распознают антигены с помощью двух типов мембранных гликопротеинов- Т- клеточных рецепторов (семейство Ig- подобных молекул) и CD3 , нековалентно связанных между собой. Их рецепторы, в отличие от антител и рецепторов В- лимфоцитов, не распознают свободно циркулирующие антигены. Они распознают пептидные фрагменты, представляемые им А- клетками через комплекс чужеродных веществ с соответствующим белком главной системы гистосовместимости 1 и 2 класса.

Выделяют три основные группы Т- лимфоцитов- помощники (активаторы), эффекторы, регуляторы .

Первая группа- помощники ( активаторы ) , в состав которых входят Т- хелперы1, Т- хелперы2, индукторы Т- хелперов, индукторы Т- супрессоров.

1. Т- хелперы1 несут рецепторы CD4 (как и Т- хелперы2) и CD44, отвечают за созревание Т- цитотоксических лимфоцитов (Т- киллеров), активируют Т- хелперы2 и цитотоксическую функцию макрофагов, секретируют ИЛ-2, ИЛ-3 и другие цитокины.

2. Т- хелперы2 имеют общий для хелперов CD4 и специфический CD28 рецепторы, обеспечивают пролиферацию и дифференцировку В- лимфоцитов в антителпродуцирующие (плазматические) клетки, синтез антител, тормозят функцию Т- хелперов1, секретируют ИЛ-4, ИЛ-5 и ИЛ-6.

3. Индукторы Т- хелперов несут CD29, отвечают за экспрессию антигенов HLA класса 2 на макрофагах и других А- клетках.

4. Индукторы Т- супрессоров несут CD45 специфический рецептор, отвечают за секрецию ИЛ-1 макрофагами, активацию дифференцировки предшественников Т- супрессоров.

Вторая группа- Т- эффекторы. В нее входит только одна субпопуляция.

5. Т- цитотоксические лимфоциты (Т- киллеры). Имеют специфический рецептор CD8, лизируют клетки- мишени, несущие чужеродные антигены или измененные аутоантигены (трансплантант, опухоль, вирус и др.). ЦТЛ распознают чужеродный эпитоп вирусного или опухолевого антигена в комплексе с молекулой класса 1 HLA в плазматической мембране клетки- мишени.

Третья группа- Т-клетки- регуляторы. Представлена двумя основными субпопуляциями.

6. Т- супрессоры имеют важное значение в регуляции иммунитета, обеспечивая подавление функций Т- хелперов 1 и 2, В- лимфоцитов. Имеют рецепторы CD11, CD8. Группа функционально разнородна. Их активация происходит в результате непосредственной стимуляции антигеном без существенного участия главной системы гистосовместимости.

7. Т- контсупрессоры. Не имеют CD4, CD8, имеют рецептор к особому лейкину. Способствуют подавлению функций Т- супрессоров, вырабатывают резистентность Т- хелперов к эффекту Т- супрессоров.

В- лимфоциты.

Существует несколько подтипов В- лимфоцитов. Основная функция В- клеток- эффекторное участие в гуморальных иммунных реакциях, дифференциация в результате антигенной стимуляции в плазматические клетки, продуцирующие антитела.

Образование В- клеток у плода происходит в печени, в дальнейшем- в костном мозге. Процесс созревания В- клеток осуществляется в две стадии- антиген - независимую и антиген - зависимую.

Антиген -независимая фаза. В- лимфоцит в процессе созревания проходит стадию пре- В- лимфоцита- активно пролиферирующей клетки, имеющей цитоплазменные H- цепи типа C мю (т.е. IgM). Следующая стадия- незрелый В- лимфоцит характеризуется появлением мембранного (рецепторного) IgM на поверхности. Конечная стадия антигеннезависимой дифференцировки- образование зрелого В- лимфоцита , который может иметь два мембранных рецептора с одинаковой антигенной специфичностью (изотипа) - IgM и IgD. Зрелые В- лимфоциты покидают костный мозг и заселяют селезенку, лимфоузлы и другие скопления лимфоидной ткани, где их развитие задерживается до встречи со “своим” антигеном, т.е. до осуществления антиген- зависимой дифференцировки.

Антиген- зависимая дифференцировка включает активацию, пролиферацию и дифференцировку В- клеток в плазматические клетки и В- клетки памяти. Активация осуществляется различными путями, что зависит от свойств антигенов и участия других клеток (макрофагов, Т- хелперов). Большинство антигенов, индуцирующих синтез антител, для индукции иммунного ответа требуют участия Т- клеток- тимус- зависимые пнтигены. Тимус- независимые антигены (ЛПС, высокомолекулярные синтетические полимеры) способны стимулировать синтез антител без помощи Т- лимфоцитов.

В- лимфоцит с помощью своих иммуноглобулиновых рецепторов распознает и связывает антиген. Одновременно с В- клеткой антиген по представлению макрофага распознается Т- хелпером (Т- хелпером 2), который активируется и начинает синтезировать факторы роста и дифференцировки. Активированный этими факторами В- лимфоцит претерпевает ряд делений и одновременно дифференцируется в плазматические клетки, продуцирующие антитела.

Пути активации В- клеток и кооперации клеток в иммунном ответе на различные антигены и с участием популяций имеющих и не имеющих антиген Lyb5 популяций В- клеток отличаются. Активация В- лимфоцитов может осуществляться:

Т- зависимым антигеном при участии белков МНС класса 2 Т- хелпера;

Т- независимым антигеном, имеющим в составе митогенные компоненты;

Поликлональным активатором (ЛПС);

Анти- мю иммуноглобулинами;

Т- независимым антигеном, не имеющим митогенного компонента.


Похожая информация.


Поделиться: