Дыхание аэробное. Анаэробное и аэробное дыхание – особенности процесса. Клеточное дыхание

В качестве конечного акцептора электронов вместо O 2 других окислителей неорганической или органической природы. Как и в случае аэробного дыхания , выделяющаяся в ходе реакции свободная энергия запасается в виде трансмембранного протонного потенциала, использующегося АТФ-синтазой для синтеза АТФ .

Больше путей переноса протонов через мембрану анаэробная ЭТЦ не содержит (в аэробной же их 3), в связи с чем нитратное дыхание по эффективности в расчёте на 1 моль глюкозы составляет лишь 70 % от аэробного. При поступлении в среду молекулярного кислорода бактерии переключаются на обычное дыхание.

Нитратное дыхание встречается, хотя и редко, и среди эукариот. Так, нитратное дыхание, сопровождающееся денитрификацией и выделением молекулярного азота, недавно открыто у фораминифер . До этого нитратное дыхание с образованием N 2 O было описано у грибов Fusarium и Cylindrocarpon (см. .

Сульфатное дыхание

В настоящее время известен ряд бактерий, способных окислять органические соединения или молекулярный водород в анаэробных условиях, используя в качестве акцепторов электронов в дыхательной цепи сульфаты , тиосульфаты , сульфиты , молекулярную серу . Этот процесс получил название диссимиляционной сульфатредукции, а бактерии, осуществляющие этот процесс - сульфатвосстанавливающих или сульфатредуцирующих.

Все сульфатвосстанавливающие бактерии - облигатные анаэробы.

Сульфатвосстанавливающие бактерии получают энергию в процессе сульфатного дыхания при переносе электронов в электронтранспортной цепи. Перенос электронов от окисляемого субстрата по электронтранспортной цепи сопровождается возникновением электрохимического градиента ионов водорода с последующим синтезом АТФ .

Подавляющее большинство бактерий этой группы хемоорганогетеротрофы. Источником углерода и донором электронов для них являются простые органические вещества - пируват , лактат , сукцинат , малат , а также некоторые спирты . У некоторых сульфатвосстанавливающих бактерий обнаружена способность к хемолитоавтотрофии, когда окисляемым субстратом является молекулярный водород .

Сульфатвосстанавливающие эубактерии широко распространены в анаэробных зонах

Анаэробное и аэробное дыхание

Дыхание - совокупность реакций биологического окисления органических енерговмисних веществ с выделением энергии, необходимой для жизнедеятельности организма. Дыхание является процессом, при котором атомы водорода (электроны) переносятся от органических веществ на молекулярный кислород. Выделяют два основных типа дыхания: анаэробное и аэробное.

Аэробное дыхание - совокупность процессов, осуществляющих окисление органических веществ и получения энергии с участием кислорода. Расщепление органических веществ является полным и происходит с образованием конечных продуктов окисления Н2О и СО2. Характерно аэробное дыхание для подавляющего большинства организмов и проходит в митохондриях клетки. Аэробные организмы в процессе дыхания могут окиснюваты различные органические соединения: углеводы, жиры, белки и т. В аэробных организмов окисления протекает с использованием кислорода в качестве акцептора (приемника) электрона до углекислого газа и воды. Аэробное дыхание - самый способ образования энергии. В основе - полное расщепление, которое происходит с участием реакций бескислородного и кислородного этапов энергетического обмена. Аэробное дыхание играет основную роль в обеспечении клеток энергией и рощепленни веществ до конечных продуктов окисления - воды и углекислого газа.

Ядро - это крепость, где спрятана главная разгадка самовоспроизведению жизни.

Введение

1. Аэробное дыхание

2. Анаэробное дыхание

2.1 Типы анаэробного дыхания

4.Список литературы

Введение

Дыхание присуще всем живым организмам. Оно представляет собой окислительный распад органических веществ, синтезированных в процессе фотосинтеза, протекающих с потреблением кислорода и выделением диоксида углерода. А.С. Фаминцын рассматривал фотосинтез и дыхание как две последовательные фазы питания растений: фотосинтез готовит углеводы, дыхание перерабатывает их в структурную биомассу растения, образуя в процессе ступенчатого окисления реакционноспособные вещества и освобождая энергию, необходимую для их превращения и процессов жизнедеятельности в целом. Суммарное уравнение дыхания имеет вид:

CHO + 6O → 6CO + 6HO + 2875кДж.

Из этого уравнения становится ясно, почему именно скорость газообмена используют для оценки интенсивности дыхания. Оно было предложено в 1912 г. В. И. Палладиным, который считал, что дыхание состоит из двух фаз - анаэробной и аэробной. На анаэробном этапе дыхания, идущем в отсутствие кислорода, глюкоза окисляется за счет отнятия водорода (дегидрирования), который, по мнению ученого, передается на дыхательный фермент. Последний при этом восстанавливается. На аэробном этапе происходит регенерация дыхательного фермента в окислительную форму. В. И. Палладин впервые показал, что окисление сахара идет за счет непосредственного окисления его кислородом воздуха, поскольку кислород не встречается с углеродом дыхательного субстрата, а связано с его дегидрированием.

Существенный вклад в изучение сути окислительных процессов и химизма процесса дыхания внесли как отечественные (И.П. Бородин, А.Н.Бах, С.П. Костычев, В.И. Палладин), так и зарубежные (А.Л. Лавуазье, Г. Виланд, Г. Кребс) исследователи.

Жизнь любого организма неразрывно связана с непрерывным использованием свободной энергии, генерируемой при дыхании. Неудивительно, что изучению роли дыхания в жизни растения в последнее время отводят центральное место в физиологии растений.

1. Аэробное дыхание

Аэробное дыхание - это окислительный процесс, в ходе которого расходуется кислород. При дыхании субстрат без остатка расщепляется до бедных энергией неорганических веществ с высоким выходом энергии. Важнейшими субстратами для дыхания служат углеводы. Кроме того, при дыхании могут расходоваться жиры и белки.

Аэробное дыхание включает два основных этапа:

- бескислородный, в процессе, которого происходит постепенное расщепление субстрата с высвобождением атомов водорода и связыванием с коферментами (переносчиками типа НАД и ФАД);

- кислородный, в ходе которого происходит дальнейшее отщепление атомов водорода от производных дыхательного субстрата и постепенное окисление атомов водорода в результате переноса их электронов на кислород.

На первом этапе вначале высокомолекулярные органические вещества (полисахариды, липиды, белки, нуклеиновые кислоты и др.) под действием ферментов расщепляются на более простые соединения (глюкозу, высшие карбоновые кислоты, глицерол, аминокислоты, нуклеотиды и т.п.) Этот процесс происходит в цитоплазме клеток и сопровождается выделением небольшого количества энергии, которая рассеивается в виде тепла. Далее происходит ферментативное расщепление простых органических соединений.

Примером такого процесса является гликолиз - многоступенчатое бескислородное расщепление глюкозы. В реакциях гликолиза шестиуглеродная молекула глюкозы (С) расщепляется на две трехуглеродные молекулы пировиноградной кислоты (С). При этом образуется две молекулы АТФ, и выделяются атомы водорода. Последние присоединяются к переносчику НАД (никотинамидадениндинклеотид), который переходит в свою восстановительную форму НАД ∙ Н + Н. НАД кофермент, близкий по своей структуре к НАДФ. Оба они представляют собой производные никотиновой кислоты - одного из витаминов группы В. Молекулы обоих коферментов электроположительны (у них отсутствует один электрон) и могут играть роль переносчика как электронов, так и атомов водорода. Когда акцептируется пара атомов водорода, один из атомов диссоциирует на протон и электрон:

а второй присоединяется к НАД или НАДФ целиком:

НАД+ Н + [Н+ е] → НАД ∙ Н + Н.

Свободный протон позднее используется для обратного окисления кофермента. Суммарно реакция гликолиза имеет вид

CHO +2АДФ + 2НРО + 2 НАД→

2СНО + 2АТФ + 2 НАД ∙ Н + Н+ 2 HO

Продукт гликолиза - пировиноградная кислота (СНО) - заключает в себе значительную часть энергии, и дальнейшее ее высвобождение осуществляется в митохондриях. Здесь происходит полное окисление пировиноградной кислоты до COи HO. Этот процесс можно разделить на три основные стадии:

  1. окислительное декарбоксилирование пировиноградной кислоты;
  2. цикл трикарбоновых кислот (цикл Кребса);
  3. заключительная стадия окисления - электронтранспортная цепь.

На первой стадии пировиноградная кислота взаимодействует с веществом, которое называют коферментом А, в результате чего образуется ацетилкофермент а с высокоэнергетической связью. При этом от молекулы пировиноградной кислоты отщепляется молекула CO(первая) и атомы водорода, которые запасаются в форме НАД ∙ Н + Н.

Вторая стадия - цикл Кребса (рис. 1)

В цикл Кребса вступает ацетил-КоА, образованный на предыдущей стадии. Ацетил-КоА взаимодействует со щавелево-уксусной кислотой, в результате образуется шестиуглеродная лимонная кислота. Для этой реакции требуется энергия; ее поставляет высокоэнергетическая связь ацетил-КоА. В конце цикла щавелево-лимонная кислота регенерируется в прежнем виде. Теперь она способна вступить в реакцию с новой молекулой ацетил-КоА, и цикл повторяется. Суммарно реакция цикла может быть выражена следующим уравнением:

ацетил-КоА + 3HO + 3НАД+ ФАД + АДФ + НРО→

КоА + 2CO+ 3НАД ∙ Н + Н+ФАД ∙ H+ АТФ.

Таким образом, в результате распада одной молекулы пировиноградной кислоты в аэробной фазе (декарбоксилирование ПВК и цикла Кребса) выделяется 3CO, 4 НАД ∙ Н + Н, ФАД ∙ H. Суммарно реакцию гликолиза, окислительного декарбоксилирования и цикла Кребса можно записать в следующем виде:

CHO + 6 HO + 10 НАД + 2ФАД →

6CO+ 4АТФ + 10 НАД ∙ Н + Н+ 2ФАД ∙ H.

Третья стадия - электротранспортная цепь.

Пары водородных атомов, отщепляемые от промежуточных продуктов в реакциях дегидрирования при гликолизе и в цикле Кребса, в конце концов, окисляются молекулярным кислородом до HO с одновременным фосфолированием АДФ в АТФ. Происходит это тогда, когда водород, отделившийся от НАД ∙ Hи ФАД ∙ H, передается по цепи переносчиков, встроенных во внутреннюю мембрану митохондрий. Пары атомов водорода 2Н можно рассматривать как 2 Н + 2е. Движущей силой транспорта атомов водорода в дыхательной цепи является разность потенциалов.

С помощью переносчиков ионы водорода Нпереносятся с внутренней стороны мембраны на ее внешнюю сторону, иначе говоря, из матрикса митохондрии в межмембранное пространство (рис. 2).

При переносе пары электронов от над на кислород они пересекают мембрану три раза, и этот процесс сопровождается выделением на внешнюю сторону мембраны шести протонов. На заключительном этапе протоны переносятся на внутреннюю сторону мембраны и акцептируются кислородом:

½ O + 2е → O.

В результате такого переноса ионов Нна внешнюю сторону мембраны митохондрий в перимитохондриальном пространстве создается концентрация их, т.е. возникает электрохимический градиент протонов.

Когда протонный градиент достигает определенной величины, ионы водорода из Н-резервуара движутся по специальным каналам в мембране, и их запас энергии используется для синтеза АТФ. В матриксе они соединяются с заряженными частичками О, и образуется вода: 2Н+ О²ˉ → HO.

1.1 Окислительное фосфолирование

Процесс образования АТФ в результате переноса ионов Нчерез мембрану митохондрии получил название окислительного фосфолирования. Он осуществляется при участии фермента АТФ-синтетазы. Молекулы АТФ-синтетазы располагаются в виде сферических гранул на внутренней стороне внутренней мембраны митохондрий.

В результате расщепления двух молекул пировиноградной кислоты и переноса ионов водорода через мембрану по специальным каналам синтезируется в целом 36 молекул АТФ (2 молекулы в цикле Кребса и 34 молекулы в результате переноса ионов Н через мембрану).

Суммарное уравнение аэробного дыхания можно выразить следующим образом:

CHO + O+ 6HO + 38АДФ + 38НРО→

6CO+ 12HO + 38АТФ

Совершенно очевидно, что аэробное дыхание прекратится в отсутствии кислорода, поскольку именно кислород служит конечным акцептором водорода. Если клетки не получают достаточного количества кислорода, все переносчики водорода вскоре полностью насытятся и не смогут передавать его дальше. В результате основной источник энергии дл образования АТФ окажется блокированным.

аэробное дыхание окисление фотосинтез

2. Анаэробное дыхание

Анаэробное дыхание. Некоторые микроорганизмы способны использовать для окисления органических или неорганических веществ не молекулярный кислород, а другие окисленные соединения, например, соли азотной, серной и угольной кислот, превращающиеся при этом в более восстановленные соединения. Процессы идут в анаэробных условиях, и их называют анаэробным дыханием:

2HNO + 12Н→ N + 6HO + 2Н

HSO + 8Н→ HS + 4HO

У микроорганизмов, осуществляющих такое дыхание, конечным акцептором электронов будет не кислород а неорганическое соединения - нитриты, сульфаты и карбонаты. Таким образом, различия между аэробным и анаэробным дыханием заключается в природе конечного акцептора электронов.

2.1 Типы анаэробного дыхания

Основные типы анаэробного дыхания приведены в таблице 1. есть также данные об использовании бактериями в качестве акцепторов электронов Mn, хроматов, хинонов и др.

Таблица 1 Типы анаэробного дыхания у прокариот (по: М.В Гусев, Л.А. Минеева 1992, с изменениями)

Энергетический процесс

Конечный акцептор электронов

Продукты восстановления

Нитратное дыхание и нитрификация

Сульфатное и серное дыхание

“Железное ” дыхание

Карбонатное дыхание

СН, ацетат

Фумаратное дыхание

Сукцинат

Свойство организмов переносить электроны на нитраты, сульфаты и карбонаты обеспечивает в достаточной степени полное окисление органического или неорганического вещества без использования молекулярного кислорода и обуславливает возможность получения большого количества энергии, чем при брожении. При анаэробном дыхании выход энергии только на 10% ниже. Чем при аэробном. Организмы, для которых характерно анаэробное дыхание, имеют набор ферментов электронтранспортной цепи. Но цитохромоксилаза в них заменяется нитратредуктазой (при использовании в качестве акцептора электронов нитрата) или аденилсульфатредуктазой (при использовании сульфата) или другими ферментами.

Организмы, способные осуществлять анаэробное дыхание за счет нитратов, - факультативные анаэробы. Организмы, использующие сульфаты в анаэробном дыхании, относятся к анаэробам.

Вывод

Органические вещества из не органических зеленое растение образует только на свету. Эти вещества используются растением только для питания. Но растения не только питаются. Они дышат, как все живые существа. Дыхание происходит непрерывно днем о ночью. Дышат все органы растения. Растения дышат кислородом, а выделяют углекислый газ, как животные и человек.

Дыхание растений может происходить, как в темноте, так и на свету. Значит, на свету в растении протекают два противоположных процесса. Один процесс - фотосинтез, другой - дыхание. Во время фотосинтеза создаются органические вещества из неорганических и поглощается энергия солнечного света. Во время дыхания в растении расходуются органические вещества. А энергия, необходима для жизнедеятельности, освобождается. На свету в процессе фотосинтеза растения поглощают углекислый газ и выделяют кислород. Вместе с углекислым газом растения на свету поглощают из окружающего воздуха и кислород, необходимый растениям для дыхания, но в гораздо меньших количествах, чем выделяются при образовании сахара. Углекислого газа при фотосинтезе растения поглощают гораздо больше, чем выделяют его придыхании. Декоративные растения в комнате при хорошем освещении выделяют днем значительно больше кислорода, чем поглощают его в темноте ночью.

Дыхание во всех живых органов растения происходит непрерывно. Когда прекращается дыхание, растение, так же как и животное погибает.

Список литературы

1. Физиология и биохимия сельскохозяйственных растений Ф50/Н.Н. Третьяков, Е.И. Кошкин, Н.М. Макрушин и др.; под. ред. Н.Н. Третьякова. - М.; Колос, 2000 - 640 с.

2. Биология в экзаменационных вопросах и ответах Л44/ Лемеза Н.А., Камлюк Л.В.; 7-е изд. - М.: Айрис-пресс, 2003. - 512 с.

3. Ботаника: Учеб. Для 5-6 кл. сред. Шк.-19-е изд./Перераб. А.Н. Сладковым. - М.: Просвещение, 1987. - 256 с.

Большинство гетеротрофных организмов получает энергию в результате биологического окисления органических веществ - дыхания. Водород от окисляемого вещества (см. § 24) передается в дыхательную цепь. Если роль конечного акцептора водорода выполняет только кислород, процесс носит название аэробного дыхания, а микроорганизмы являются строгими (облигатными) аэробами, которые обладают полной цепью ферментов переноса (см. рис. 14) и способны жить только при достаточном количестве кислорода. К аэробным микроорганизмам относятся многие виды бактерий, гри-6¿i, водоросли, большинство простейших. Аэробные сап-рофиты играют основную роль в процессах биохимической очистки сточных вод и самоочищении водоема.[ ...]

Аэробное дыхание сделало возможным развитие сложных многоклеточных организмов. Считается, что первые ядерные клетки появились после того, как содержание кислорода в атмосфере достигло 3-4% его современного уровня (или около 0,6% состава той атмосферы). Случилось это примерно 1 млрд лет назад (см. рис. 7.26). Многоклеточные организмы, вероятно, появились 700 млн лет назад по достижении концентрации кислорода в атмосфере 8% от современного уровня.[ ...]

Аэробное дыхание - процесс, обратный «нормальному» фотосинтезу (см. словесную формулу фотосинтеза, приведенную выше). С помощью этого процесса все высшие растения и животные, а также большинство бактерий и простейших получают энергию для поддержания жизнедеятельности и построения клеток. В итоге завершенного дыха-, ния образуются СОг, Н2О и вещества клетки, однако процесс может идти не до конца и в результате такого незавершенного дыхания образуются органические вещества, еще содержащие некоторое количество энергии, которая может быть в дальнейшем использована другими организмами.[ ...]

Аэробное дыхание - реакции распада глюкозы в присутствии кислорода.[ ...]

Следовательно, «топливом» для окисления в митохондриях являются пируват и жирные кислоты. Ацетил-КоА обладает высоким потенциалом переноса ацетильных групп. Следовательно, топливные молекулы вступают в цикл Кребса в виде ацетил-КоА. Непрерывность же снабжения окислительных процессов «топливом» обеспечивается запасанием животными клетками липидов, являющихся главным ресурсом жирных кислот, а также гликогена, являющегося источником глюкозы.[ ...]

При аэробном дыхании выделяется значительно больше энергии, чем при анаэробном. Так, если при полном окислении молекулы глюкозы образуется 38 молекул АТФ, то при брожении ее- всего 2. Поэтому анаэробам приходится перерабатывать значительно большее количество органического вещества, чем аэробам, для получения одинакового количества энергии.[ ...]

Ферментация - аэробное дыхание посредством ферментов.[ ...]

Если в процессе дыхания окисляются органические вещества с относительно более высоким содержанием кислорода, чем в углеводах, например органические кислоты - щавелевая, винная и их соли, то дыхательный коэффициент будет значительно больше 1. Он также будет больше 1 в том случае, когда часть кислорода, используемого для дыхания микробов, берется из углеводов; или же при дыхании тех дрожжей, у которых одновременно с аэробным дыханием происходит спиртовое брожение. Если же наряду с аэробным дыханием протекают другие процессы, при которых используется добавочный кислород, то дыхательный коэффициент будет меньше 1. Он будет меньше 1 и тогда, когда в процессе дыхания окисляются вещества с относительно небольшим содержанием кислорода, например белки, углеводороды и др. Следовательно, зная значение дыхательного коэффициента, можно определить, какие вещества окисляются в процессе дыхания.[ ...]

Посредством процесса аэробного дыхания организмы получают энергию для поддержания жизнедеятельности и построения клеток. Бескислородное дыхание - это основа жизнедеятельности сапрофагов (бактерии, дрожжи, плесневые грибы, простейшие). Аэробное дыхание превосходит, и значительно, анаэробное в скорости.[ ...]

Как было указано выше, дыхание и питание являются основными процессами обмена веществ живого организма. Для жизнедеятельности микроорганизмов, т. е. для их развития, размножения и роста, а также для синтеза различных органических соединений, входящих в состав клетки, необходимо много энергии. Микроорганизмы удовлетворяют свою потребность в энергии благодаря процессам дыхания. Дыхание, или аэробное дыхание - это процесс окисления сложных органических соединений до менее сложных или до простых минеральных веществ - Н20 и С02 (процесс диссимиляции) с одновременным выделением свободной энергии. Выделение углекислоты в результате дыхания связано с поглощением кислорода и полным окислением питательных веществ.[ ...]

Итак, простейший процесс аэробного дыхания представляется в следующем виде. Молекулярный кислород, потребляемый в процессе дыхания, используется в основном для связывания водорода, образующегося при окислении субстрата. Водород от субстрата передается к кислороду через ряд промежуточных реакций, проходящих последовательно с участием ферментов и переносчиков. Определенное представление о характере процесса дыхания дает так называемый дыхательный коэффициент. Под этим понимают отношение объема выделившегося углекислого газа к объему кислорода, поглощенного в процессе дыхания (С02:02).[ ...]

Как видно из уравнений, при обоих типах дыхания освобождаются разные количества энергии. Так как клетка стремится возможно рациональнее регулировать преобразование веществ, аэробное дыхание играет намного большую роль, чем анаэробное, тем более что при первом, как правило, теряется меньше сахаров.[ ...]

Микроорганизмы, имеющие факультативно-анаэробное дыхание, в своих клетках содержат, кроме дегидраз, еще оксидазы и ферменты, активирующие кислород, т. е. ферменты, свойственные и аэробным микробам. Дрожжи относятся к группе факультативно-анаэробных микроорганизмов, т. е. им свойственно и анаэробное и аэробное дыхание, но последнее выражено слабее. При анаэробном дыхании дрожжи расходуют на дыхание значительно больше энергетического материала (сахара), чем при аэробном дыхании.[ ...]

Как уже указывалось, многие группы бактерий способны й к аэробному, и к анаэробному дыханию (т. е. являются факультативными анаэробами), но важно отметить, что конечные продукты этих двух реакций различны и количество высвобождающейся энергии в анаэробных условиях значительно меньше. В присутствии кислорода почти вся глюкоза превращалась в бактериальную протоплазму и СО2, в отсутствие же кислорода разложение было неполным, гораздо меиьшая часть глюкозы превращалась в вещество клетки, и в среду выделялся ряд органических соединений, для окисления которых требуются дополнительные «специалисты»-бактерии. В общем полное аэробное дыхание во много раз быстрее, чем неполный процесс анаэробного дыхания, если оценивать выход энергии на единицу используемого субстрата.[ ...]

Хранение в регулируемой атмосфере. Как отмечалось выше, в процессе аэробного дыхания при хранении растительного сырья сахара окисляются, превращаясь в диоксид углерода и воду по схеме, согласно которой на 1 моль поглощенного кислорода выделяется 1 моль диоксида углерода, а так как моли всех газов занимают один и тот же объем, то получается, что объем поглощаемого кислорода равен объему выделенного диоксида углерода.[ ...]

В условиях промышленного загрязнения атмосферы обнаружено усиление аэробного дыхания и возрастание активности терминальных оксидаз. Для растений, произрастающих на промплощадке, характерна максимальная активность пероксидазы и полифенолоксидазы. Уровень активности и чувствительности ферментов зависит от биологических особенностей и степени повреждаемости вида. Максимальная активность и чувствительность пероксидазы и полифенолоксидазы к действию газов отмечалась у березы бородавчатой, средняя -у тополя бальзамического и самая низкая - у клена ясенелистного.[ ...]

Содержание углекислого газа. СОз является конечным продуктом как брожения, так и аэробного дыхания. При довольно высоких концентрациях СО2, значительно превышающих те, которые обычно окружают растительный организм (выше 40%), процесс дыхания тормозится. Торможение вызывается несколькими причинами: 1. Высокая концентрация СОг может оказывать общее анестезирующее влияние на растительный организм. 2. СОг тормозит активность ряда дыхательных ферментов. 3. Повышение содержания СОг вызывает закрытие устьиц (с. 69), что затрудняет доступ кислорода н косвенно тормозит процесс дыхания.[ ...]

Рост населения планеты, интенсивное разведение домашних животных сегодня привели к тому, что биологический вклад (аэробное дыхание, разложение органических остатков) в увеличение концентрации С02в атмосфере стал соизмеримым с промышленными выбросами.[ ...]

Это отчетливо выявилось в наших опытах [Чайлахяи и др., 1977]: нарушение в листьях растений фотосинтеза и аэробного дыхания приводило к нарушению фотопериодической индукции цветения (рис. 73, 74). Ингибируя процесс аэробного дыхания или же фотосинтеза в то или иное время суточного цикла, оказалось возможным осуществить полную искусственную регуляцию фотопериодического процесса: затормозить цветение короткодпевиых и длиииодиевиых растений в условиях индуктивной длины дня и, наоборот, вызвать цветение в неиндуктивных условиях. Следовательно, фотосинтез п дыхание, помимо их общей роли в метаболизме, тесно связаны с осуществлением световых и темповых реакций фотопериодической индукции в листьях.[ ...]

Если хранить плоды в газонепроницаемом помещении, то кислород из атмосферного, содержащий 79 % 1Ч2 и 21 % 02, будет расходоваться на дыхание, а взамен израсходованного кислорода в атмосферу будет выделяться равный объем диоксида углерода. При этом, как и видно из схемы аэробного дыхания, сумма объемов, участвующих и образующих в процессе дыхания газов (02 + С02), есть величина постоянная, равная первоначальному процентному содержанию кислорода в воздухе, т. е. 21 %. Если, например, кислорода в хранилище осталось 16 %, значит диоксида углерода накопилось 5 %.[ ...]

Некоторые анаэробные микроорганизмы в качестве акцептора используют связанный кислород, входящий в состав таких соединений, как сульфаты или нитраты. В присутствии кислорода они имеют аэробное дыхание, а в бескислородных средах используют в качестве акцептора кислород нитратов, восстанавливая их до азота или его низших оксидов. Бактерии, восстанавливающие в процессе дыхания сульфаты до сероводорода, являются облигатными анаэробами, например ВевиНоуШ-гю (кэиИипсапз.[ ...]

Наконец, темповые реакции, идущие на протяжении длинной ночи короткодиевного цикла и сильно зависящие от температурных условий, нуждаются в наличии 02 и угнетаются ингибиторами аэробного дыхания и, по всей вероятности, происходят при участии темпового дыхания.[ ...]

Куиревич установил критическую концентрацию равной 10%, однако Том кине считает, что она должна быть ниже 5% (¡рис. 63). Из этого необходимо сделать вывод, что диапазон, в котором аэробное дыхание и брожение протекают одновременно, определяется сортовыми и породными особенностями плодов и сильно колеблется в зависимости от условий вегетации и агротехники. Возможно, этим объясняется причина различного поведения видов и сортов плодов в отдельные годы их хранения в камерах с регулируемой газовой средой.[ ...]

Мусор, в котором мало бумаги и содержится очень много пищевых отходов, не может компостироваться без специальных мероприятий, так как его влажность превысит 65%. Повышенная влажность нарушает процессы аэробного дыхания организмов.[ ...]

В целом на основании данных по изучению влияния температуры и аэрации на развитие растений во время их пребывания в темноте можно считать вероятным, что темповые реакции фотопериодизма находятся в связи с процессом аэробного дыхания.[ ...]

Рост грибов и выделение ими углекислоты зависят от давления кислорода в атмосфере и от температуры. При меньшем давлении кислорода чем 1,5 атм и температуре 17,5° С гриб перестает расти и его обмен приобретает анаэробный характер. Нижняя граница аэробного дыхания зависит от температуры: при 29,5° С обмен веществ уже меняется при давлении кислорода 1,5 атм. В условиях анаэробного дыхания выделение углекислоты прямо пропорционально давлению кислорода. В таких условиях изменяется весь обмен веществ гриба, весь набор его ферментов.[ ...]

В зависимости от вида сырья плоды поступают на хранение в деревянных ящиках, ящичных поддонах, контейнерах, насыпью. При этом желательно не укладывать сырье (особенно насыпью) очень высоким слоем, иначе будет затруднен доступ воздуха к отдельным плодам. В этом случае процесс нормального (аэробного) дыхания нарушится и наступит так называемое интрамолекулярное или анаэробное дыхание, протекающее по приведенной выше схеме спиртового брожения и приводящее сырье к порче. Поэтому сырье, особенно нежной консистенции, укладывают в ящики-клетки штабелями высотой до 2 м, оставляя между отдельными штабелями проходы. При таком хранении имеется достаточный доступ воздуха и дыхание протекает нормально.[ ...]

Получение энергии путем разложения части биомассы характерно для всех живых организмов, независимо от того, как эта биомасса появляется. Под разложением в живых организмах понимают любые биологические окисления, дающие энергию. При этом окислителем (акцептором электронов) может служить газообразный кислород (аэробное дыхание), какое-либо неоргавичеокое или органическое соединение (анаэробное дыхание),а также самоокисляемое соединение (брожение - разновидность анаэробного дыхания).[ ...]

Очень малое количество кислорода, образуемого за счет абиотических процессов, например при разложении водяного пара под действием ультрафиолета, могло обеспечить достаточное количество озона, чтобы создать некоторую защиту от самого ультрафиолетового излучения. До тех пор пока атмосферного кислорода и озона было мало, жизнь могла развиваться только под защитой слоя воды. Первыми живыми организмами были дрожжеподобные анаэробы, которые получали энергию, необходимую для дыхания, путем брожения. Так на протяжении миллионов лет жизнь, вероятно, существовала в очень неподходящих условиях, подвергаясь множеству опасностей. Беркнер и Маршалл (1966) так обрисовали эту ситуацию: «Для этой модели примитивной экологии необходим бассейн, достаточно глубокий, чтобы поглощался губительный ультрафиолет, но не столь глубокий, чтобы поступление видимого излучения было слишком мало. Жизнь могла зародиться на дне небольших водоемов или мелководных закрытых морей, питавшихся, по-видимому, горячими источниками, богатыми питательными химическими веществами».[ ...]

Для большинства видов наиболее эффективными температурами являются температуры чуть выше 0°С, а именно 1-2°С, но температуры в пределах от -1 до Н-9°С оказывают почти такой же эффект. Следовательно, замораживание клеток не обязательно для того, чтобы вызывать изменения, имеющие место во время яровизации; этот факт позволяет предположить, что в яровизации в большей степени участвуют физиологические, а не чисто физические процессы. Такое заключение подтверждается неэффективностью обработки зерна ржи холодом в анаэробных условиях, что свидетельствует о существенном значении аэробного дыхания. При культивировании выделенных. зародышей на средах, содержащих и не содержащих сахар, было установлено, что снабжение углеводами необходимо во время обработки холодом. Таким образом, хотя при низких температурах метаболизм у большинства растений значительно замедляется, не вызывает сомнения, что яровизация включает активные физиологические процессы, природа которых пока еще совершенно неизвестна.[ ...]

Прогрессивное увеличение количества кислорода в воде вследствие деятельности фотосинтезирующих организмов и его диффузия в атмосферу вызвали изменения в химическом составе оболочек Земли, и, прежде всего атмосферы, что в свою очередь сделало возможным быстрое распространение жизни по планете и появление более сложно организованных жизненных форм. По мере увеличения содержания кислорода в атмосфере формируется достаточно мощный слой озона, который защищает поверхность Земли от проникновения жесткого ультрафиолетового и космического изучений. В таких условиях жизнь смогла продвинуться к поверхности моря. Развитие механизма аэробного дыхания сделало возможным появление многоклеточных организмов. Первые такие организмы появились после того, как концентрация кислорода в атмосфере планеты достигла 3%, что произошло 600 млн лет назад (начало кембрийского периода).[ ...]

Биологические функции митохондрий удалось установить только после того, как их научились отделять от других клеточных компонентов путем дифференцированного ультрацентрифугирования. Выделенные таким образом эти органеллы могут быть очищены от солей посредством диализа, высушены и подвергнуты химическому анализу. Отсюда становится понятным обязательное присутствие митохондрий во всех клетках с аэробным дыханием, а также и то, что при изъятии ядра из клетки отдельные компоненты ее продолжают «дышать». В то же время замечено, что при переходе клетки от аэробного образа жизни к анаэробному, т. е. когда перестает функционировать окислительный цикл трикарбоновых кислот, митохондрии исчезают и взамен их возникает мощно развитая система мембран эндоплазматическей сети. Подобные наблюдения были сделаны при изучении дрожжевых клеток и чашелистиков канатника (Abutilón), помещенных в атмосферу азота. От числа митохондрий в клетках зависит интенсивность дыхания.[ ...]

О том же свидетельствует более длительное сохранение зеленой окраски у плодов, поскольку в условиях РГС подавляется распад хлорофилла. Снижение активности окислительных ферментов - полифенолоксидазы и аскор-бинатоксидазы, обусловленное уменьшением концентрации 02 в газовой среде, способствует лучшему сохранению Р- и С-витаминной активности плодов, препятствуя одновременно побурению последних. При концентрациях 02 и С02, рекомендуемых для вида и сорта плодов и овощей, в РГС наблюдается меньшее - накопление в их тканях ацетальдегида и спирта (продуктов анаэробного распада сахаров), что коррелирует с меньшим поражением плодов загаром. Существующая теория объясняет это явление так. В растительных тканях как при обычном содержании, так и при недостатке кислорода имеют место аэробный и анаэробный типы дыхания. В условиях, когда подавляется процесс аэробного дыхания (при понижении концентрации 02 в атмосфере), тормозится и дыхание анаэробное. Что же касается ацетальдегида, то его образование зависит и от реакции декарбоксилирования, а она, как уже отмечалось, в условиях РГС подавляется.[ ...]

Как известно, бобры не используют значительное количество сгрызенной и складируемой ими древесно-кустарниковой растительности, которая, перегнивая, обогащает воду органическими и минеральными веществами. Исследования Наймана с соавторами (Ыайпап е! а1., 1986) показали, что бобр непосредственно грызущей деятельностью способствует поступлению в воду 56 % затопленной древесины ивы (диаметр 1-10 см), 52% осины, 17% березы, 13% ольхи и менее 1% хвойных. Кроме того, из-за изменения гидрологических условий до 50-60% древесины выламывается ветром и попадает в воду. Эрозионный выход органического материала (углерода) максимален в воде, вытекающей из бобровых прудов. Пруд содержит значительно больше углерода на единицу площади, чем русловые участки. Он получал только 42% аллохтонной органики, поступающей в русловой участок на единицу площади. Но поскольку пруд имел площадь в семь раз больше, чем русловой участок, то на единицу длины потока он получал аллохтонной органики втрое больше. Первичная продукция пруда на единицу площади значительно меньше таковой для русла. Общее аэробное дыхание пруда вдвое больше на единицу площади, а на единицу длины потока в 15.8 раз больше русла. Время оборота молекулы углерода для пруда составило 161 год, для руслового участка - 24 года. Индекс речного метаболизма показал, что пруд накапливает и (или) обрабатывает органических поступлений больше, чем транспортирует вниз по течению. Соответственно длина оборота углерода (расстояние перемещения атома углерода в речном потоке в сохраненной или редуцированной форме) для пруда составила 1.2 км, а для руслового участка 8.0 км. Следовательно, бобровый пруд действовал более эффективно.

Многие женщины и мужчины имеют лишний вес, который необходимо скинуть в короткие сроки и с минимальным ущербом для собственного здоровья. Существует специальная методика, которая предполагает проведение физических упражнений для эффективного снижения веса.

Как правило, различают два основных метода дыхания, которые применяются при физических тренировках. Первая разновидность - это анаэробное дыхание, вторая - аэробное дыхание.

Следует отметить, что аэробное дыхание необходимо начинать на этапе разминки, чтобы подготовить организм для будущей нагрузки. Как правило, процесс начинается уже после первой половины часа занятий. У тех, кто занимается регулярно, жировая основа начинает «таять» уже после первых 10 минут физических упражнений.

Для начала проводите занятия примерно 2-3 раза в неделю. Этого будет вполне достаточно для постепенного привыкания организма и исключения возможной перегрузки. Постепенно увеличьте количество тренировок до 4-5 раз. Конечно же, на частоту занятий оказывает непосредственное влияние образ жизни и рабочий график. Но даже после утомительного трудового дня можно выделить полчаса на проведение элементарных упражнений в домашних условиях.

Перед началом занятий выберите для себя удобную одежду, от которой будет зависеть конечный результат. Конечно же, не должно быть никакой стесняющей движения одежды, давящих элементов (бретельки, тугие резинки, швы) и болтающихся краев. Одежда должно способствовать активности тела человека. Целесообразно подобрать энергичную музыку, под которую выполнять различные упражнения будет веселее и жизнерадостнее. Сочетание элементов аэробики и делает занятия более яркими и запоминающимися.
Первые сдвиги в борьбе с лишним весом и жировыми отложениями можно заметить уже после первых занятий. Также повышает эффект физических нагрузок дополнительный курс массажа, сбалансированное питание, водные процедуры, нанесение специальных средств для придания коже гладкости и упругости и т.д.

Поделиться: